
Testing of Concurrent Programs

Using Genetic Algorithms

Vendula Hrubá1, Bohuslav Křena1, Zdeněk Letko1, Shmuel Ur2, and Tomáš Vojnar1

1 IT4Innovations Centre of Excellence, FIT, Brno University of Technology, Czech Republic

{ihruba, krena, iletko, vojnar}@fit.vutbr.cz
2 Shmuel Ur Innovations, Ltd., shmuel.ur@gmail.com

Abstract. Noise injection disturbs the scheduling of program threads in order

to increase the probability that more of their different legal interleavings occur

during the testing process. However, there exist many different types of noise

heuristics with many different parameters that are not easy to set such that noise

injection is really efficient. In this paper, we propose a new way of using genetic

algorithms to search for suitable types of noise heuristics and their parameters.

This task is formalized as the test and noise configuration search problem in the

paper, followed by a discussion of how to represent instances of this problem for

genetic algorithms, which objectives functions to use, as well as how to set pa-

rameters of genetic algorithms when solving the problem. The proposed approach

is evaluated on a set of benchmarks, showing that it provides significantly better

results than the so far preferred random noise injection.

1 Introduction

The arrival of multi-core processors into common computers accelerated development

of software with multi-threaded design. Multi-threaded programming is, however, sig-

nificantly more demanding and offers much more space for errors. Moreover, errors in

concurrency are often very difficult to discover and localise due to the non-deterministic

nature of multi-threaded computation. This situation stimulates research efforts devoted

to all sorts of methods for testing, analysis, and verification.

Formal methods of verification, such as, e.g., model checking [11], aim at pre-

cise program verification. Unfortunately, these precise approaches do not scale well

for complex software. This is one of the main reasons why heuristic approaches such as

lightweight static analyses, testing, and dynamic analyses are still very popular.

When dealing with concurrent programs, testing and dynamic analysis that rely on

executing the program under test and evaluating the witnessed run suffer from the prob-

lem of non-deterministic scheduling of program threads. Due to this problem, a single

execution of a program is insufficient to determine correctness of the program even for

the particular input data used in the execution. Moreover, even if the program has been

executed many times with the given input without spotting any failure, it is still possible

that its future execution with the same input will produce an incorrect result.

One way to address this problem is to use deterministic testing that can be viewed as

model checking bounded in various ways (e.g., in the number of context switches) [18,

21]. This technique attempts to systematically test all interleaving scenarios up to some

bound, which is quite demanding (especially for long runs) because one needs to track

which scheduling scenarios have been witnessed and systematically force new ones.



A lightweight alternative to the above is to use noise injection techniques [7] based

on heuristically disturbing the scheduling of program threads in hope of observing so

far unseen scheduling scenarios. Although this approach cannot prove correctness of

a program even under some bounds on its behaviour, it was demonstrated in [7, 15] that

it can rapidly increase the probability of spotting concurrency errors.

Noise injection can be implemented by instrumenting the program under test by

noise generation code that influences the execution of selected threads at selected pro-

gram locations. Noise injection can use different noise seeding heuristics given by the

type of noise (e.g., noise based on injecting calls of yield(), calls of wait(), halt-

ing one thread till other threads can continue, etc.), the strength of the noise (e.g., how

many times the yield operation should be called when injected at a certain location, for

how long a thread should wait, etc.), and the frequency of the noise (how often some

noise is generated at a particular location). Moreover, various noise placement heuris-

tics can be used, including the use of a fixed set of program locations at which some

concurrency-relevant actions appear (such as accesses to shared memory, synchroni-

sation, etc.), using a randomly selected subset of such a set, or some more involved

heuristics driven by the so-far obtained coverage of the program behaviour [15].

Our previous work on noise injection [15] shows that there is no silver bullet among

the many existing noise injection heuristics. Results provided by them depend on the

tested program as well as on the run-time environment (the type and number of proces-

sors and the actual workload are usually the most significant factors). Actually, some

configurations can decrease the probability of an error manifestation. This is helpful for

run-time healing of errors [13], but it is highly undesirable for detecting them. More-

over, the number of possible settings of the noise injection (and also of the test itself)

together with the considerable time needed to run a test in order to evaluate the effi-

ciency of a certain noise configuration makes exhaustive searching for suitable noise

configurations impractical. This is exactly the case where metaheuristic search tech-

niques [19] can help.

Genetic algorithms [19] are metaheuristic search techniques which try to find the

best solutions by sampling the search space. They start with an initial set (called a gen-

eration) of possible solutions (also called individuals). Each individual is evaluated and

assigned a value called a fitness representing the suitability of the solution it represents.

The next generation of individuals is typically obtained by a stochastic recombination

(called a crossover) and mutation of individuals selected according to their fitness.

In this paper, we propose a new way of using genetic algorithms to search for suit-

able types of noise heuristics and their parameters. We formalize this task as the test

and noise configuration search problem (the TNCS problem). Then, we show how to

represent instances of this problem for genetic algorithms, and we discuss which basic

objective functions may be useful as building blocks of complex objective functions

suitable in the given context. We also discuss how to set parameters of genetic algo-

rithms when solving the TNCS problem. Next, we instantiate the framework by a con-

crete combined objective function suitable especially (but, as our experiments show,

not only) for data race detection. Finally, we evaluate the proposed approach on a set of

benchmarks, showing that it provides significantly better results than the so far preferred

random noise injection.



