Detail výsledku

Language Model Integration Based on Memory Control for Sequence to Sequence Speech Recognition

CHO, J.; WATANABE, S.; HORI, T.; BASKAR, M.; INAGUMA, H.; VILLALBA LOPEZ, J.; DEHAK, N. Language Model Integration Based on Memory Control for Sequence to Sequence Speech Recognition. In Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP). Brighton: IEEE Signal Processing Society, 2019. p. 6191-6195. ISBN: 978-1-5386-4658-8.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
CHO, J.
Watanabe Shinji, FIT (FIT)
HORI, T.
Baskar Murali Karthick, Ing., Ph.D., UPGM (FIT)
INAGUMA, H.
VILLALBA LOPEZ, J.
Dehak Najim
Abstrakt

In this paper, we explore several new schemes to train a seq2seqmodel to integrate a pre-trained language model (LM). Our proposedfusion methods focus on the memory cell state and the hidden statein the seq2seq decoder long short-term memory (LSTM), and thememory cell state is updated by the LM unlike the prior studies.This means the memory retained by the main seq2seq would be adjustedby the external LM. These fusion methods have several variantsdepending on the architecture of this memory cell update andthe use of memory cell and hidden states which directly affects thefinal label inference. We performed the experiments to show the effectivenessof the proposed methods in a mono-lingual ASR setup onthe Librispeech corpus and in a transfer learning setup from a multilingualASR (MLASR) base model to a low-resourced language. InLibrispeech, our best model improved WER by 3.7%, 2.4% for testclean, test other relatively to the shallow fusion baseline, with multileveldecoding. In transfer learning from an MLASR base modelto the IARPA Babel Swahili model, the best scheme improved thetransferred model on eval set by 9.9%, 9.8% in CER, WER relativelyto the 2-stage transfer baseline.

Klíčová slova

Automatic speech recognition (ASR), sequence tosequence, language model, shallow fusion, deep fusion, cold fusion

URL
Rok
2019
Strany
6191–6195
Sborník
Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
Konference
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN
978-1-5386-4658-8
Vydavatel
IEEE Signal Processing Society
Místo
Brighton
DOI
UT WoS
000482554006084
EID Scopus
BibTeX
@inproceedings{BUT163488,
  author="CHO, J. and WATANABE, S. and HORI, T. and BASKAR, M. and INAGUMA, H. and VILLALBA LOPEZ, J. and DEHAK, N.",
  title="Language Model Integration Based on Memory Control for Sequence to Sequence Speech Recognition",
  booktitle="Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)",
  year="2019",
  pages="6191--6195",
  publisher="IEEE Signal Processing Society",
  address="Brighton",
  doi="10.1109/ICASSP.2019.8683380",
  isbn="978-1-5386-4658-8",
  url="https://ieeexplore.ieee.org/document/8683380"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru