Detail předmětu

Soft Computing

SFC Ak. rok 2025/2026 zimní semestr 5 kreditů

Aktuální akademický rok

Soft computing je zastřešující název (který nemá použitelný český překlad) pro netradiční technologie, resp. přístupy k řešení obtížných problémů. Obsah předmětu je ve shodě s významem jeho názvu následující: Tolerance pro nepřesnost a neurčitost jako základní atributy teorií soft-computing. Neuronové sítě. Fuzzy logika. Posilované učení. Optimalizační algoritmy inspirované přírodou. Pravděpodobnostní usuzování. Hrubé množiny. Chaos.  Hybridní přístupy (kombinace neuronových sítí, fuzzy logiky a genetických algoritmů) .

Garant předmětu

Koordinátor předmětu

Jazyk výuky

česky

Zakončení

zápočet+zkouška (písemná)

Rozsah

  • 26 hod. přednášky
  • 26 hod. projekty

Bodové hodnocení

  • 55 bodů závěrečná zkouška (písemná část)
  • 15 bodů půlsemestrální test (písemná část)
  • 30 bodů projekty

Zajišťuje ústav

Přednášející

Cvičící

Cíle předmětu

Seznámit studenty se základy teorií soft-computing, tj. se základy teorií netradičních technologií a přístupů k řešení obtížných problémů reálného světa.

  • Studenti se seznámí se základními typy neuronových sítí a jejich aplikacemi.
  • Studenti se seznámí se základy teorie fuzzy množin a fuzzy logiky včetně návrhu fuzzy regulátoru.
  • Studenti se seznámí s teorií a aplikací posilovaného učení.
  • Studenti se seznámí s optimalizačními algoritmy inspirovanými přírodou.
  • Studenti se seznámí s problematikou pravděpodobnostního usuzování.
  • Studenti se seznámí se základy teorie hrubých množin a s použitím těchto množin při dolování znalostí z databází.  
  • Studenti se seznámí se základy teorie chaosu.
  • Studenti se naučí odborné terminologii z oblasti soft-computing, a to jak v českém, tak i anglickém jazyce.
  • Studenti si uvědomí důležitost tolerance nepřesnosti a neurčitosti pro konstrukci robustních inteligentních zařízení a systémů.

Požadované prerekvizitní znalosti a dovednosti

  • Programování v jazycích C++ nebo Python.
  • Základní znalosti z diferenciálního počtu a teorie pravděpodobnosti.

Literatura studijní

  • Graube, D.: Principles of Artificial Neural networks, World Scientific Publishing Co. Pte. Ltd., third edition, 2013
  • Rutkowski, L.: Flexible Neuro-Fuzzy Systems, Kluwer Academic Publishers, 2004, ISBN 1-4020-8042-5
  • Shi, Z.: Advanced Artificial Intelligence, World Scientific Publishing Co. Pte. Ltd., 2011, ISBN-13 978-981-4291-34-7

Literatura referenční

Studijní opory

Osnova přednášek

  1. Úvod. Neuronové sítě. Backpropagation.
  2. Neuronové sítě RBF, ART. Hopfieldova síť a Boltzmannův stroj.
  3. Konvoluční neuronové sítě. Hluboké učení.
  4. Časové řady. Rekurentní neuronové sítě. LSTM, GRU.
  5. Rekurentní sítě se spojitým časem. Tekuté neuronové sítě.
  6. Fuzzy množiny, fuzzy k-means, fuzzy logika.
  7. Fuzzy řízení. Adaptivní neuro-fuzzy systémy., 
  8. Markovský rozhodovací proces a posilované učení.
  9. Genetické algoritmy a genetické programování.
  10. ACO, PSO a jiné optimalizační algoritmy inspirované přírodou.
  11. Pravděpodobnostní usuzování, Bayesovské sítě.
  12. Hrubé množiny a jejich aplikace.
  13. Chaos. Hybridní přístupy.

Osnova ostatní - projekty, práce

Individuální projekt - řešení konkrétního problému (klasifikace, optimalizace, asociace, řízení).

Průběžná kontrola studia

  • Půlsemestrální písemný test - 15 bodů.
  • Projekt - 30 bodů.
  • Závěrečná písemná zkouška - 55 bodů, minimálně však 25 bodů.

Zařazení předmětu ve studijních plánech

Nahoru