Plan of the paper. The rest of the paper is organised as follows. In Section 2, we discuss

the related work. In Section 3, we formulate the TNCS problem and discuss the basic

objective functions suitable in its context. In Section 4, propose how to utilise genetic

algorithms to solve the TNCS problem. Section 5 focuses on setting parameters of ge-

netic algorithms for the TNCS problem. In Section 6, we propose a concrete combined

objective function for use with the TNCS problem, and we provide experimental evi-

dence on how the proposed approach can improve the testing process. Finally, Section 7

provides concluding remarks and comments on the possible future work.

2 Related Work

Most existing works in the area of search-based testing of concurrent programs fo-

cus on applying various metaheuristic techniques to control the state space exploration

within the guided model checking approach [11]. The basic idea is to explore areas of

the state space that are more likely to contain concurrency errors even when the entire

state space will not be explored. Metaheuristic algorithms that have been applied within

the guided model checking approach for finding deadlocks and/or assertion violations

include simulated annealing [6], genetic algorithms [11, 3], the partial swarm optimi-

sation (PSO) [6], and the ant colony optimisation (ACO) [1, 2]. An advantage of this

approach is that the underlying model checking offers a well-defined state space and

a high degree of determinism. On the other hand, the approach shares limitations of

model checking in terms of scalability and cost of modelling of the environment. In our

approach, we focus on testing and dynamic analyses which are able to handle much

larger real programs.

In [9], genetic algorithms are applied within the process of debugging of concurrent

programs based on repeated testing with noise injection. Genetic algorithms are used in

order to find a noise configuration which causes concurrency-related bugs to occur with

a high probability while preferring settings with noise concentrated to a minimal num-

ber of locations (which is motivated by concentrating on the problem of debugging).

Compared to [9], we do not search for which concrete locations should be noised with

which noise. Instead, we search for which noise seeding and noise placement heuristics

(or which combinations of these heuristics) with which parameters can provide good re-

sults for a particular test and environment. This allows us to use a simpler representation

of individuals and to support much larger test cases with plenty of possible locations to

be noised. Moreover, we propose new objective functions (based, e.g., on results that

can be obtained through various dynamic analyses) which allow us to focus not only on

debugging but also on testing. Finally, compared with the initial results presented in [9],

we present a more thorough experimental evaluation.

The problem of increasing the probability of an error manifestation within the de-

bugging process is targeted in [4, 20] too. However, these works do not consider meta-

heuristic search algorithms. In [4], program locations are first statically classified ac-

cording to their suitability for noise injection. Then, a probabilistic algorithm is used to

find a subset of program locations that increase the error manifestation ratio. In [20],

a machine learning feature selection algorithm is used to identify a subset of program

locations where to inject noise. In this case, the test is executed many times, and pro-

gram locations where the noise was injected in each execution are collected together

with information whether the error got manifested.



Finally, in [16], we presented our preliminary results with a steepest ascending

search algorithm. The experiments proved our concept but showed that the local search

technique is not suitable for the given setting. The used algorithm showed a tendency

to find a local optimum only. Therefore, in this work, we focus on global search tech-

niques, namely, genetic algorithms.

3 Testing of Concurrent Programs as a Search Problem

In this section, we present our proposal of how search techniques can be combined

with noise-based testing of concurrent programs by identifying suitable combinations

of noise injection heuristics as well as their parameters. In particulate, we formulate the

proposed use of search techniques via the so-called test and noise configuration search

(TNCS) problem. Subsequently, we discuss several objective functions that can be use-

ful when dealing with various instances of the TNCS problem (typically as building

blocks of more complex combined objective functions as we illustrate in Section 6).

3.1 The Test and Noise Configuration Search Problem

As we have mentioned already in the introduction, there are two main issues that must

be solved when using noise injection. First, one needs to determine program locations

where to insert noise. Heuristics which target this problem are called noise place-

ment heuristics. Second, one needs to determine which noise seeding heuristics, i.e.,

which way of disturbing thread scheduling, should be used. Moreover, most types of

the heuristics are adjustable by one or more parameters influencing their behaviour

and efficiency (e.g., noise seeding heuristics are often parameterized by their strength).

Further, one can combine several noise placement and seeding techniques within one

execution. Indeed, our results presented in [15] show that such a combination provides

in many cases better results than using a single heuristics. Finally, it is usually the case

that there exist multiple test cases for a given program that can also be parametric.

With respect to the above, we formulate the test and noise configuration search

problem (the TNCS problem) as the problem of selecting test cases and their parameters

together with types and parameters of noise placement and noise seeding heuristics that

are suitable for a certain test objective.

Formally, let TypeP be a set of available types of noise placement heuristics each of

which we assume to be parameterized by a vector of parameters. Let ParamP be a set

of all possible vectors of parameters. Further, let P ⊆ TypeP ×ParamP be a set of all

allowed combinations of types of noise placement heuristics and their parameters. Ana-

logically, we can introduce sets TypeS , ParamS , and S for noise seeding heuristics.

Next, let C ⊆ 2P×S contain all the sets of noise placement and noise seeding heuristics

that have the property that they can be used together within a single test run. We denote

elements of C as noise configurations. Further, like for the noise placement and noise

seeding heuristics, let TypeT be a set of test cases, ParamT a set of vectors of their

parameters, and T ⊆ TypeT ×ParamT a set of all allowed combinations of test cases

and their parameters. We let TC = T × C be the set of test configurations.

