Course details
Mathematical Logic
MLD Acad. year 2018/2019 Summer semester
In the course, the basics of propositional and predicate logics will be taught. First, the students will get acquainted with the syntax and semantics of the logics, then the logics will be studied as formal theories with an emphasis on formula proving. The classical theorems on correctness, completeness and compactness will also be dealt with. After discussing the prenex forms of formulas, some properties and models of first-order theories will be studied. We will also deal with the undecidability of first-order theories resulting from the well-known Gödel incompleteness theorems. Finally, some further important logics will be discussed which have applications in computer science.
Guarantor
Language of instruction
Completion
Time span
- 26 hrs lectures
Assessment points
- 100 pts final exam
Department
Lecturer
Instructor
Subject specific learning outcomes and competences
The students will acquire the ability of understanding the principles of axiomatic mathematical theories and the ability of exact (formal) mathematical expression. They will also learn how to deduct, in a formal way, new formulas and to prove given ones. They will realize the efficiency of formal reasonong and also its limits.
The students will learn exact formal reasoning to be able to devise correct and efficient algorithms solving given problems. They will also acquire an ability to verify the correctness of given algorithms (program verification).
Learning objectives
The aim of the course is to acquaint students with the basic methods of reasoning in mathematics. The students should learn about general principles of predicate logic and, consequently, acquire the ability of exact mathematical reasoning and expression. They should also get familiar with some other important formal theories utilizied in informatics too.
Prerequisite knowledge and skills
The knowledge acquired in the bachelor's study course "Discrete Mathematics" and the master's study course "Mathematical Structures in Informatics" is assumed.
Study literature
- D.M. Gabbay, C.J. Hogger, J.A. Robinson, Handbook of Logic for Artificial Intellogence and Logic Programming, Oxford Univ. Press 1993
- A. Sochor, Klasická matematická logika, Karolinum, 2001
- V. Švejnar, Logika, neúplnost a složitost, Academia, 2002
- E. Mendelson, Introduction to Mathematical Logic, Chapman&Hall, 2001
- A. Nerode, R.A. Shore, Logic for Applications, Springer-Verlag 1993
- D.M. Gabbay, C.J. Hogger, J.A. Robinson, Handbook of Logic for Artificial Intelligence and Logic Programming, Oxford Univ. Press 1993
- G. Metakides, A. Nerode, Principles of logic and logic programming, Elsevier, 1996
- Melvin Fitting, First order logic and automated theorem proving, Springer, 1996
- Sally Popkorn, First steps in modal logic, Cambridge Univ. Press, 1994
Syllabus of lectures
- Basics of set theory and cardinal arithmetics
- Language, formulas and semantics of propositional calculus
- Formal theory of the propositional logic
- Provability in propositional logic, completeness theorem
- Language of the (first-order) predicate logic, terms and formulas
- Semantic of predicate logics
- Axiomatic theory of the first-order predicate logic
- Provability in predicate logic
- Theorems on compactness and completeness, prenex normal forms
- First-order theories and their models
- Undecidabilitry of first-order theories, Gödel's incompleteness theorems
- Second-order theories (monadic logic, SkS and WSkS)
- Some further logics (intuitionistic logic, modal and temporal logics, Presburger arithmetic)
Course inclusion in study plans
- Programme VTI-DR-4, field DVI4, any year of study, Elective
- Programme VTI-DR-4, field DVI4, any year of study, Elective
- Programme VTI-DR-4 (in English), field DVI4, any year of study, Elective
- Programme VTI-DR-4 (in English), field DVI4, any year of study, Elective