Publication Details

Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning

MOŠNER, L.; WU, M.; RAJU, A.; PARTHASARATHI, S.; KUMATANI, K.; SUNDARAM, S.; MAAS, R.; HOFFMEISTER, B. Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning. In Proceedings of ICASSP. Brighton: IEEE Signal Processing Society, 2019. p. 6475-6479. ISBN: 978-1-5386-4658-8.
Czech title
Zlepšování odolnosti vůči šumu automatického rozpoznávání řeči pomocí paralelních dat a učení typu učitel-žák
Type
conference paper
Language
English
Authors
Mošner Ladislav, Ing. (DCGM)
WU, M.
RAJU, A.
PARTHASARATHI, S.
KUMATANI, K.
SUNDARAM, S.
MAAS, R.
HOFFMEISTER, B.
URL
Keywords

automatic speech recognition, noise robustness, teacher-student training, domain adaptation

Abstract

For real-world speech recognition applications, noise robustness is still a challenge. In this work, we adopt the teacherstudent (T/S) learning technique using a parallel clean and noisy corpus for improving automatic speech recognition (ASR) performance under multimedia noise. On top of that, we apply a logits selection method which only preserves the k highest values to prevent wrong emphasis of knowledge from the teacher and to reduce bandwidth needed for transferring data. We incorporate up to 8000 hours of untranscribed data for training and present our results on sequence trained models apart from cross entropy trained ones. The best sequence trained student model yields relative word error rate (WER) reductions of approximately 10.1%, 28.7% and 19.6% on our clean, simulated noisy and real test sets respectively comparing to a sequence trained teacher.

Published
2019
Pages
6475–6479
Proceedings
Proceedings of ICASSP
ISBN
978-1-5386-4658-8
Publisher
IEEE Signal Processing Society
Place
Brighton
DOI
UT WoS
000482554006141
EID Scopus
BibTeX
@inproceedings{BUT160006,
  author="MOŠNER, L. and WU, M. and RAJU, A. and PARTHASARATHI, S. and KUMATANI, K. and SUNDARAM, S. and MAAS, R. and HOFFMEISTER, B.",
  title="Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning",
  booktitle="Proceedings of ICASSP",
  year="2019",
  pages="6475--6479",
  publisher="IEEE Signal Processing Society",
  address="Brighton",
  doi="10.1109/ICASSP.2019.8683422",
  isbn="978-1-5386-4658-8",
  url="https://ieeexplore.ieee.org/document/8683422"
}
Back to top