Now, the TNCS problem can be expressed as searching for a test configuration

from TC suitable wrt. some given objective function. One can also consider the natural

generalisation of the TNCS problem to searching for a set of test configurations, i.e.,

a subset of 2TC , suitable wrt. some given objective function.



3.2 Objective Functions for the Context of the TNCS Problem

We next suggest several possible objective functions that can be useful in various in-

stances of the TNCS problem, typically combined into more complex objective func-

tions as we illustrate in Section 6.

First, an objective function that can often be found useful is to minimise the impact

of noise injection on the time of execution of a test case. The more noise is injected into

the execution the slower the execution typically is. The slowdown can be unwelcome

especially when the time for testing is limited. Then, due to the slowdown, less execu-

tions of a test case and/or less test cases will be considered which may in turn negate

the aim of using noise injection to improve the quality of testing. The time aspect is

also important when a program under test needs to meet certain throughput or response

time requirements that could be broken by an excessive use of noise.

Next, since the primary goal of testing is to find errors, a natural objective function

is to maximise the number of errors that occur (and are detected by the test harness)

when executing tests with a certain configuration. Once some test configuration is found

suitable wrt. the number of errors it allows one to observe, one could think that this

configuration is not useful any more since the errors were already detected. However,

this test configuration can be used for further testing in hope that it will allow one to

discover even more errors (recall that due to the non-determinism of scheduling, not all

errors will show up in a single run or a set of runs). Moreover, one can also think of

using this test configuration in regression testing or when testing similar applications.

Another sensible objective function, tightly related to the above, is to monitor test

executions under particular test configurations by some dynamic analyser and to max-

imise the number of warnings about dangerous behaviour of the program under test that

get reported. Test configurations delivering good results in this case can subsequently

be used for more extensive testing in hope of finding a real error even though an actual

error was not seen during evaluation of the test configuration. The reliability of this ap-

proach of course depends on the precision of the chosen analyser. A high ratio of false

positives and/or negatives makes this objective function unreliable.

A further possibility is to use a suitable coverage metric allowing one to judge how

much of the possible behaviour of the program under test has been covered (and hence

how likely it is that some undesired behaviour was omitted) and to look for test config-

urations maximising the obtained coverage. Concurrency-related metrics based on dy-

namic analyses which we presented in [14] can be especially useful here. These metrics

are not based on simply counting the number of produced warnings, but on much finer

measures. Some of them are based on monitoring events that make the internal state of

a dynamic analyser change, e.g., the HBPair metrics based on the happens-before rela-

tions, and some express how many internal states a certain dynamic analyser reached,

e.g., the GolidLockSC metrics based on monitoring the internal states of the GoldiLock

analyser [8]. Of course, there are many other existing coverage metrics which can be

considered. For instance, the synchronisation coverage [5] (Synchro) which measures

how well the various synchronisation mechanisms used in the program under test are

tested (by measuring how many different scenarios of the use of the synchronisation

mechanisms were witnessed). A drawback of many concurrency coverage metrics is

that it is often impossible to compute what the full coverage is; this is, however, not



a problem here since we are interested in relative comparisons of the coverage achieved

through different test configurations.

Fitness of a test configuration tc ∈ TC wrt. the above objective functions has typi-

cally to be evaluated by a repeated execution of the test case encoded in tc with the test

parameters and noise configuration that are also a part of tc. Recall that the noise config-

uration can contain multiple types of noise heuristics. We assume all of them to be used

in each testing run, which is consistent with our definition of noise configurations that

allows for only those combinations of noise heuristics that can indeed be used together.

Further note that the repeated execution makes sense due to the non-determinism of

thread scheduling. The evaluation of individual test runs must of course be combined,

which can be done, e.g., by computing the average evaluation or by computing a cu-

mulative evaluation across all the performed executions.

In addition, it is also possible to define some simple objective functions directly on

the test configurations. For instance, one can minimise/maximise the number of enabled

heuristics, volume or frequency of noise to be injected, etc. Such objective functions are

typically not sensible alone, but can make sense when combined with other objective

functions. Fitness of a given test configuration wrt. such objective functions can be

evaluated statically, i.e., without any test execution.

4 A Genetic Approach to the TNCS Problem

In this section, we present our proposal of using a genetic approach to solving the

TNCS problem. The approach is presented on a concretization of the TNCS problem

for the context of using the IBM Concurrency testing tool (ConTest) [7] (with some

extensions) for noise-based testing. We therefore start by presenting the concrete set

of noise configurations considered. Subsequently, we present how one can apply the

genetic approach in this concrete setting.

4.1 ConTest-based Noise Configurations

We consider noise injection heuristics implemented in ConTest extended by our plug-in

implementing a coverage-based noise placement heuristics [15]. Hence, we consider

three noise placement heuristics: the random heuristics which picks program locations

randomly, the sharedVar heuristics which focuses on accesses to shared variables, and

our coverage-based heuristics [15] which focuses on accesses near a previously de-

tected thread context switch. The sharedVar heuristics has two parameters modifying

its behaviour with 5 valid combinations of its values. The coverage-based heuristics is

controlled by 2 parameters with 3 valid combinations of values. All these noise place-

ment heuristics inject noise at selected places with a given probability. The probability

is set globally for all enabled noise placement heuristics by a noiseFreq setting from

the range 0 (never) to 1000 (always). The random heuristics is enabled by default when

noiseFreq > 0. The random heuristics can be suppressed by one parameter of the

sharedVar heuristics which explicitly disables the combination of these two heuristics.

