Téma disertační práce

Pokročilé témy strojového učenia

Ak. rok 2024/2025

Školitel: Bieliková Mária, prof. Ing., Ph.D.

Ústav: Ústav počítačové grafiky a multimédií

Programy:
Informační technologie (DIT) - kombinované studium
Information Technology (DIT-EN) - kombinované studium

Strojové učenie je v centre výskumu v oblasti umelej inteligencie. Témam spojeným so strojovým učením sa venuje množstvo výskumníkov v akademickom svete a aj v biznise v prestížnych vedeckých pracoviskách. Riešenia vedeckých výziev sa veľmi rýchlo dostávajú do praxe. Oblasť je veľmi dynamická.

Témy v tejto doméne definujú významné vedecké konferencie, na ktorých sa stretávajú výskumníci z celého sveta (rank A*) ako napríklad ICML (International Conference on Machine Learning), NeurIPS (Advances in Neural Information Processing Systems), IJCAI (International Joint Conference on AI), COLT (Conference on Learning Theory). Témy a ich špecializáciu budú viesť externí mentori.

Zaujímavé výskumné výzvy zahŕňajú témy (ale sa neobmedzujú takto):

  • General Machine Learning (e.g., active learning, clustering, online learning, ranking, reinforcement learning, semi-supervised learning, unsupervised learning)
  • Deep Learning (e.g., architectures, generative models, deep reinforcement learning)
  • Learning Theory (e.g., bandits, statistical learning theory)
  • Optimization (e.g., matrix/tensor methods, sparsity)
  • Trustworthy Machine Learning (e.g., fairness, robustness)

Existuje veľa aplikačných domén, kde sa pokročilé metódy strojového učenia dajú využiť.

Výskum bude doktorand vykonávať v rámci Kempelenovho inštitútu inteligentných technológií (KInIT, https://kinit.sk) v Bratislave pod vedením výskumníkov zo svetovo uznávaných výskumných skupín. Predpokladá sa kombinovaná (externá) forma štúdia a pracovný pomer na plný úväzok v KInIT.

Nahoru