Detail výsledku

A Deep Learning Approach to EEG-Based Diagnosis of Cognitive Skills Impairment: Electrode-Level Analysis Insights

HUSSAIN, Y.; FATIMA, M.; MALIK, A. A Deep Learning Approach to EEG-Based Diagnosis of Cognitive Skills Impairment: Electrode-Level Analysis Insights. In 2025 IEEE 37th International Conference on Tools with Artificial Intelligence (ICTAI). Athens, Greece: IEEE, 2025. p. 1470-1475. ISBN: 979-8-3315-4919-0.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
Hussain Yasir, UPSY (FIT)
Mudassar Fatima
Malik Aamir Saeed, prof., Ph.D., UPSY (FIT)
Abstrakt

Early identification of cognitive skill impairments is crucial for timely clinical intervention. This study utilizes EEG data to classify cognitive states into three categories: no impairment, mild impairment, and severe impairment. EEG signals from 88 participants were segmented into 10 -second windows and analyzed using a modified EEGNet deep learning architecture, achieving a classification accuracy of 89 %. In addition to classification, statistical analyzes including Welch's t test and Benjamini-Hochberg's FDR correction were used to identify electrodes significantly affected, particularly F3, F4, C3, C4,T3,T4,P3,P4,O1,O2,Fz,Cz and Pz, implanted in memory, attention, and executive functions. Topographic brain activation maps highlighted these regional abnormalities, while spectral analysis revealed altered frequency band distributions across impairment levels. Connectivity analysis also showed decreased functional integration between brain regions in mild and severe cases. Combining deep learning, statistical inference, and EEG-based network features presents a robust framework for diagnosing and interpreting cognitive impairments.

Klíčová slova

EEG, Cognitive Impairment, EEGNet, Brain Connectivity, Spectral Analysis, Mild Cognitive Impairment, Dementias, EEG Classification

URL
Rok
2025
Strany
1470–1475
Sborník
2025 IEEE 37th International Conference on Tools with Artificial Intelligence (ICTAI)
Konference
37th International Conference on Tools with Artificial Intelligence (ICTAI)
ISBN
979-8-3315-4919-0
Vydavatel
IEEE
Místo
Athens, Greece
DOI
BibTeX
@inproceedings{BUT198330,
  author="Yasir {Hussain} and  {} and Aamir Saeed {Malik}",
  title="A Deep Learning Approach to EEG-Based Diagnosis of Cognitive Skills Impairment: Electrode-Level Analysis Insights",
  booktitle="2025 IEEE 37th International Conference on Tools with Artificial Intelligence (ICTAI)",
  year="2025",
  pages="1470--1475",
  publisher="IEEE",
  address="Athens, Greece",
  doi="10.1109/ICTAI66417.2025.00213",
  isbn="979-8-3315-4919-0",
  url="https://ieeexplore.ieee.org/document/11272536"
}
Projekty
Strojové učení zohledňující hardware: Od automatizovaného návrhu k inovativním a vysvětlitelným řešením, GAČR, Standardní projekty, GA24-10990S, zahájení: 2024-01-01, ukončení: 2026-12-31, řešení
Pracoviště
Nahoru