Thesis Details
Mitigace DoS útoků s využitím neuronových sítí
English title
Mitigation of DoS Attacks Using Neural Networks
Language
Czech
Abstract
This bachelor's thesis deals with design and implementation of two approaches as protection against SYN Flood attacks, which are part of DoS attacks. Nowadays Denial of Service attack are very widespread and their execution are quite simple. While they can cause big financial damage to internet or service providers. The purpose of this work is to determine that conventional algorithmic approach and heuristic approach using neural network are capable of SYN Flood attacks mitigation. Implementation of both approaches were done by their design. Then both implementations were tested.
Keywords
SYN Flood attack, denial of service, protection against attacks, ACK Spoofing, neural network, deep learning, DoS attacks mitigation
Department
Degree Programme
Information Technology
Files
Status
defended, grade C
Date
12 June 2019
Reviewer
Committee
Ryšavý Ondřej, doc. Ing., Ph.D. (DIFS FIT BUT), předseda
Fuchs Petr, RNDr., Ph.D. (DMAT FEEC BUT), člen
Hradiš Michal, Ing., Ph.D. (DCGM FIT BUT), člen
Křena Bohuslav, Ing., Ph.D. (DITS FIT BUT), člen
Vašíček Zdeněk, doc. Ing., Ph.D. (DCSY FIT BUT), člen
Fuchs Petr, RNDr., Ph.D. (DMAT FEEC BUT), člen
Hradiš Michal, Ing., Ph.D. (DCGM FIT BUT), člen
Křena Bohuslav, Ing., Ph.D. (DITS FIT BUT), člen
Vašíček Zdeněk, doc. Ing., Ph.D. (DCSY FIT BUT), člen
Citation
ODEHNAL, Tomáš. Mitigace DoS útoků s využitím neuronových sítí. Brno, 2019. Bachelor's Thesis. Brno University of Technology, Faculty of Information Technology. 2019-06-12. Supervised by Kučera Jan. Available from: https://www-dev.fit.vutbr.cz/study/thesis/21654/
BibTeX
@bachelorsthesis{FITBT21654, author = "Tom\'{a}\v{s} Odehnal", type = "Bachelor's thesis", title = "Mitigace DoS \'{u}tok\r{u} s vyu\v{z}it\'{i}m neuronov\'{y}ch s\'{i}t\'{i}", school = "Brno University of Technology, Faculty of Information Technology", year = 2019, location = "Brno, CZ", language = "czech", url = "https://www.fit.vut.cz/study/thesis/21654/" }