Detail výsledku
Bounded solutions of delay dynamic equations on time scales
DIBLÍK, J.; VÍTOVEC, J. Bounded solutions of delay dynamic equations on time scales. Advances in Difference Equations, 2012, vol. 2012, no. 1, p. 1-9. ISSN: 1687-1847.
Typ
článek v časopise
Jazyk
angličtina
Autoři
Diblík Josef, prof. RNDr., DrSc., AdMaS VP2 KCE (FAST), MAT (FAST), UMAT (FEKT)
Vítovec Jiří, Mgr., Ph.D., UMAT (FEKT)
Vítovec Jiří, Mgr., Ph.D., UMAT (FEKT)
Abstrakt
In this paper we discuss the asymptotic behavior of solutions of a delay dynamic equation $$y^{\Delta}(t)=f(t,y(\tau(t)))$$ where $f\colon\mathbb{T}\times\mathbb{R}\rightarrow\mathbb{R}$, \tau\colon\T\rightarrow \T$ is a delay function and $\mathbb{T}$ is a time scale. We formulate a principle which gives the guarantee that the graph of at least one solution of above mentioned equation stays in
the prescribed domain. This principle uses the idea of the retraction method and is a suitable tool for investigating the asymptotic behavior of solutions of dynamic equations. This is illustrated by an example.
Klíčová slova
Asymptotic behavior, delay dynamic equation, time scale.
URL
Rok
2012
Strany
1–9
Časopis
Advances in Difference Equations, roč. 2012, č. 1, ISSN 1687-1847
Vydavatel
Springer Nature
DOI
BibTeX
@article{BUT96019,
author="Josef {Diblík} and Jiří {Vítovec}",
title="Bounded solutions of delay dynamic equations on time scales",
journal="Advances in Difference Equations",
year="2012",
volume="2012",
number="1",
pages="1--9",
doi="10.1186/1687-1847-2012-183",
issn="1687-1847",
url="https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-183"
}
Soubory
Pracoviště
Ústav matematiky
(UMAT)
Ústav matematiky a deskriptivní geometrie (MAT)
Ústav matematiky a deskriptivní geometrie (MAT)