The considered infrastructure offers 6 basic and 2 advanced noise seeding tech-

niques. The basic techniques cannot be combined, but any basic technique can be

combined with one or both advanced techniques. The basic heuristics are: yield, sleep,

wait, busyWait, synchYield, and mixed. The yield and sleep techniques inject calls of the

yield() and sleep() functions. The wait and synchYield techniques lock a special



monitor and then either wait for some time or call yield(). The busyWait technique

inserts code that just loops for some time. The mixed technique randomly chooses one

of the five other techniques at each noise injection location. The haltOneThread tech-

nique occasionally stops one thread until any other thread cannot run. Finally, the time-

outTamper heuristics randomly reduces the time-outs used in the program under test in

calls of sleep() (to ensure that they are not used for synchronisation).

4.2 Individuals, Their Encoding, and Genetic Operations on Them

In order to utilise a genetic algorithm to solve the TNCS problem with the considered

set of noise configurations, we let the particular test configurations play the role of indi-

viduals. We encode the test configurations as vectors of integers. The test configuration

is either reduced to solely a noise configuration (when a single test case without param-

eters is considered), or it consists of the noise configuration extended by one or more

specific entries controlling the test case settings. We, however, concentrate here on the

noise configurations only, which form vectors of numbers in the range (0, 0, 0, 0, 0, 0)–
(1000, 5, 3, 6, 2, 2). Here, the first entry controls the noiseFreq setting, the next two

control the sharedVar and coverage-based noise placement heuristics. The last three

entries control the setting of the basic and advanced noise seeding heuristics. Each en-

try in the vector is annotated by a flag saying whether there exists an ordering on the

values of the entry. We call entries whose values are ordered as ordinal entries.

We consider the standard one-point, two-point, and uniform element-wise

(any-point) crossover operators [19] in the form they are implemented in the ECJ li-

brary [22]. Mutation is also done on an element-wise basis, and it handles ordinal and

non-ordinal entries differently. Non-ordinal entries are set to a randomly chosen value

from the particular range (including the current value). Ordinal entries (e.g., entries en-

coding the strength of noise or the parameter controlling the number of threads the test

should use) are handled using the standard Gaussian mutation [19] (with the standard

deviation set to 10 % of the possible range or minimal value 2). Finally, we consider

standard proportional and tournament-based fitness selection operators [19] as they are

implemented in the ECJ library.

5 Parameters of Genetic Algorithms and the TNCS Problem

Genetic algorithms are adjustable through a number of parameters influencing the effi-

ciency of the search process. The way these parameters should be set to obtain a high

efficiency usually depends on the considered problem. In this section, we provide our

findings on how to set the parameters of genetic algorithms when solving the TNCS

problem. We focus mainly on the following questions: How to set up the breeding in-

frastructure, i.e., which standard selection and crossover operators should be used, how

to set up their parameters, which value of mutation probability provides good results,

and whether elitism or random generation of individuals can help. We also target the

question whether it is better to run a few big generations or instead more small genera-

tions in case the time for testing is limited.

5.1 Experiments for Finding Suitable Parameters of Genetic Algorithms

We conducted all our experiments aimed at finding a suitable setting of the parameters

of genetic algorithms on one selected case study only. This is mostly due to the high



time consumption of evaluating each test configuration through multiple test executions.

In particular, we used the Crawler test case which is based on a part of an older ver-

sion of a major IBM production software. The crawler creates a set of threads waiting

for a connection. If a connection simulated by the testing environment is established,

a worker thread serves it. There is an error in a method that is called when the crawler

shuts down. The error causes an unhandled exception. The trickiness of the error can be

seen from the very low probability of its manifestation (approximately 0.0006 when no

noise is used). The case study has 19 classes and 1.2 kLOC. There is a single test case

available with no parameters (making test configurations equal to noise configurations).

We conducted our experiments on multiple machines, all having Intel i5 661 pro-

cessors, running 64-bit Linux and Java 6. We used our infrastructure SearchBestie [16]

and IBM ConTest to evaluate test configurations and the ECJ library [22] to implement

the genetic algorithms. We narrowed the search space down by sampling the noiseFreq

parameter by ten, i.e., by reducing its possible values to 0, 10, . . . , 1000.

With the aim of observing as many behaviours differing in their various important

concurrency-related aspects as possible, we considered an objective function maximis-

ing the obtained coverage under three different concurrency coverage metrics, namely,

Synchro, Avio∗ and HBPair∗ [14]. This objective function covers three different aspects

of concurrency behaviour: interleaving of accesses from different threads to shared

memory locations via Avio∗, successful synchronisation of program threads inducing

a happens-before relation via HBPair∗, and information about whether the implemented

synchronisation does something helpful via Synchro. We used results of approximately

1 million randomly noised executions to estimate the 100 % achievable coverage (de-

noted as max below) for each of the metrics and set up the following fitness function:

1

3
∗

(

Avio∗

Avio∗

max

+
HBPair

HBPair∗max

+
Synchro

Synchromax

)

The evaluation of each test configuration consisted of 5 executions of the test case

with the noise parameters encoded in the test configuration. The value of the fitness

function was then computed using the accumulated coverage of all the five executions.

