Detail práce
Automatická analýza obrazu pro kontrolu kvality výroby textilií
Tato práce se zabývá problematikou klasifikace defektů, které vznikají při výrobě netkaných textilií. Úloha klasifikace vad je součástí systému pro automatickou kontrolu kvality výroby. Cílem je implementovat metodu, která bude co nejlépe klasifikovat problematické třídy defektů. Toho bylo dosaženo s využitím konvolučních neuronových sítí (CNN). Nejlepší výsledky měla síť EfficientNet, která dosáhla přesnosti 81% při vyhodnocení metodou křížové validace na dostupném datasetu. V rámci práce je provedena řada experimentů, které jsou zaměřeny na úpravu vstupních dat. Zkoumán je vliv tvaru a složení vstupních snímků na výslednou klasifikaci. Implementován byl také model CNN, který kromě obrázku využívá pro klasifikaci také další informace.
klasifikace vad, netkané textilie, kontrola kvality, konvoluční neuronové sítě, zpracování obrazu
Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm C.
- Jak vypadá výsledná matice záměn (confusion matrix) u nejlepšího modelu na testovací sadě dat? Jak často zde dochází k záměně důležitých tříd?
Beran Vítězslav, doc. Ing., Ph.D. (UPGM FIT VUT), člen
Čadík Martin, doc. Ing., Ph.D. (UPGM FIT VUT), člen
Juránek Roman, Ing., Ph.D. (UPGM FIT VUT), člen
Křivka Zbyněk, Ing., Ph.D. (UIFS FIT VUT), člen
Milet Tomáš, Ing., Ph.D. (UPGM FIT VUT), člen
@mastersthesis{FITMT24947, author = "Tereza S\'{y}korov\'{a}", type = "Diplomov\'{a} pr\'{a}ce", title = "Automatick\'{a} anal\'{y}za obrazu pro kontrolu kvality v\'{y}roby textili\'{i}", school = "Vysok\'{e} u\v{c}en\'{i} technick\'{e} v Brn\v{e}, Fakulta informa\v{c}n\'{i}ch technologi\'{i}", year = 2022, location = "Brno, CZ", language = "czech", url = "https://www.fit.vut.cz/study/thesis/24947/" }