Publication Details

Unmasking the Phishermen: Phishing Domain Detection with Machine Learning and Multi-Source Intelligence

HRANICKÝ, R.; HORÁK, A.; POLIŠENSKÝ, J.; JEŘÁBEK, K.; RYŠAVÝ, O. Unmasking the Phishermen: Phishing Domain Detection with Machine Learning and Multi-Source Intelligence. In Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024. Soul: Institute of Electrical and Electronics Engineers, 2024. p. 1-5. ISBN: 979-8-3503-2794-6.
Czech title
Odhalení phisherů: Detekce phishingových domén pomocí strojového učení a informací z více zdrojů
Type
conference paper
Language
English
Authors
URL
Keywords

Phishing, Domain, Detection, Machine learning, XGBoost, Features, DNS, RDAP, TLS,
GeoIP

Abstract

In the digital landscape, phishing attacks have rapidly evolved into a major
cybersecurity challenge, posing significant risks to individuals and
organizations. This short paper presents our preliminary research on detecting
phishing domains. Our approach amalgamates intelligence from multiple sources:
DNS servers, WHOIS/RDAP, TLS certificates, and GeoIP data. We created a rich 15.8
GB dataset of information about benign and phishing domains, from which we
derived a comprehensive 80-feature vector for training and testing machine
learning classifiers. We propose preliminary results with a fine-tuned XGBoost
model, achieving 0.9716 precision rate, 0.9540 F-1 score, and false positive rate
of 0.23%.

Published
2024
Pages
1–5
Proceedings
Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024
Conference
IEEE/IFIP Network Operations and Management Symposium 2024, Soul, KR
ISBN
979-8-3503-2794-6
Publisher
Institute of Electrical and Electronics Engineers
Place
Soul
DOI
UT WoS
001270140300140
EID Scopus
BibTeX
@inproceedings{BUT186776,
  author="Radek {Hranický} and Adam {Horák} and Jan {Polišenský} and Kamil {Jeřábek} and Ondřej {Ryšavý}",
  title="Unmasking the Phishermen: Phishing Domain Detection with Machine Learning and Multi-Source Intelligence",
  booktitle="Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024",
  year="2024",
  pages="1--5",
  publisher="Institute of Electrical and Electronics Engineers",
  address="Soul",
  doi="10.1109/NOMS59830.2024.10575573",
  isbn="979-8-3503-2794-6",
  url="https://ieeexplore.ieee.org/document/10575573"
}
Back to top