Detail výsledku

Boosted decision trees for behaviour mining of concurrent programmes

ŠIMKOVÁ, H.; KŘENA, B.; VOJNAR, T.; LETKO, Z.; UR, S.; DUDKA, V.; VOLKOVICH, Z.; AVROS, R. Boosted decision trees for behaviour mining of concurrent programmes. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, vol. 29, no. 21, p. 4268-4289. ISSN: 1532-0634.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Šimková Hana, Mgr. Bc., Ph.D., UITS (FIT)
Křena Bohuslav, Ing., Ph.D., UITS (FIT)
Vojnar Tomáš, prof. Ing., Ph.D., UITS (FIT)
Letko Zdeněk, Ing., Ph.D.
Ur Shmuel
Dudka Vendula, Ing.
Volkovich Zeev, FIT (FIT)
Avros Renata, FIT (FIT)
Abstrakt

Testing of concurrent programmes is difficult since the scheduling nondeterminism requires one to test a huge number of different thread interleavings. Moreover, repeated test executions that are performed in the same environment will typically examine similar interleavings only. One possible way how to deal with this problem is to use the noise injection approach, which influences the scheduling by injecting various kinds of noise (delays, context switches, etc) into the common thread behaviour. However, for noise injection to be efficient, one has to choose suitable noise injection heuristics from among the many existing ones as well as to suitably choose values of their various parameters, which is not easy. In this paper, we propose a novel way how to deal with the problem of choosing suitable noise injection heuristics and suitable values of their parameters (as well as suitable values of parameters of the programmes being tested themselves). Here, by suitable, we mean such settings that maximize chances of meeting a given testing goal (such as, eg, maximizing coverage of rare behaviours and thus maximizing chances to find rarely occurring concurrency-related bugs). Our approach is, in particular, based on using data mining in the context of noise-based testing to get more insight about the importance of the different heuristics in a particular testing context as well as to improve fully automated noise-based testing (in combination with both random as well as genetically optimized noise setting).

Klíčová slova

AdaBoost,automated testing,concurrent programmes,data mining,genetic algorithms,noise injection

URL
Rok
2017
Strany
4268–4289
Časopis
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, roč. 29, č. 21, ISSN 1532-0634
DOI
UT WoS
000412299700010
EID Scopus
BibTeX
@article{BUT144486,
  author="Hana {Šimková} and Bohuslav {Křena} and Tomáš {Vojnar} and Zdeněk {Letko} and Shmuel {Ur} and Vendula {Dudka} and Zeev {Volkovich} and Renata {Avros}",
  title="Boosted decision trees for behaviour mining of concurrent programmes",
  journal="CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE",
  year="2017",
  volume="29",
  number="21",
  pages="4268--4289",
  doi="10.1002/cpe.4268",
  issn="1532-0626",
  url="http://onlinelibrary.wiley.com/doi/10.1002/cpe.4268/abstract;jsessionid=609089BF58372A54AE23CD0097729CC2.f02t01"
}
Soubory
Projekty
Automatizovaná formální analýza a verifikace programů se složitými datovými a řídicími strukturami s předem neomezenou velikostí, GAČR, Standardní projekty, GA14-11384S, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
ROBUST - Verifikace a hledání chyb v pokročilém softwaru, GAČR, Standardní projekty, GA17-12465S, zahájení: 2017-01-01, ukončení: 2019-12-31, ukončen
Spolehlivost a bezpečnost v IT, VUT, Vnitřní projekty VUT, FIT-S-14-2486, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru