Detail předmětu

Evoluční výpočetní techniky

EVD Ak. rok 2025/2026 letní semestr

Aktuální akademický rok

Evoluční výpočetní techniky v kontextu umělé inteligence a optimalizačních úloh. Jedno- a více-kriteriální optimalizace, relace dominance a Paretova fronta. Principy genetických algoritmů, evoluční strategie, genetického programování a dalších evolučních heuristik. Statistické vyhodnocení experimentů. Pokročilé evoluční algoritmy využívající pravděpodobnostní modely.  Paralelní evoluční algoritmy. Vícekriteriální evoluční optimalizace. Techniky rychlého prototypování evolučních algoritmů.

Okruhy otázek k SDZ:

  1. Kódování problému, genotyp, fenotyp, fitness funkce
  2. Genetické algoritmy, teorie schémat.
  3. Evoluční strategie.
  4. Genetické programování a symbolická regrese.
  5. Evoluční algoritmy využívající pravděpodobnostní modely pro tvorbu populace.
  6. Simulované žíhání.
  7. Vícekriteriální evoluční algoritmy (relace dominance, NSGA-II). 
  8. Paralelní evoluční algoritmy.
  9. Diferenční evoluce, SOMA.
  10. Statistické vyhodnocení experimentů.

Garant předmětu

Jazyk výuky

česky, anglicky

Zakončení

zkouška (ústní)

Rozsah

  • 26 hod. přednášky

Bodové hodnocení

  • 100 bodů závěrečná zkouška

Zajišťuje ústav

Cíle předmětu

Seznámit studenty s moderními evolučními algoritmy pro řešení složitých optimalizačních a návrhových problémů.
Zvládnuté postupy při řešení složitých optimalizačních úloh pomocí evolučních algoritmů.
Hlubší pochopení problému optimalizace a jeho řešení v počítačovém inženýrství.

Literatura studijní

  • Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. 2nd ed. Springer, 2015, ISBN 978-3-662-44873-1.
  • Brabazon, A., O'Neill, M., McGarraghy, S.: Natural Computing Algorithms. Springer, 2015, ISBN 978-3-662-43630-1.
  • Doerr, B. Neumann F. (eds.): Theory of Evolutionary Computation. Springer, 2020, ISBN 978-3-030-29413-7

Osnova přednášek

  1. Úvod do studia evolučních algoritmů.
  2. Genetické algoritmy, teorie schémat.
  3. Statistické vyhodnocení experimentů.
  4. Typické optimalizační úlohy.
  5. Pokročilé techniky v genetických algoritmech.
  6. Vícekriteriální evoluční algoritmy.
  7. Evoluční strategie.
  8. Genetické programování a symbolická regrese.
  9. Varianty genetického programování.
  10. Paralelní evoluční algoritmy.
  11. Evoluční algoritmy s pravděpodobnostními modely.
  12. Diferenční evoluce, SOMA a další algoritmy.
  13. Aktuální trendy.

Průběžná kontrola studia

Odevzdání projektu v zadaném termínu, zkouška.
V průběhu studia je třeba odevzdat vypracovaný projekt a složit zkoušku. Výuka probíhá formou přednášek nebo řízeného samostudia; zmeškanou výuku je třeba nahradit samostudiem.

Zařazení předmětu ve studijních plánech

  • Program DIT, libovolný ročník, povinně volitelný skupina O
  • Program DIT, libovolný ročník, povinně volitelný skupina O
  • Program DIT-EN (anglicky), libovolný ročník, povinně volitelný skupina O
  • Program DIT-EN (anglicky), libovolný ročník, povinně volitelný skupina O
Nahoru