Detail předmětu

Inteligentní systémy

ISD Ak. rok 2024/2025 letní semestr

Tolerance pro nepřesnost a neurčitost jako základní atribut ISY. Inteligentní systémy založené na kombinacích různých teorií - neuronových sítí, nezřetelných (fuzzy) množin, hrubých (rough) množin a genetických algoritmů: expertní systémy, inteligentní informační systémy, systémy strojového překladu, inteligentní senzorové systémy, inteligentní řídicí systémy, inteligentní robotické systémy.

Okruhy otázek k SDZ

  1. Fuzzy expertní systémy
  2. Znalostní inženýrství s využitím soft-computing
  3. Inteligentní senzorické systémy
  4. Neuronové sítě v inteligentních systémech
  5. Fuzzy řídicí systémy
  6. Neuro-fuzzy řídicí systémy
  7. Hrubé množiny v inteligentních systémech
  8. Genetické algoritmy v inteligentních systémech
  9. Inteligentní roboti
  10. Navigace mobilních robotů

Garant předmětu

Koordinátor předmětu

Jazyk výuky

česky, anglicky

Zakončení

zkouška

Rozsah

  • 26 hod. přednášky
  • 26 hod. projekty

Bodové hodnocení

  • 60 bodů závěrečná zkouška
  • 40 bodů projekty

Zajišťuje ústav

Přednášející

Cvičící

Cíle předmětu

Seznámit studenty s navrhováním inteligentních systémů (řídicích, výrobních ap.), které jsou založené na kombinacích teorií neuronových sítí, fuzzy množin, hrubých množin a genetických algoritmů.
Studenti se důkladně seznámí s principy inteligentních systémů a budou tak schopni navrhovat tyto systémy pro řešení různých praktických problémů.
Podrobný přehled o současném stavu problematiky inteligentních systémů a schopnost využítí získaných poznatků ve vlastním výzkumu.

Požadované prerekvizitní znalosti a dovednosti

Základní poznatky z problematiky umělé inteligence v rozsahu kurzu "Základy umělé inteligence" současného bakalářského studijního programu na FIT. 

Literatura studijní

  • Munakata,T.: Fundamentals of the New Artificial Intelligence, Springer, 2008, ISBN 978-1-84628-838-8
  • Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms, Imperial College Press, 2012, ISBN-13 978-1-84816-681-3
  • Mitchell, H. B.: Multi-Sensor Data Fusion, Springer-Verlag Berlin Heidelberg 2007, ISBN 978-3-540-71463-7
  • Bramer, M.: Principles of Data Mining, Second edition, Springer-Verlag London 2013, ISBN 978-1-4471-4883-8
  • Raza, M. S., Qamar, U.: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications, Springer Nature, 2017, ISBN 978-981-10-4964-4
  • Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., Jenssen, R.:Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysis, SpringerBriefs in Computer Science, 2017, ISBN 978-3-319-70337-4

Osnova přednášek

  1. Úvod, soft computing a ISY
  2. Expertní systémy
  3. Inteligentní informační systémy
  4. Systémy strojového překladu
  5. Vnímání okolního prostředí, inteligentní senzorové systémy
  6. Analýza senzorových dat, vytváření modelů okolního prostředí
  7. Plánování způsobu provedení zadaného úkolu
  8. Řídící systémy s neuronovými sítěmi
  9. Fuzzy řídící systémy
  10. Neuro-fuzzy systémy
  11. Využití rough množin a genetických algoritmů v ISY
  12. Inteligentní robotické systémy
  13. Navigace mobilních robotů

Osnova ostatní - projekty, práce

  • Dva individuální projekty - návrhy inteligentních systémů k řešení konkrétních problémů.

Průběžná kontrola studia

Skupinové konzultace jednou za dva týdny.

Obhajoby projektů, ústní závěrečná zkouška. Nahrazování zameškané obhajoby projektu po dohodě s garantem předmětu.

Zařazení předmětu ve studijních plánech

  • Program DIT, libovolný ročník, povinně volitelný skupina O
  • Program DIT, libovolný ročník, povinně volitelný skupina O
  • Program DIT-EN (anglicky), libovolný ročník, povinně volitelný skupina O
  • Program DIT-EN (anglicky), libovolný ročník, povinně volitelný skupina O
  • Program VTI-DR-4, obor DVI4, libovolný ročník, volitelný
  • Program VTI-DR-4, obor DVI4, libovolný ročník, volitelný
  • Program VTI-DR-4 (anglicky), obor DVI4, libovolný ročník, volitelný
Nahoru