We fixed the number of evaluated individuals to 2000 in each experiment. Accord-

ing to our experiments, this value is sufficient to reach saturation of the selected cover-

age metrics in the Crawler case study. We set the size of the considered populations and

number of generations as follows (population/generation size): 200/10, 80/25, 40/50,

20/100, and 10/200. We considered the breeding infrastructure to consist of two selec-

tion operators which select individuals for the crossover operator. The output of the

crossover operator was mutated using the mutation operator described in Section 4.2.

We performed two sets of experiments. In the first one, we considered the stan-

dard fitness proportional selection operators, four different standard crossover operators

(one-point, two-point, and any-point with the probability of mutating each element of

the vector set to 0.1 and 0.25), and four different probabilities of applying the mutation

operator (0.01, 0.1, 0.25, and 0.5). In the second set of experiments, we fixed the con-

sidered size of the population to 40 and the number of generations to 50, the crossover

operator to any-point with probability 0.1, and the mutation probability to 0.01. We then

studied the influence of different selection operators, elitism which puts into the next



generation a number of individuals (0, 2, 4) without breeding, and a random creation of

a few individuals (0, 2, 4) that are put into the following generation. We considered the

fitness proportional and tournament selection operators (with the size of the tournament

being 2 or 4) and their combinations.

From each experiment, we collected various data concerning the generated popula-

tions including, in particular, the following two statistics: (1) The average fitness value

in each generation aver and (2) the best individual fitness in each generation best. Our

goal was then to identify parameters of the genetic algorithms under which the best

test configuration out of all discovered test configurations is found, and it is found as

quickly as possible. For that, we used the best and aver statistics. The results of the

experiments are summarised below with some more technical details available in [12].

5.2 Results of Experiments with the Parameters of Genetic Algorithms

The values of the best and aver statistics that we obtained from the first set of ex-

periments presented above show that small populations combined with the any-point

crossover and mutation set to 0.01 are able to find the best individual (i.e., the best

test configuration) out of all the encountered ones quite fast (within a few generations).

Very small populations (10 and rarely also 20) are, however, sometimes not able to find

the best individual and get stuck in a local optimum. On the other hand, in larger pop-

ulations, it takes much longer to arrive to the best individual. The any-point crossover

operator exceeded the other two operators, but one has to be careful about the probabil-

ity used: the operator sometimes does not change the individuals when a low probability

(0.1 or less) is used.

The best individuals obtained by the genetic algorithm in our experiments had fit-

ness higher than 0.5, and they therefore covered more than 50 % of the concurrent be-

haviour as defined by our fitness function. The overall best individuals achieved fitness

0.64. The average fitness of the final population was in the worst case 0.35 only, which

is quite similar to fitness 0.33 that we achieved by randomly generating individuals to

evaluate. The highest average fitness was close to the maximum fitness of 0.64, which

represents a situation when nearly all individuals in the generation were the same.

In the second set of experiments from the above, we clearly saw the positive effect of

elitism (set to 10 % of the population). The selection operators seem to affect the results

only a little. The best results seem to be provided by a combination of the tournament

selection operator (with the size of the tournament set to a high value) and the fitness

proportional selection operator.

Based on the results summarised above, we found as suitable the following setting

of the parameters of genetic algorithms for the considered concretisation of the TNCS

problem: Size of population 20, two different selection operators (tournament among

4 individuals and fitness proportional), the any-point crossover with a higher probability

(0.25), a low mutation probability (0.01), and two elites (that is 10 % of the population).

This parameter setting is used in the experiments presented in the next section.

6 A Concrete Application of the Proposed Approach

In this section, we first propose a complex objective function for the TNCS problem

that carefully combines the above discussed basic objective functions, finally leading

to a concrete application of genetic algorithms for improving the process of testing of



concurrent programs. In particular, the stress is on looking for data races, but as our

experiments show, the approach helps in finding other kinds of concurrency-related

errors too. Next, we present a collection of benchmarks and results of experiments with

them which illustrate the efficiency of our approach.

6.1 A GoldiLocks-based Objective Function

Based on our experience with different concurrency coverage metrics and dynamic error

detectors, we have decided to build our concrete objective function on maximizing the

coverage obtained under the concurrency coverage metric GoldiLockSC [14] based on

the GoldiLocks algorithm [8], together with maximizing the number of actual warnings

produced by this algorithm. We have chosen the GoldiLocks algorithm for our objec-

tive function because it has a low ratio of false positives, and it is able to continue in the

analysis even after an error is detected. Moreover, our results indicate that the concur-

rency coverage metric GoldiLockSC has multiple positive properties. In particular, the

coverage under this metric usually grows smoothly (i.e., with a minimum of shoulders)

and does not stabilise too early (i.e., before most behaviours relevant from the point of

view of data race detection are examined). Further, based on the discussion presented

in Section 3.2, we also reflect in our objective function an intention to minimize the

execution time and to maximize the number of detected errors.

In summary, we thus aim at (1) maximizing coverage under the concurrency cov-

erage metric GoldiLockSC [14], (2) maximizing the number of warnings produced by

GoldiLocks, (3) maximizing the number of detected real errors due to data races, and

(4) minimizing the execution time. The different basic objectives are combined using

a system of weights assigned to them.

