Detail předmětu

Lineární algebra

ILG Ak. rok 2025/2026 zimní semestr 5 kreditů

Aktuální akademický rok

Matice a determinanty. Soustavy lineárních rovnic. Vektorové prostory a podprostory. Lineární zobrazení, transformace souřadnic. Vlastní hodnoty a vlastní vektory. Kvadratické formy a kuželosečky.

Garant předmětu

Koordinátor předmětu

Jazyk výuky

česky, anglicky

Zakončení

zápočet+zkouška (písemná)

Rozsah

  • 26 hod. přednášky
  • 26 hod. cvičení

Bodové hodnocení

  • 80 bodů závěrečná zkouška
  • 20 bodů numerická cvičení

Zajišťuje ústav

Přednášející

Cvičící

Cíle předmětu

Studenti se seznámí s elementárními poznatky z  lineární algebry, které jsou potřebné pro aplikace v informatice. Důraz je kladen na zvládnutí praktického použití těchto znalostí k řešení konkrétních úloh.
Studenti získají elementární znalosti z lineární algebry a schopnost aplikace některých jejích základních metod v informatice.

Požadované prerekvizitní znalosti a dovednosti

Středoškolská matematika.

Literatura studijní

  • Havel, V., Holenda, J., Lineární algebra, STNL, Praha 1984.
  • Kolman B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.

Osnova přednášek

  1. Soustavy lineárních homogenních a nehomogenních rovnic. Gaussova eliminace.
  2. Matice a maticové operace (typy matic, řídké matice).  Determinant čtvercové matice. Metody výpočtu determinantu.
  3. Cramerovo pravidlo. Hodnost matice. Frobeniova věta. Inverzní a adjungovaná matice.
  4. Vektorový prostor a jeho podprostory. Báze a dimenze. Vyjádření vektoru v bázi. Součet a průnik vektorových prostorů.
  5. Skalární součin. Ortogonální průmět vektoru do podprostoru. Ortonormální systémy vektorů. Gram-Schmidtův ortogonalizační proces.
  6. Transformace souřadnic.
  7. Lineární zobrazení vektorových prostorů. Matice lineárního zobrazení.
  8. Rotace, translace, souměrnosti a jejich matice, homogenní souřadnice.
  9. Problém vlastních hodnot. Vlastní vektory. Projekce na vlastní podprostory.
  10. Numerické řešení soustav lineárních rovnic, iterační metody.
  11. Kuželosečky.
  12. Kvadratické formy a jejich klasifikace pomocí řezů.
  13. Kvadratické formy a jejich klasifikace pomocí vlastních vektorů.

Osnova numerických cvičení

Příklady probírané na cvičeních jsou voleny tak, aby vhodným způsobem doplňovaly přednášky.

Průběžná kontrola studia

  • Ohodnocení pěti písemných testů (max 20 bodů).
  • Znalosti studentů jsou ověřovány na cvičeních  vypracováním pěti písemných testů po 4 bodech  a závěrečnou zkouškou za 80 bodů.
  • Pokud se student nemůže cvičení z vážného důvodu (například pro nemoc) zúčastnit a tento důvod doloží v souladu s Článkem 55 Studijního a zkušebního řádu VUT, může se cvičení se stejným tématem zúčastnit po dohodě s příslušným cvičícím s jinou skupinou, pokud to kapacita učebny dovolí. Pokud student z vážného důvodu zmešká písemku, může si ji nahradit u svého cvičícího v individuálně sjednaném náhradním termínu.
  • Hranice pro úspěšné složení zkoušky je získání alespoň 50 bodů z celkového maxima 100 bodů získaných v průběhu semestru a za závěrečnou zkoušku podle pravidel ECTS . 

 

Zařazení předmětu ve studijních plánech

Nahoru