Detail výsledku

Convenient adjacencies for structuring the digital plane

ŠLAPAL, J. Convenient adjacencies for structuring the digital plane. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2015, vol. 75 (2015), no. 1, p. 69-88. ISSN: 1012-2443.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

We study graphs with the vertex set Z^2 which are subgraphs of the 8-
adjacency graph and have the property that certain natural cycles in these graphs
are Jordan curves, i.e., separate Z^2 into exactly two connected components. Of
these graphs, we determine the minimal ones and study their quotient graphs. The
results obtained are used to prove digital analogues of the Jordan curve theorem
for several graphs on Z^2. Thus, these graphs are shown to provide background
structures on the digital plane Z^2 convenient for studying digital images.

Klíčová slova

Simple graph, quotient graph, connected set, digital plane, Jordan curve

Rok
2015
Strany
69–88
Časopis
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, roč. 75 (2015), č. 1, ISSN 1012-2443
Vydavatel
Springer
DOI
UT WoS
000361450200005
EID Scopus
BibTeX
@article{BUT104915,
  author="Josef {Šlapal}",
  title="Convenient adjacencies for structuring the digital plane",
  journal="ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE",
  year="2015",
  volume="75 (2015)",
  number="1",
  pages="69--88",
  doi="10.1007/s10472-013-9394-2",
  issn="1012-2443"
}
Pracoviště
Nahoru