To be more precise, the GoldiLockSC metric counts the encountered internal states

of the GoldiLocks algorithm (here, SC stands for the optimised version of the algorithm

with the so-called short circuits, i.e., cheap checks done before the full algorithm is

used). We weight the different coverage tasks of this metric as well as the error manifes-

tation according to their severity. In particular, the coverage tasks of the GoldiLockSC

metric are tuples (ploc, state) where ploc identifies the program location at which some

shared memory location is accessed, and state ∈ {SCT, SCL,LS,E} denotes the in-

ternal state of the GoldiLocks algorithm. We divide the tasks into three categories ac-

cording to severity of their state. The SCT state represents a situation where the first

short circuit check of GoldiLocks (checking whether a variable is accessed by a single

thread only) proves correctness of the given access. This situation is common for se-

quentially executed code, and so we assign it weight 1. The SCL and LS states mean

that the first check does not succeed, but it is possible to use further heurist short circuit

checks (SCL) or use the full algorithm (LS) to infer a lock (or locks) whose lock-

ing proves correctness of the access. We assign such tasks with weight 5. Finally, the

E state means that the algorithm detected a data race and produced a warning message.

We weight such tasks with 10. We denote the weighted coverage as WGoldiLockSC.

A GoldiLocks warning has the form of a tuple (var, ploc1, ploc2) where var identi-

fies a shared variable, and ploc1, ploc2 represent two program locations between which

a data race was detected. Sometimes, a single coverage task with state = E produced

at ploc1 leads to several warnings differing in the ploc2 or var values. We denote by

GLwarn the number of different warnings issued during the test execution, and we

give them the weight of 1000.



Finally, as we have already mentioned, we also aim at maximizing the number of

detected error manifestations (error) and minimizing the execution time (time). Error

manifestations are detected by looking for unhandled exceptions. They are given a very

high weight of 10000. With respect to all the described objectives, we then define the

fitness function as follows (expecting the time to be measured in miliseconds):

WGoldiLockSC + 1000 ∗GLwarn+ 10000 ∗ error

time

6.2 Case Studies

We concentrate primarily on data race detection, but we also try to apply our genetic

approach to case studies containing other kinds of concurrency errors (and, as we will

show, we obtain quite positive results even in such cases). In particular, we evaluate our

approach on 5 test cases containing concurrency-related errors. The test cases are listed

in Table 1. In the table, the kLOC column shows the size of the considered test case, and

the Param column indicates the number of its parameters and the number of possible

values of each parameter (e.g., 2, 2 means that the test takes two parameters, each with

two possible values).

The Animator, Crawler, and FTPServer test cases contain a data race which leads to

unhandled exceptions. The Airlines case study contains a high level atomicity violation

that is detected by a final check at the end of the execution which throws an unhandled

exception. Finally, the Rover test case contains a deadlock and an atomicity violation

which leads to an unhandled exception.

We admit that the described case studies are not very large, and one could surely

found much bigger ones. Let us, however, stress that the reason why we did not con-

sider truly large benchmarks is not a bad scalability of our approach, but rather the

large number of experiments that we did with the various parameter settings which in

summary take a lot of time even on smaller benchmarks.

The Airlines and Animator test cases were run on Intel Core2 6600 machines, the

Rover test case on a machine with an Intel i5-2500 processor, and the FTPServer test

case on a machine with two Intel X5355 processors. In case of the Crawler test case,

two different hardware environments were used. The first (denoted simply as Crawler

in Table 1) used a machine with an Intel i5 661 processor, while the second (denoted

Crawler∗) was executed on a machine with four AMD Opteron 8389 processors. These

two options were used on purpose in order to study how our approach works in different

hardware environments. All mentioned computers ran 64bit Linux and Java version 6.

A more detailed description of the test cases and their parameters can be found in [12].

6.3 Experimental Results

To evaluate the efficiency of our approach when using the GoldiLocks-based objective

function, we again used the infrastructure described in Section 5. We use the setting of

parameters of genetic algorithms inferred in Section 5. Although this setting was in-

ferred for a different objective function and using sampled values of the noiseFreq pa-

rameter only, we believe that it represents a good option even for other experiments with

our genetic algorithm. Indeed, the objective function used in Section 5 was designed to

be rather general in order to cover a lot of different concurrent behaviours. Moreover,



Table 1. An experimental comparison of the proposed genetic approach with the random ap-

proach to setting test and noise parameters

Test case Best configuration Breeding process

Name kLOC Params Gen. Error Time Error Error∗ Time

Airlines 0.3 5,5,10 15 3.0 / 1.7 3.8 / 2.5 3.2 8.8 3.0

Animator 1.5 – 25 21.8 / 10.9 1.1 / 1.3 4.3 5.4 1.3

Crawler 1.2 – 22 – / – 1.3 / 1.5 0.3 1.1 3.3

Crawler∗ 1.2 – 25 – / – 1.1 / 1.1 0.4 1.0 2.8

FTPServer 12.2 10 14 1.2 / 1.0 3.8 / 4.7 0.9 1.7 1.9

Rover 5.4 7 3 H 33.7 / 19.4 3.2 8.8 3.0

we analysed the correlation between the values of the fitness function of Section 5 and

the GoldiLocksSC metric used in the GoldiLocks-based objective function on the per-

formed experiments and realized that the correlation is high. After all, the combination

of HBPair∗ and Avio∗ focuses on the same events as the GoldiLocks algorithm.

In the experiments, we allowed the elite individuals to be re-evaluated in the follow-

ing generations. This is motivated by the fact that a few executions of an individual (5 in

our case) are often not sufficient to prove whether the configuration can make a con-

currency error manifest. Indeed, tricky concurrency-related errors manifest very rarely

even if a suitable noise heuristics is used [15]. The reevaluation of elites therefore gives

the most promising individuals another chance to spot an error. This setting is a com-

promise between a high number of executions needed to evaluate every individual more

times and the available time we have.

