Detail výsledku
Convenient adjacencies on Z^2
        ŠLAPAL, J. Convenient adjacencies on Z^2. Filomat, 2014, vol. 28, no. 2, p. 305-312.  ISSN: 0354-5180.
    
                Typ
            
        
                článek v časopise
            
        
                Jazyk
            
        
                anglicky
            
        
            Autoři
            
        
                Šlapal Josef, prof. RNDr., CSc., ÚM (FSI)
            
        
                    Abstrakt
            
        We discuss graphs with the vertex set Z^2 which are subgraphs of the 8-adjacency graph and
have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate Z^2 into exactly
two connected components. After considering graphs with the usual connectedness, we concentrate on a
graph with a special one.
                Klíčová slova
            
        Digital plane, adjacency graph, connectedness, Jordan curve
                Rok
            
            
                    2014
                    
                
            
                    Strany
                
            
                        305–312
                
            
                    Časopis
                
            
                    Filomat, roč. 28, č. 2, ISSN 0354-5180
                
            
                    Místo
                
            
                    Nis
                
            
                    DOI
                
            
                    UT WoS
                
            
                    000343240200009
                
            
                EID Scopus
                
            
                    BibTeX
                
            @article{BUT104903,
  author="Josef {Šlapal}",
  title="Convenient adjacencies on Z^2",
  journal="Filomat",
  year="2014",
  volume="28",
  number="2",
  pages="305--312",
  doi="10.2298/FIL1402305S",
  issn="0354-5180"
}
                
                Pracoviště
            
        
                Ústav matematiky 
                (ÚM)