Detail výsledku

Symbiotic Local Search for Small Decision Tree Policies in MDPs

ANDRIUSHCHENKO, R.; ČEŠKA, M.; CHAKRABORTY, D.; JUNGES, S.; KRETINSKY, J.; MACÁK, F. Symbiotic Local Search for Small Decision Tree Policies in MDPs. In Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research. ML Research Press, 2025. p. 132-142.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Andriushchenko Roman, Ing., UITS (FIT)
Češka Milan, doc. RNDr., Ph.D., UITS (FIT)
Chakraborty Debraj
Junges Sebastian
Kretinsky Jan
Macák Filip, Ing., UITS (FIT)
Abstrakt

We study decision making policies in Markov decision processes (MDPs). Two key performance indicators of such policies are their value and their interpretability. On the one hand, policies that optimize value can be efficiently computed via a plethora of standard methods. However, the representation of these policies may prevent their interpretability. On the other hand, policies with good interpretability, such as policies represented by a small decision tree, are computationally hard to obtain. This paper contributes a local search approach to find policies with good value, represented by small decision trees. Our local search symbiotically combines learning decision trees from value-optimal policies with symbolic approaches that optimize the size of the decision tree within a constrained neighborhood. Our empirical evaluation shows that this combination provides drastically smaller decision trees for MDPs that are significantly larger than what can be handled by optimal decision tree learners.

Klíčová slova

Markov Decision Processes; Decision trees; Local search

URL
Rok
2025
Strany
132–142
Časopis
Proceedings of Machine Learning Research, ISSN
Sborník
Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence
Konference
41st Conference on Uncertainty in Artificial Intelligence
Vydavatel
ML Research Press
EID Scopus
BibTeX
@inproceedings{BUT198907,
  author="Roman {Andriushchenko} and Milan {Češka} and  {} and  {} and  {} and Filip {Macák}",
  title="Symbiotic Local Search for Small Decision Tree Policies in MDPs",
  booktitle="Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence",
  year="2025",
  journal="Proceedings of Machine Learning Research",
  pages="132--142",
  publisher="ML Research Press",
  url="https://proceedings.mlr.press/v286/andriushchenko25a.html"
}
Projekty
Reliable, Secure, and Intelligent Computer Systems, VUT, Vnitřní projekty VUT, FIT-S-23-8151, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
VESCAA: Verifikovatelná a efektivní syntéza kontrolerů, GAČR, Standardní projekty, GA23-06963S, zahájení: 2023-03-01, ukončení: 2025-12-31, řešení
Pracoviště
Nahoru