Detail výsledku

Evolutionary Neural Architecture Search Supporting Approximate Multipliers

PIŇOS, M.; MRÁZEK, V.; SEKANINA, L. Evolutionary Neural Architecture Search Supporting Approximate Multipliers. In Genetic Programming, 24th European Conference, EuroGP 2021. Lecture Notes in Computer Science, vol 12691. Seville: Springer Nature Switzerland AG, 2021. p. 82-97. ISBN: 978-3-030-72812-0.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
Abstrakt

There is a growing interest in automated neural architecture search (NAS) methods. They are employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designer's effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to minimize the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with approximate multipliers to deliver the best trade-offs between the accuracy, network size, and power consumption. The most suitable approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.

Klíčová slova

Approximate computing, Convolutional neural network, Cartesian genetic programming, Neuroevolution, Energy efficiency 

URL
Rok
2021
Strany
82–97
Sborník
Genetic Programming, 24th European Conference, EuroGP 2021
Řada
Lecture Notes in Computer Science, vol 12691
Svazek
12691
Konference
24th European Conference on Genetic Programming
ISBN
978-3-030-72812-0
Vydavatel
Springer Nature Switzerland AG
Místo
Seville
DOI
UT WoS
000894232700006
EID Scopus
BibTeX
@inproceedings{BUT168488,
  author="Michal {Piňos} and Vojtěch {Mrázek} and Lukáš {Sekanina}",
  title="Evolutionary Neural Architecture Search Supporting Approximate Multipliers",
  booktitle="Genetic Programming, 24th European Conference, EuroGP 2021",
  year="2021",
  series="Lecture Notes in Computer Science, vol 12691",
  volume="12691",
  pages="82--97",
  publisher="Springer Nature Switzerland AG",
  address="Seville",
  doi="10.1007/978-3-030-72812-0\{_}6",
  isbn="978-3-030-72812-0",
  url="https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6"
}
Projekty
Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje, GAČR, Standardní projekty, GA21-13001S, zahájení: 2021-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
EvoAI Hardware (VZ EHW)
Pracoviště
Nahoru