Detail výsledku

EMPLOYMENT OF SUBSPACE GAUSSIAN MIXTURE MODELS IN SPEAKER RECOGNITION

MOTLÍČEK, P.; DEY, S.; MADIKERI, S.; BURGET, L. EMPLOYMENT OF SUBSPACE GAUSSIAN MIXTURE MODELS IN SPEAKER RECOGNITION. In Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. South Brisbane, Queensland: IEEE Signal Processing Society, 2015. p. 4445-4449. ISBN: 978-1-4673-6997-8.
Typ
článek ve sborníku konference
Jazyk
angličtina
Autoři
Motlíček Petr, doc. Ing., Ph.D., UPGM (FIT)
Dey Subhadeep
Madikeri Srikanth
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

This paper presents Subspace Gaussian Mixture Model (SGMM)approach employed as a probabilistic generative model to estimatespeaker vector representations to be subsequently used in the speakerverification task. SGMMs have already been shown to significantlyoutperform traditional HMM/GMMs in Automatic Speech Recognition(ASR) applications. An extension to the basic SGMM frameworkallows to robustly estimate low-dimensional speaker vectorsand exploit them for speaker adaptation. We propose a speaker verificationframework based on low-dimensional speaker vectors estimatedusing SGMMs, trained in ASR manner using manual transcriptions.To test the robustness of the system, we evaluate theproposed approach with respect to the state-of-the-art i-vector extractoron the NIST SRE 2010 evaluation set and on four differentlength-utterance conditions: 3sec-10sec, 10 sec-30 sec, 30 sec-60 secand full (untruncated) utterances. Experimental results reveal thatwhile i-vector system performs better on truncated 3sec to 10sec and10 sec to 30 sec utterances, noticeable improvements are observedwith SGMMs especially on full length-utterance durations. Eventually,the proposed SGMM approach exhibits complementary propertiesand can thus be efficiently fused with i-vector based speakerverification system.

Klíčová slova

speaker recognition, i-vectors, subspace Gaussianmixture models, automatic speech recognition

URL
Rok
2015
Strany
4445–4449
Sborník
Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
Konference
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-4673-6997-8
Vydavatel
IEEE Signal Processing Society
Místo
South Brisbane, Queensland
DOI
UT WoS
000427402904111
EID Scopus
BibTeX
@inproceedings{BUT119895,
  author="Petr {Motlíček} and Subhadeep {Dey} and Srikanth {Madikeri} and Lukáš {Burget}",
  title="EMPLOYMENT OF SUBSPACE GAUSSIAN MIXTURE MODELS IN SPEAKER RECOGNITION",
  booktitle="Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing",
  year="2015",
  pages="4445--4449",
  publisher="IEEE Signal Processing Society",
  address="South Brisbane, Queensland",
  doi="10.1109/ICASSP.2015.7178811",
  isbn="978-1-4673-6997-8",
  url="https://ieeexplore.ieee.org/document/7178811"
}
Soubory
Projekty
Centrum excelence IT4Innovations, MŠMT, Operační program Výzkum a vývoj pro inovace, ED1.1.00/02.0070, zahájení: 2011-01-01, ukončení: 2015-12-31, ukončen
Meeting assistant (MINT), TAČR, Program aplikovaného výzkumu a experimentálního vývoje ALFA, TA04011311, zahájení: 2014-10-01, ukončení: 2017-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru