Detail výsledku

A relational generalization of the Khalimsky topology

ŠLAPAL, J. A relational generalization of the Khalimsky topology. In Combinatorial Image Analysis. Lecture Notes in Computer Science. Lecture Notes in Computer Sciences. Switzerland: Springer, 2017. p. 132-141. ISBN: 978-3-319-59107-0. ISSN: 0302-9743.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

We discuss certain n-ary relations (n > 1 an integer) and
show that each of them induces a connectedness on its underlying set.
Of these n-ary relations, we study a particular one on the digital plane Z2
for every integer n > 1. As the main result, for each of the n-ary relations
studied, we prove a digital analogue of the Jordan curve theorem for the
induced connectedness. It follows that these n-ary relations may be used
as convenient structures on the digital plane for the study of geometric
properties of digital images. For n = 2, such a structure coincides with
the (specialization order of the) Khalimsky topology and, for n > 2, it
allows for a variety of Jordan curves richer than that provided by the
Khalimsky topology.

Klíčová slova

n-ary relation, digital plane, Khalimsky topology, Jordan curve theorem

Rok
2017
Strany
132–141
Časopis
Lecture Notes in Computer Science, roč. 10256, ISSN 0302-9743
Sborník
Combinatorial Image Analysis
Řada
Lecture Notes in Computer Sciences
Vydání
10256
Konference
18th International Workshop on Combinatorial Image Analysis
ISBN
978-3-319-59107-0
Vydavatel
Springer
Místo
Switzerland
DOI
UT WoS
000432061200011
EID Scopus
BibTeX
@inproceedings{BUT142992,
  author="Josef {Šlapal}",
  title="A relational generalization of the Khalimsky topology",
  booktitle="Combinatorial Image Analysis",
  year="2017",
  series="Lecture Notes in Computer Sciences",
  journal="Lecture Notes in Computer Science",
  volume="10256",
  number="10256",
  pages="132--141",
  publisher="Springer",
  address="Switzerland",
  doi="10.1007/978-3-319-59108-7\{_}11",
  isbn="978-3-319-59107-0",
  issn="0302-9743"
}
Pracoviště
Nahoru