Téma disertační práce

Vývoj neuromarkeru(ů) pro hodnocení závislosti na alkoholu

Ak. rok 2024/2025

Školitel: Malik Aamir Saeed, prof., Ph.D.

Ústav: Ústav počítačových systémů

Programy:
Informační technologie (DIT) - prezenční studium
Informační technologie (DIT) - kombinované studium
Information Technology (DIT-EN) - prezenční studium
Information Technology (DIT-EN) - kombinované studium

Výzkumný problém: Závislost na alkoholu je chronická a komplexní mozková porucha způsobující zničující individuální i sociální problémy. Kromě toho alkohol způsobuje 3,3 milionu úmrtí ročně na celém světě, což je téměř 6 % všech úmrtí. Mnoho z těchto úmrtí je spojeno se závislostí na alkoholu. Proto je důležité prozkoumat metody pro diagnostiku a léčbu závislosti na alkoholu.

Problémy se současnými řešeními: Obvykle se screening a hodnocení problémů souvisejících s alkoholem zakládá hlavně na zprávách z autotestů. Přesnost zpráv o autotestech však byla zpochybněna, zejména u silných pijáků, protože zprávy z autotestů mohou zkreslovat diagnózu kvůli ztrátě paměti pacienta (pacienti nemohou měřit spotřebu alkoholu) a/nebo nečestnému chování. Proto tento výzkum navrhuje vyvinout objektivní a kvantitativní metodu pro detekci závislosti na alkoholu.

Výzvy: Vzhledem k tomu, že závislost na alkoholu vede ke změnám v dynamice mozku, je životně důležité prozkoumat a vyvinout metodu založenou na mozkové aktivitě. Hlavní výzva při vývoji takové objektivní a kvantitativní metody však spočívá v její implementaci pro screening v menších klinických zařízeních. To omezuje vyšetřování na elektroencefalogram (EEG), který je levný, vysoce mobilní a má dobré časové rozlišení. Jiné modality, jako je MRI, PET atd., není možné použít v menších klinických zařízeních.

Téma práce: Se současnými inovacemi v mozkových EEG signálech lze zkoumat mozkové dráhy zapojené do závislosti. V posledních několika desetiletích byl výzkum EEG používán k pochopení komplexních základních procesů spojených s patofyziologií závislosti. Interpretace takových procesů pomocí mozkových sítí pomocí EEG může pomoci nejen při diagnostice závislosti, ale také pomoci při léčbě závislosti. Tento výzkum si klade za cíl vyvinout neuromarkery založené na interpretaci mozkové sítě pomocí EEG. Neuromarker bude zahrnovat extrakci funkcí a odpovídající vývoj modelu strojového učení.

Pár slov o školiteli: Dr. Malik nedávno nastoupil na FIT VUT v Brně. Má desetiletou zkušenost s prací v oblasti zpracování neuro-signálů a neuro-obrazu. V současné době je v procesu zakládání výzkumné skupiny v této oblasti na FIT. Jedná se o multidisciplinární projekt, který bude zahrnovat spolupráci s klinickými lékaři. Jádro projektu však souvisí s IT. Jedná se o vývoj nové metody. Neváhejte mě kontaktovat na malik@fit.vutbr.cz

Nahoru