Detail výsledku
Structuring digital plane by the 8-adjacency graph with a set of walks
ŠLAPAL, J. Structuring digital plane by the 8-adjacency graph with a set of walks. International Journal of Mathematical and Computational Methods, 2017, vol. 2017, no. 2, p. 150-154. ISSN: 2367-895X.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Šlapal Josef, prof. RNDr., CSc., ÚM (FSI)
Abstrakt
In the digital plane Z^2, we define connectedness induced by a set of walks of the same lengths in the
8-adjacency graph. The connectedness is shown to satisfy a digital analogue of the Jordan curve theorem. This
proves that the 8-adjacency graph with a set of walks of the same lengths provides a convenient structure on the digital plane Z^2 for the study of digital images.
Klíčová slova
Digital plane, 8-adjacency graph, walk, connectedness, Jordan curve theorem
URL
Rok
2017
Strany
150–154
Časopis
International Journal of Mathematical and Computational Methods, roč. 2017, č. 2, ISSN 2367-895X
Vydavatel
International Assocoation for Research and Science
Místo
USA
BibTeX
@article{BUT155735,
author="Josef {Šlapal}",
title="Structuring digital plane by the 8-adjacency graph with a set of walks",
journal="International Journal of Mathematical and Computational Methods",
year="2017",
volume="2017",
number="2",
pages="150--154",
issn="2367-895X",
url="https://www.iaras.org/iaras/home/caijmcm/structuring-digital-plane-by-the-8-adjacency-graph-with-a-set-of-walks"
}
Pracoviště
Ústav matematiky
(ÚM)