Publication Details

Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data

ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; HEROUT, A.; MARŠÍK, L.; ZEMČÍK, P. Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data. In International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017). Lecce: IEEE Computer Society, 2017. p. 1-6. ISBN: 978-1-5386-2939-0.
Czech title
Holistické rozpoznávání registračních značek vozidel na snímcích s nízkou kvalitou pomocí konvoluční neuronové sítě
Type
conference paper
Language
English
Authors
URL
Keywords

holistic license plate recognition, convolutional neural network, low resolution, low quality

Abstract

This work is focused on recognition of license plates in low resolution and low quality images. We present a methodology for collection of real world (non-synthetic) dataset of low quality license plate images with ground truth transcriptions. Our approach to the license plate recognition is based on a Convolutional Neural Network which holistically processes the whole image, avoiding segmentation of the license plate characters. Evaluation results on multiple datasets show that our method significantly outperforms other free and commercial solutions to license plate recognition on the low quality data. To enable further research of low quality license plate recognition, we make the datasets publicly available.

Published
2017
Pages
1–6
Proceedings
International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017)
ISBN
978-1-5386-2939-0
Publisher
IEEE Computer Society
Place
Lecce
DOI
UT WoS
000426203700043
EID Scopus
BibTeX
@inproceedings{BUT144463,
  author="Jakub {Špaňhel} and Jakub {Sochor} and Roman {Juránek} and Adam {Herout} and Lukáš {Maršík} and Pavel {Zemčík}",
  title="Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data",
  booktitle="International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017)",
  year="2017",
  pages="1--6",
  publisher="IEEE Computer Society",
  address="Lecce",
  doi="10.1109/AVSS.2017.8078501",
  isbn="978-1-5386-2939-0",
  url="http://ieeexplore.ieee.org/abstract/document/8078501/"
}
Back to top