We compare our genetic approach with the random approach to the choice of noise

heuristics and their parameters. In the random approach, we randomly select 2000 test

and noise configurations and let our infrastructure evaluate them in the same way we

evaluate individuals in the genetic approach. Table 1 summarises our results. The table

is based on average results obtained from 10 executions of the genetic and random

approach. It is divided into three parts. In the left part (Test case), the test cases are

identified, and their size and information about their parameters are provided.

An Evaluation of the Best Individuals. The middle part of Table 1 (Best individ-

ual) contains three columns which compare the best individual obtained by our genetic

approach and found by the random approach. The Gen. column contains the average

number of generations (denoted as gen below) within which we discovered the best

individual according to the considered fitness function. The numbers indicate that we

are able to find the best individual according to the considered fitness function within

the first quarter of the considered generations. This motivates our future work to design

a suitable termination condition for our specific testing process.

The Error column of the Best individual section of Table 1 compares the ability of

the best individual to detect an error. The column contains two values (x1/y1). The first

value x1 is computed as the fraction of the average number of errors found by the best

individual computed by the genetic algorithm and the average number of errors discov-

ered by the best individual found by the random generation provided that an equivalent

number of executions is provided to the random approach (this number is computed as

gen times the size of the population which is 20). The second number y1 is computed

as the fraction of the average number of errors found by the best individual computed

by the genetic algorithm and the average number of errors discovered by the best indi-



vidual found randomly in 2000 evaluations. The –/– value represents a situation where

none of the best individuals was able to detect the error within the allowed 5 executions.

The H symbol means that the genetically obtained best individual did not spot any error

while the best individual found by the random generation did (we discuss this situation

in more detail below).

Similarly, the Time column of the Best individual section of Table 1 compares aver-

age times needed to evaluate the best individual obtained by our approach and the best

individual found by the random approach. Again, two values are presented (x2/y2). The

first value x2 is computed as the average time needed by the best individual found by

the random approach if only gen ∗ 20 evaluations are considered, divided by the aver-

age time the genetically found best individual needed. The second value y2 shows the

average time needed by the best individual found by the random generation when it was

provided with 2000 evaluations, divided by the average time needed by the genetically

found best individual.

The values that are higher than 1 in the Error and Time columns of the Best individ-

ual section of Table 1 represent how many times our approach outperforms the random

approach. In general, one can see that the best individual found by our genetic approach

has a higher probability to spot a concurrency error, and it also need less time to do so.

Even if we let the random approach perform 2000 evaluations, our best individual is

still better. Exceptions to this are the Rover and Crawler test cases. In the Crawler test

case, the error manifests with a very low probability. The best individuals in both cases

were not successful in spotting the error (note, however, that the error was discovered

during the breeding process as discussed below). In the Rover test case, the best indi-

vidual found by the genetic algorithm was not able to detect an error and some of the

best individuals found by the random approach did detect the error (as again discussed

below, the error was discovered during the breeding process too). This results from the

fact that the genetic approach converged to an individual that allows a very fast evalua-

tion (over 30 times faster than the best configuration found by the random generation).

This, however, lowered the quality of the found configuration from the point of view of

error detection, indicating that as a part of our future research, we may think of further

adjusting the fitness function such that this phenomenon is suppressed.

An Evaluation of The Breeding Process. The right part of Table 1 (Breeding process)

provides a different point of view on our results. In this case, we are not interested in just

one best individual learned genetically or by random generation that is assumed to be

subsequently used in debugging or regression testing. Instead, we focus on the results

obtained during the breeding process itself. The genetic algorithm is hence considered

here to play a role of a heuristics that directly controls which test and noise configura-

tions should be used during a testing process with a limited number of evaluations that

can be done (2000 in our case).

This part of the table contains three columns which compare the genetic and random

approaches wrt. their successes in finding errors and wrt. the time needed to perform the

2000 evaluations. The first column (Error) compares the average number of errors spot

during the breeding process and the average number of errors spot during the evalua-

tion of 2000 randomly chosen configurations of the test and noise heuristics. The Error∗

column compares the average number of errors detected by our genetic approach with

the average number of errors spot by the random approach when the random approach



is provided with the same amount of time as the genetic approach. Finally, the Time

column compares the average total time needed by the random approach in 2000 eval-

uations and the average time needed by our genetic approach. Again, the values higher

than 1 in all the columns represents how many times our approach outperforms the

random approach.

The cumulative results presented in the Error and Error∗ columns show that our

approach mostly outperforms the random approach. The exceptions in the Error col-

umn reflect the already above mentioned preference of the execution time in our fitness

function, which is further highlighted by the Time column. For instance, in the worst

case (the Crawler test case), our genetic approach is more than 3 times faster but in total

discovers three times less errors. On the other hand, in the best cases (the Airlines and

Rover), we found three times more errors in three times shorter time. To give some idea

about the needed time in total numbers, the average time needed to evaluate 2000 ran-

dom individuals took on average 32 hours (whereas the genetic approach needed just

10.5 hours), and the average time needed to evaluate 2000 random individuals of our

biggest test case FTPServer took 101 hours (whereas the genetic approach needed on

average just 53 hours).

