Detail předmětu
Vysoce náročné výpočty (v angličtině)
VNVe Ak. rok 2026/2027 letní semestr 5 kreditů
Předmět je zaměřen na praktické metody řešení náročných vědecko-technických úloh. Provádí se srovnání numerických metod a hodnotí se stabilita numerického výpočtu. Důraz je kladen na pochopení problematiky metod proměnného řádu a kroku (hp-metody). Pro numerické řešení obyčejných diferenciálních rovnic se používá originální metoda založená na přímém využití Taylorovy řady. K dispozici je simulační jazyk TKSL (FOS) s rovnicovým zápisem zadaného problému. Uvádí se těsná souvislost rovnicového a blokového zápisu a analyzuje se blokové schéma jako datový vstup. Analyzují se následující technické problémy: Řešení rozsáhlých soustav algebraických a diferenciálních rovnic, výpočet určitých integrálů, řešení elektrických obvodů, řešení úloh z oblasti mechaniky a proudění kapalin. Většina technických úloh vede na maticový zápis. Jednotlivé technické problémy budou rovněž řešeny v prostředí MATLAB/Simulink.
Proč je předmět vyučován
V současné době roste trend využívání superpočítačů při řešení rozsáhlých vědeckotechnických úloh. Před sepisováním paralelních zdrojových kódů by uživatelé měli dokonale rozumět úloze, kterou řeší.
Cílem tohoto předmětu je seznámit studenty s fyzikální podstatou řešených úloh. Vidět souvislosti mezi rovnicovým zápisem s využitím diferenciálního počtu a řešenou úlohou. Nahlédnout do pozadí numerických metod, které se často v programech vyskytují jako "černé krabičky" a uživatelé o nich nic nevědí. Umět zvolit vhodnou numerickou metodu pro konkrétní řešený technický problém a nepostupovat jen metodou "pokus-omyl".
Technické vybavení (komerční)
- MATLAB (Simulink)
Technické vybavení (volně dostupné)
Garant předmětu
Koordinátor předmětu
Jazyk výuky
Zakončení
Rozsah
- 26 hod. přednášky
- 26 hod. pc laboratoře
Bodové hodnocení
- 60 bodů závěrečná zkouška (písemná část)
- 20 bodů půlsemestrální test (písemná část)
- 20 bodů laboratoře
Zajišťuje ústav
Přednášející
Cvičící
Cíle předmětu
Získat přehled a základy praktického využití paralelních a kvaziparalelních metod numerického řešení náročných vědeckotechnických úloh.
Schopnost transformovat vědecko-technické úlohy na systém diferenciálních rovnic. Schopnost řešit rozsáhlé systémy diferenciálních rovnic s využitím simulačního jazyka TKSL.
Schopnost provádět paralelní a kvaziparalelní výpočty rozsáhlých úloh.
Literatura studijní
- Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987.
- Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, vol. Stiff And Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg, 1996.
- Butcher, J. C.: Numerical Methods for Ordinary Differential Equations, 3rd Edition, Wiley, 2016.
- Lecture notes written in PDF format,
- Source codes of all computer laboratories
Literatura referenční
- Kunovský, J.: Modern Taylor Series Method, habilitation thesis, VUT Brno, 1995
- Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987.
- Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, vol. Stiff And Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg, 1996.
- Shampine, L. F.: Numerical Solution of ordinary differential equations, Chapman and Hall/CRC, 1994
- Strang, G.: Introduction to applied mathematics, Wellesley-Cambridge Press, 1986
- Meurant, G.: Computer Solution of Large Linear System, North Holland, 1999
- Saad, Y.: Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003
- Burden, R. L.: Numerical analysis, Cengage Learning, 2015
- LeVeque, R. J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems (Classics in Applied Mathematics), 2007
- Strikwerda, J. C.: Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, 2004
- Golub, G. H.: Matrix computations, Hopkins Uni. Press, 2013
- Duff, I. S.: Direct Methods for Sparse Matrices (Numerical Mathematics and Scientific Computation), Oxford University Press, 2017
- Corliss, G. F.: Automatic differentiation of algorithms, Springer-Verlag New York Inc., 2002
- Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 2008
- Press, W. H.: Numerical recipes : the art of scientific computing, Cambridge University Press, 2007
Osnova přednášek
- Metodika sériového a paralelního výpočtu (zpětnovazební stabilita paralelních výpočtů)
- Extrémně přesné řešení diferenciálních rovnic metodou Taylorovy řady
- Paralelní vlastnosti metody Taylorovy řady
- Základy programování specializovaných paralelních úloh s využitím diferenciálního počtu (těsná souvislost rovnicového a blokového zápisu)
- Paralelní řešení obyčejných diferenciálních rovnic s konstatními koeficienty, knihovní podprogramy přesných výpočtů
- Adjungované diferenciální operátory a paralelní řešení diferenciálních rovnic s časově proměnnými koeficienty
- Metoda řešení rozsáhlých soustav algebraických rovnic převodem na obyčejné diferenciální rovnice
- Bairstowova metoda pro hledání kořenů algebraických rovnic vysokých stupňů
- Fourierova řada a paralelní FFT
- Simulace elektrických obvodů
- Řešení praktických problémů popsaných parciálními diferenciálními rovnicemi
- Regulační obvody
- Koncepce elementárního procesoru specializovaného paralelního výpočetního systému
Osnova počítačových cvičení
- Simulační systém TKSL
- Testovací příklady řešení exponenciálních funkcí
- Diferenciální homogenní rovnice 1. řádu
- Diferenciální homogenní rovnice 2. řádu
- Generování funkcí času
- Generování funkcí obecné proběnné
- Adjungované diferenciální operátory
- Soustava lineárních algebraických rovnic
- Modelování elektronických obvodů
- Rovnice vedení tepla
- Vlnová rovnice
- Laplaceova rovnice
- Regulační obvody
Průběžná kontrola studia
Půlsemestrální a semestrální písemná zkouška. Pro získání bodů ze semestrální zkoušky je nutné zkoušku vypracovat tak, aby byla hodnocena nejméně 29 body. V opačném případě bude zkouška hodnocena 0 body.
V průběhu semestru budou probíhat bodovaná počítačová cvičení.
Zařazení předmětu ve studijních plánech
- Program MIT-EN (anglicky), libovolný ročník, volitelný