Detail výsledku

Which topological spaces have a weak reflection in compact spaces

KOVÁR, M. Which topological spaces have a weak reflection in compact spaces. Commentationes Mathematicae Universitatis Carolinae, 1995, vol. 36, no. 3, 8 p. ISSN: 0010-2628.
Typ
článek v časopise
Jazyk
angličtina
Autoři
Abstrakt

The problem, whether every topological space has a weak compact reflection,
was answered by M. Hu\v sek in the negative. Assuming normality, M. Hu\v sek
fully characterized the spaces having a weak reflection in compact spaces as
the spaces with the finite Wallman remainder. In this paper we prove that
the assumption of normality may be omitted. On the other hand, we
show that some covering properties kill the weak reflectivity of a noncompact
topological space in compact spaces.

Klíčová slova

weak reflection, Wallman compactification, filter (base), net,
$\theta$-regul\-arity, weak $\left[\omega_1,\infty\right)^r$-refinability

Rok
1995
Strany
8
Časopis
Commentationes Mathematicae Universitatis Carolinae, roč. 36, č. 3, ISSN 0010-2628
BibTeX
@article{BUT40080,
  author="Martin {Kovár}",
  title="Which topological spaces have a weak reflection in compact spaces",
  journal="Commentationes Mathematicae Universitatis Carolinae",
  year="1995",
  volume="36",
  number="3",
  pages="8",
  issn="0010-2628"
}
Pracoviště
Nahoru