Detail výsledku

Bayesian Learning for Domain-Invariant Speaker Verification and Anti-Spoofing

LI, J.; MAK, M.; ROHDIN, J.; LEE, K.; HERMANSKY, H. Bayesian Learning for Domain-Invariant Speaker Verification and Anti-Spoofing. In Proceedings of the Annual Conference of the International Speech Communication Association Interspeech. Interspeech. Rotterdam: International Speech Communication Association, 2025. p. 1123-1127.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
Li Jin
Mak Man Wai
Rohdin Johan Andréas, M.Sc., Ph.D., FIT (FIT), UPGM (FIT)
Lee Kong Aik
Heřmanský Hynek, prof. Ing., Dr. Eng., UPGM (FIT)
Abstrakt

The performance of automatic speaker verification (ASV) and anti-spoofing drops seriously under real-world domain mismatch conditions. The relaxed instance frequency-wise normalization (RFN), which normalizes the frequency components based on the feature statistics along the time and channel axes, is a promising approach to reducing the domain dependence in the feature maps of a speaker embedding network. We advocate that the different frequencies should receive different weights and that the weights' uncertainty due to domain shift should be accounted for. To these ends, we propose leveraging variational inference to model the posterior distribution of the weights, which results in Bayesian weighted RFN (BWRFN). This approach overcomes the limitations of fixed-weight RFN, making it more effective under domain mismatch conditions. Extensive experiments on cross-dataset ASV, cross-TTS anti-spoofing, and spoofing-robust ASV show that BWRFN is significantly better than WRFN and RFN.

Klíčová slova

anti-spoofing | Bayesian learning | domain generalization | speaker verification

URL
Rok
2025
Strany
1123–1127
Časopis
Interspeech, ISSN
Sborník
Proceedings of the Annual Conference of the International Speech Communication Association Interspeech
Konference
Interspeech Conference
Vydavatel
International Speech Communication Association
Místo
Rotterdam
DOI
EID Scopus
BibTeX
@inproceedings{BUT199931,
  author="{} and  {} and Johan Andréas {Rohdin} and  {} and Hynek {Heřmanský}",
  title="Bayesian Learning for Domain-Invariant Speaker Verification and Anti-Spoofing",
  booktitle="Proceedings of the Annual Conference of the International Speech Communication Association Interspeech",
  year="2025",
  journal="Interspeech",
  pages="1123--1127",
  publisher="International Speech Communication Association",
  address="Rotterdam",
  doi="10.21437/Interspeech.2025-655",
  url="https://www.isca-archive.org/interspeech_2025/li25h_interspeech.pdf"
}
Projekty
Jazykověda, umělá inteligence a jazykové a řečové technologie: od výzkumu k aplikacím, EU, MEZISEKTOROVÁ SPOLUPRÁCE, EH23_020/0008518, zahájení: 2025-01-01, ukončení: 2028-12-31, řešení
Výzkumné skupiny
Pracoviště
Nahoru