Publication Details
Testování vícevláknových aplikací pomocí genetických algoritmů
Křena Bohuslav, Ing., Ph.D. (DITS)
Letko Zdeněk, Ing., Ph.D. (CM-SFE)
Ur Shmuel
Vojnar Tomáš, prof. Ing., Ph.D. (DITS)
genetic algorithms, noise injection, testing, multi-threaded programs
Noise injection disturbs the scheduling of program threads in order to increase the probability that more of their different legal interleavings occur during the testing process. However, there exist many different types of noise heuristics with many different parameters that are not easy to set such that noise injection is really efficient. In this paper, we propose a new way of using genetic algorithms to search for suitable types of noise heuristics and their parameters. This task is formalized as the test and noise configuration search problem in the paper, followed by a discussion of how to represent instances of this problem for genetic algorithms, which objectives functions to use, as well as parameter tuning of genetic algorithms when solving the problem. The proposed approach is evaluated on a set of benchmarks, showing that it provides significantly better results than the so far preferred random noise injection.
@article{BUT96964,
author="Vendula {Dudka} and Bohuslav {Křena} and Zdeněk {Letko} and Shmuel {Ur} and Tomáš {Vojnar}",
title="Testování vícevláknových aplikací pomocí genetických algoritmů",
journal="Lecture Notes in Computer Science",
year="2012",
volume="2012",
number="7515",
pages="152--167",
issn="0302-9743",
url="http://www.fit.vutbr.cz/~vojnar/Publications/ssbse-12.pdf"
}