Detail výsledku

Comparison of Controlled Undersampling Methods for Machine Learning

SETINSKÝ, J.; ŽÁDNÍK, M. Comparison of Controlled Undersampling Methods for Machine Learning. In 2024 International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024. Mahé: 2024. 6 p. ISBN: 9798350394528.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
Abstrakt

Data reduction is an important preprocessing operation for Machine Learning to learn from large datasets, especially in the case of applications requiring online learning using constrained resources. Our survey focuses on a specific family of data reduction methods - controlled undersampling methods. We observe the behaviour of the methods as they cooperate with several supervised machine-learning techniques over multiple evaluation datasets. Our results show that the random undersampling method offers surprisingly good results compared to more complex methods and is a good fit for online and resource-sensitive machine-learning applications.

URL
Rok
2024
Strany
6
Sborník
2024 International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024
Konference
International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
ISBN
9798350394528
Místo
Mahé
DOI
EID Scopus
BibTeX
@inproceedings{BUT196736,
  author="Jiří {Setinský} and Martin {Žádník}",
  title="Comparison of Controlled Undersampling Methods for Machine Learning",
  booktitle="2024 International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024",
  year="2024",
  pages="6",
  address="Mahé",
  doi="10.1109/ACDSA59508.2024.10467755",
  isbn="9798350394528",
  url="https://ieeexplore.ieee.org/document/10467755"
}
Projekty
Application-specific HW/SW architectures and their applications, VUT, Vnitřní projekty VUT, FIT-S-23-8141, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Pracoviště
Nahoru