Detail výsledku

BOTA: Explainable IoT Malware Detection in Large Networks

POLIAKOV, D.; HYNEK, K.; ČEJKA, T.; KOLÁŘ, D. BOTA: Explainable IoT Malware Detection in Large Networks. IEEE Internet of Things Journal, 2023, vol. 10, no. 10, p. 8416-8431. ISSN: 2327-4662.
Typ
článek v časopise
Jazyk
angličtina
Autoři
Abstrakt

Explainability and alert reasoning are essential but often neglected
properties of intrusion detection systems. The lack of explainability
reduces security personnel's trust, limiting the overall impact of
alerts. This article proposes the botnet analysis (BOTA) system, which
uses the concepts of weak indicators and heterogeneous meta-classifiers
to maintain accuracy compared with state-of-the-art systems while also
providing explainable results that are easy to understand. To evaluate
the proposed system, we have implemented a demonstration of intrusion
weak-indication detectors, each working on a different principle to
ensure robustness. We tested the architecture with various real-world
and lab-created data sets, and it correctly identified 94.3% of infected
Internet of Things (IoT) devices without false positives. Furthermore,
the implementation is designed to work on top of extended bidirectional
flow data, making it deployable on large 100-Gb/s large-scale networks
at the level of Internet Service Providers. Thus, a single instance of
BOTA can protect millions of devices connected to end-users' local
networks and significantly reduce the threat arising from powerful IoT
botnets.

Klíčová slova

detection, explainability, Internet of Things (IoT), malware, network monitoring, network security, weak indicators

URL
Rok
2023
Strany
8416–8431
Časopis
IEEE Internet of Things Journal, roč. 10, č. 10, ISSN 2327-4662
Kniha
IEEE Internet of Things Journal
Vydavatel
Institute of Electrical and Electronics Engineers
Místo
Piscataway
DOI
UT WoS
000982455700008
EID Scopus
BibTeX
@article{BUT185208,
  author="Daniel {Poliakov} and Karel {Hynek} and Tomáš {Čejka} and Dušan {Kolář}",
  title="BOTA: Explainable IoT Malware Detection in Large Networks",
  journal="IEEE Internet of Things Journal",
  year="2023",
  volume="10",
  number="10",
  pages="8416--8431",
  doi="10.1109/JIOT.2022.3228816",
  issn="2327-4662",
  url="https://ieeexplore.ieee.org/document/9983820"
}
Projekty
Analýza šifrovaného provozu pomocí síťových toků, MV, Strategická podpora rozvoje bezpečnostního výzkumu ČR 2019–2025 (IMPAKT 1) PODPROGRAMU 1 SPOLEČNÉ VÝZKUMNÉ PROJEKTY (BV IMP1/2VS), VJ02010024, zahájení: 2022-01-01, ukončení: 2025-06-30, ukončen
Pracoviště
Nahoru