Detail výsledku

Machine Learning Outlier Detection in Safetica's Data Loss Prevention System

PLUSKAL, J. Machine Learning Outlier Detection in Safetica's Data Loss Prevention System. Praha: Safetica Services s.r.o, 2017. 16 p.
Typ
souhrnná výzkumná zpráva
Jazyk
angličtina
Autoři
Abstrakt

Data loss prevention systems are becoming necessitiesin corporate computer system deployments. Nowadays, wheneverything is connected, and BYOD (Bring your own device)methodology is tolerated, even encouraged in many companies,network security administrators are obliged to keep with newesttechnologies to prevent threats to business resources. Threatsmight be parts of carefully planned corporate espionage, orsimple malware encrypting all resources available to it. No matterwhich threat, data have to be kept safe and each interaction withcritical business resources need to be monitored, authorized andlogged for future analysis.In this paper, we discuss state of the art methods used foroutlier detection, unsupervised learning and statistical analysis.

Klíčová slova

Machine learning, Outlier detection, Data loss prevention

Rok
2017
Strany
16
Vydavatel
Safetica Services s.r.o
Místo
Praha
BibTeX
@misc{BUT146362,
  author="Jan {Pluskal}",
  title="Machine Learning Outlier Detection in Safetica's Data Loss Prevention System",
  year="2017",
  pages="16",
  publisher="Safetica Services s.r.o",
  address="Praha",
  url="https://www.fit.vut.cz/research/publication/11598/",
  note="Summary research report"
}
Soubory
Projekty
Safetica - Použití technik síťové analýzy v rámci prevence ztráty dat, Safetica Service, zahájení: 2017-05-01, ukončení: 2017-12-31, ukončen
Pracoviště
Nahoru