Detail výsledku
Jordan curve theorems with respect to certain pretopologies on Z^2
        ŠLAPAL, J. Jordan curve theorems with respect to certain pretopologies on Z^2. Lecture Notes in Computer Science, 2009, vol. 5810, no. 1, p. 252-262.  ISSN: 0302-9743.
    
                Typ
            
        
                článek v časopise
            
        
                Jazyk
            
        
                anglicky
            
        
            Autoři
            
        
                Šlapal Josef, prof. RNDr., CSc., ÚM (FSI)
            
        
                    Abstrakt
            
        We discuss four quotient pretopologies of a certain
basic topology on the digital plane. Three of them are even topologies
and include the well-known Khalimsky and Marcus-Wyse topologies.
Some known Jordan curves in the basic topology are used to prove
Jordan curve theorems that identify Jordan curves among simple
closed ones in each of the four quotient pretopologies.
                Klíčová slova
            
        Jordan curve, topology, quotient pretopology.
                Rok
            
            
                    2009
                    
                
            
                    Strany
                
            
                        252–262
                
            
                    Časopis
                
            
                    Lecture Notes in Computer Science, roč. 5810, č. 1, ISSN 0302-9743
                
            
                    Vydavatel
                
            
                    Springer
                
            
                    BibTeX
                
            @article{BUT49487,
  author="Josef {Šlapal}",
  title="Jordan curve theorems with respect to certain pretopologies on Z^2",
  journal="Lecture Notes in Computer Science",
  year="2009",
  volume="5810",
  number="1",
  pages="252--262",
  issn="0302-9743"
}
                
                Pracoviště
            
        
                Ústav matematiky 
                (ÚM)