Detail výsledku

On iterated de Groot dualizations of topological spaces

KOVÁR, M. On iterated de Groot dualizations of topological spaces. TOPOLOGY AND ITS APPLICATIONS, 2005, vol. 1, no. 146-7, 7 p. ISSN: 0166-8641.
Typ
článek v časopise
Jazyk
angličtina
Autoři
Abstrakt

Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology ask whether the process of taking (de Groot) duals terminate after finitely many steps with topologies that are duals of each other. The question was solved in the positive by the author in 2001. In this paper we prove a new identity for dual topologies: $\tau^d=
(\tau\vee\tau^{dd})^d$ holds for every topological space $(X,\tau)$. We also present a solution of another problem that was open till now -- we give an equivalent internal characterization of those
spaces for which $\tau=\tau^{dd}$ and we also characterize the spaces satisfying the identities
$\tau^d=\tau^{ddd}$, $\tau=\tau^{d}$ and $\tau^d=\tau^{dd}$.

Klíčová slova

saturated set, dual topology, compactness operator

Rok
2005
Strany
7
Časopis
TOPOLOGY AND ITS APPLICATIONS, roč. 1, č. 146-7, ISSN 0166-8641
BibTeX
@article{BUT46466,
  author="Martin {Kovár}",
  title="On iterated de Groot dualizations of topological spaces",
  journal="TOPOLOGY AND ITS APPLICATIONS",
  year="2005",
  volume="1",
  number="146-7",
  pages="7",
  issn="0166-8641"
}
Pracoviště
Nahoru