Detail projektu
Pokročilé metody nature-inspired optimalizačních algoritmů a HPC implementace pro řešení reálných aplikací
Období řešení: 1. 6. 2018 – 29. 2. 2020
Typ projektu: grant
Kód: LTC18053
Agentura: Ministerstvo školství, mládeže a tělovýchovy ČR
Nature-inspired optimalizace, evoluční algoritmy, výpočetní inteligence, klíčové základní technologie, mezinárodní spolupráce
Vědeckým cílem projektu je navrhnout pokročilé evoluční algoritmy (EA), které budou použitelné v současných komplexních inženýrských optimalizačních a návrhových úlohách. Dalším cílem je tyto algoritmy adaptovat pro různé cílové platformy, ať už pro výkonné GPU (Graphic Processing Unit) a superpočítače nebo naopak pro nízkopříkonové vestavěné systémy. Projekt je rozdělen do tří etap řešení, resp. do tří fází řešení - tzv. pracovních balíčků (WP1 - 3). V první fázi řešení budou navrhovány nové a hybridní evoluční algoritmy, včetně jejich formálního popisu. Ve druhé fázi budou realizovány implementace HPC (High Performance Computing) a vestavěných systémů s důrazem na definovano efektivitu (výpočetní výkon, škálovatelnost, energetickou náročnost algoritmu). V třetí fázi budou řešeny praktické aplikace, v projektu dále popsané jako případové studie. Tato závěrečná část bude dobře dokladovat efektivitu navržených řešení i praktickou užitečnost v kontextu definovaných reálných problémů. Integračním cílem projektu je významně prohloubit existující mezinárodní spolupráci, popř. navázat novou spolupráci výzkumných týmů VUT v Brně zabývajících se evolučními algoritmy s relevantními předními zahraničními pracovišti a realizovat s nimi výzkum vedoucí ke společným publikacím a novým vědeckým výsledkům.
Bidlo Michal, doc. Ing., Ph.D. (UPSY)
Sekanina Lukáš, prof. Ing., Ph.D. (UPSY)
Vašíček Zdeněk, doc. Ing., Ph.D. (UPSY)
2020
- ANSARI, M.; MRÁZEK, V.; COCKBURN, B.; SEKANINA, L.; VAŠÍČEK, Z.; HAN, J. Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers. IEEE Trans. on VLSI Systems., 2020, vol. 28, no. 2,
p. 317-328. ISSN: 1063-8210. Detail
2019
- BADÁŇ, F.; SEKANINA, L. Optimizing Convolutional Neural Networks for Embedded Systems By Means of Neuroevolution. In Theory and Practice of Natural Computing. LNCS 11934. Cham: Springer International Publishing, 2019.
p. 109-121. ISBN: 978-3-030-34499-3. Detail - BIDLO, M. Comparison of Evolutionary Development of Cellular Automata Using Various Representations. Mendel Journal series, 2019, vol. 2019, no. 1,
p. 95-102. ISSN: 1803-3814. Detail - BIDLO, M. Evolution of Cellular Automata Development Using Various Representations. In GECCO '19 Proceedings of the Genetic and Evolutionary Computation Conference Companion. Praha: Association for Computing Machinery, 2019.
p. 107-108. ISBN: 978-1-4503-6748-6. Detail - BIDLO, M.; KORGO, J. Ant Colony Optimisation for Performing Computational Task in Cellular Automata. Mendel Journal series, 2019, vol. 25, no. 1,
p. 147-156. ISSN: 1803-3814. Detail - KOCNOVÁ, J.; VAŠÍČEK, Z. Impact of subcircuit selection on the efficiency of CGP-based optimization of gate-level circuits. In GECCO '19 Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York: Association for Computing Machinery, 2019.
p. 377-378. ISBN: 978-1-4503-6748-6. Detail - KOCNOVÁ, J.; VAŠÍČEK, Z. Towards a Scalable EA-based Optimization of Digital Circuits. In Genetic Programming 22nd European Conference, EuroGP 2019. Cham: Springer International Publishing, 2019.
p. 81-97. ISBN: 978-3-030-16669-4. Detail - KONČAL, O.; SEKANINA, L. Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming. In Genetic Programming 22nd European Conference, EuroGP 2019. Cham: Springer International Publishing, 2019.
p. 98-113. ISBN: 978-3-030-16669-4. Detail
2018
- GROCHOL, D.; SEKANINA, L. Fast Reconfigurable Hash Functions for Network Flow Hashing in FPGAs. In Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engineers, 2018.
p. 257-263. ISBN: 978-1-5386-7753-7. Detail - MRÁZEK, V.; VAŠÍČEK, Z.; SEKANINA, L. Design of Quality-Configurable Approximate Multipliers Suitable for Dynamic Environment. In Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engineers, 2018.
p. 264-271. ISBN: 978-1-5386-7753-7. Detail - SEKANINA, L.; MRÁZEK, V.; VAŠÍČEK, Z. Design Space Exploration for Approximate Implementations of Arithmetic Data Path Primitives. In 25th IEEE International Conference on Electronics Circuits and Systems (ICECS). Bordeaux: IEEE Circuits and Systems Society, 2018.
p. 377-380. ISBN: 978-1-5386-9562-3. Detail