Overall, our results show that our approach outperforms the random approach. They

also indicate that we should probably partially reconsider our fitness function that puts

sometimes too much stress on the execution time, which can in some cases (demon-

strated in the Crawler test case) be counter-productive.

Another positive fact is that our objective function helps to improve the testing

process even for test cases that do not contain a data race. This can be attributed to that

our fitness favours configurations within which the synchronisation occurs more often

and therefore is tested more. The results obtained from our experiment with the Crawler

test case evaluated using two different hardware configurations indicate that the genetic

approach is able to reflect the environment and focus on the noise heuristics and their

parameters which provide better results for the considered environment.

7 Conclusions and Future Work

In this work, we have formulated the test and noise configuration search (TNCS) prob-

lem, and we have proposed a way how to use genetic algorithms to solve it. We have

performed experiments aimed at choosing suitable parameters of genetic algorithms to

be used when solving the problem. We have instantiated the framework for the case

of noise injection techniques implemented in the ConTest tool and its extensions and

proposed a complex objective function suitable when aiming at data race detection (but

successful even when looking for other kinds of bugs). We have performed experiments

on a set of benchmark programs showing that our approach significantly outperforms

the commonly used approach of randomly selecting noise configurations.

The proposed approach can be further improved, e.g., by development of termina-

tion conditions which would help one to determine when to stop the breeding process.

Other interesting subjects for future work include development of improved objective

functions, e.g., objective functions eliminating the negative effect we saw in the Rover

test case, objective functions which focus on different kinds of concurrency errors (e.g.,

deadlocks), or which are able to focus on corner cases of the tests.



Acknowledgement. This work was supported by the Czech Science Foundation (projects

P103/10/0306 and 102/09/H042), the Czech Ministry of Education (projects COST

OC10009 and MSM 0021630528), the EU/Czech IT4Innovations Centre of Excellence

project CZ.1.05/1.1.00/02.0070, and the internal BUT projects FIT-11-1 and FIT-12-1.

References

1. E. Alba and F. Chicano. Finding Safety Errors with ACO. In Proc. of GECCO’07, ACM

Press, 2007.
2. E. Alba and F. Chicano. Searching for Liveness Property Violations in Concurrent Systems

with ACO. In Proc. of GECCO’08, ACM Press, 2008.
3. E. Alba, F. Chicano, M. Ferreira, and J. Gomez-Pulido. Finding Deadlocks in Large Concur-

rent Java Programs Using Genetic Algorithms. In Proc. of GECCO’08, ACM Press, 2008.
4. Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Noise Makers Need To Know Where To Be

Silent–Producing Schedules That Find Bugs. In Proc. of ISOLA’06, IEEE CS, 2006.
5. A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of Synchronization Coverage.

In Proc. of PPoPP’05, ACM Press, 2005.
6. F. Chicano, M. Ferreira, and E. Alba. Comparing Metaheuristic Algorithms for Error Detec-

tion in Java Programs. In Proc. of SSBSE’11, LNCS 6956, Springer, 2011.
7. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for Testing

Multi-Threaded Java Programs. Concurrency and Computation: Practice and Experience,

15(3-5):485–499, Wiley, 2003.
8. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-aware Java Run-

time. In Proc. of PLDI’07, ACM Press, 2007.
9. Y. Eytani. Concurrent Java Test Generation as a Search Problem. ENTCS, 144:57–72, Else-

vier, 2006.
10. D. Giannakopoulou, C. S. Pasareanu, M. Lowry, and R. Washington. Lifecycle Verification

of the NASA Ames K9 Rover Executive. In Proc. of ICAPS’05, 2005.
11. P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic Algorithms.

STTT, 6(2):117–127, Springer, 2004.
12. V. Hrubá, B. Křena, Z. Letko, and T. Vojnar. Testing of Concurrent Programs Using Genetic

Algorithms. Technical report, FIT BUT, 2012.

Available at http://www.fit.vutbr.cz/∼iletko/pub/tr-2012-01.pdf.
13. B. Křena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing Data Races On-the-Fly. In Proc.

of PADTAD’07, ACM Press, 2007.
14. B. Křena, Z. Letko, and T. Vojnar. Coverage Metrics for Saturation-based and Search-based

Testing of Concurrent Software. In Proc. of RV’11, LNCS 7186, Springer, 2012.
15. B. Křena, Z. Letko, and T. Vojnar. Influence of Noise Injection Heuristics on Concurrency

Coverage. In Proc. of MEMICS’12, LNCS 7119, Springer, 2012.
16. B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing of Concurrent

Software. In Proc. of PADTAD’10, ACM Press, 2010.
17. Z. Letko. Sophisticated Testing of Concurrent Software. In Proc. of SSBSE’10, IEEE CS,

2010.
18. M. Musuvathi, S. Qadeer, and T. Ball. Chess: A Systematic Testing Tool for Concurrent

Software. Technical Report MSR-TR-2007-149, Microsoft Research, 2007.
19. E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.
20. R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting Where It Hurts: An Automatic Concurrent

Debugging Technique. In Proc. of ISSTA’07, ACM Press, 2007.
21. J. Šimša, R. Bryant, and G. Gibson. dBug: Systematic Testing of Unmodified Distributed

and Multi-threaded Systems. In Proc. of SPIN’11, LNCS 6823, Springer, 2011.
22. D. White. Software Review: The ECJ Toolkit. Genetic Programming and Evolvable Ma-

chines, 13:65–67, Springer, 2012.


