Publication Details

Automatic Language Identification Using Deep Neural Networks

LOPEZ-MORENO, I.; GONZALEZ-DOMINGUEZ, J.; MARTÍNEZ GONZÁLEZ, D.; PLCHOT, O.; GONZALEZ-RODRIGUEZ, J.; MORENO, P. Automatic Language Identification Using Deep Neural Networks. In Proceeding of ICASSP 2014. Florencie: IEEE Signal Processing Society, 2014. p. 5374-5378. ISBN: 978-1-4799-2892-7.
Czech title
Automatická identifikace mluvčího pomocí hlubokých neuronových sítí
Type
conference paper
Language
English
Authors
URL
Keywords

Automatic Language Identification, ivectors, DNNs

Abstract

In this work, we experimented with the use of deep neural networks (DNNs) to automatic language identification (LID). Guided by the success of DNNs for acoustic modelling, we explored their capability to learn discriminative language information from speech signals.

Annotation

This work studies the use of deep neural networks (DNNs) to address automatic language identification (LID). Motivated by their recent success in acoustic modelling, we adapt DNNs to the problem of identifying the language of a given spoken utterance from short-term acoustic features. The proposed approach is compared to state-of-the-art i-vector based acoustic systems on two different datasets: Google 5M LID corpus and NIST LRE 2009. Results show how LID can largely benefit from using DNNs, especially when a large amount of training data is available. We found relative improvements up to 70%, in Cavg, over the baseline system.

Published
2014
Pages
5374–5378
Proceedings
Proceeding of ICASSP 2014
ISBN
978-1-4799-2892-7
Publisher
IEEE Signal Processing Society
Place
Florencie
DOI
UT WoS
000343655305074
EID Scopus
BibTeX
@inproceedings{BUT111548,
  author="Ignacio {Lopez-Moreno} and Javier {Gonzalez-Dominguez} and David {Martínez González} and Oldřich {Plchot} and Joaquin {Gonzalez-Rodriguez} and Pedro {Moreno}",
  title="Automatic Language Identification Using Deep Neural Networks",
  booktitle="Proceeding of ICASSP 2014",
  year="2014",
  pages="5374--5378",
  publisher="IEEE Signal Processing Society",
  address="Florencie",
  doi="10.1109/ICASSP.2014.6854622",
  isbn="978-1-4799-2892-7",
  url="http://www.fit.vutbr.cz/research/groups/speech/publi/2014/lopez_moreno_icassp2014_p5374.pdf"
}
Back to top