Detail výsledku

Taylor series based numerical integration method for solution of nonlinear problems with division

VEIGEND, P.; NEČASOVÁ, G.; ŠÁTEK, V. Taylor series based numerical integration method for solution of nonlinear problems with division. In 2024 IEEE 17th International Scientific Conference on Informatics Proceedings. Poprad: Institute of Electrical and Electronics Engineers, 2025. p. 421-426. ISBN: 979-8-3503-8766-7.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

Most methods for solving ordinary differential equations use a limited order to
calculate the results. The method presented in this article can use as many terms
of the Taylor series as necessary to obtain a stable and accurate solution. The
solution using this method (particularly for nonlinear problems) can be quite
complex. The aim of this article is to compare several ways of expressing the
nonlinear problems of ordinary differential equations and compare these
approaches between one another and to the state-of-the-art solvers in MATLAB
software.

Klíčová slova

Taylor series method, MATLAB, initial value problems, nonlinear ordinary
differential equations

Rok
2025
Strany
421–426
Sborník
2024 IEEE 17th International Scientific Conference on Informatics Proceedings
Konference
2024 IEEE 17th International Scientific Conference on Informatics
ISBN
979-8-3503-8766-7
Vydavatel
Institute of Electrical and Electronics Engineers
Místo
Poprad
DOI
UT WoS
001483035700071
EID Scopus
BibTeX
@inproceedings{BUT193303,
  author="Petr {Veigend} and Gabriela {Nečasová} and Václav {Šátek}",
  title="Taylor series based numerical integration method for solution of nonlinear problems with division",
  booktitle="2024 IEEE 17th International Scientific Conference on Informatics Proceedings",
  year="2025",
  pages="421--426",
  publisher="Institute of Electrical and Electronics Engineers",
  address="Poprad",
  doi="10.1109/Informatics62280.2024.10900903",
  isbn="979-8-3503-8766-7"
}
Projekty
Reliable, Secure, and Intelligent Computer Systems, VUT, Vnitřní projekty VUT, FIT-S-23-8151, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru