Publication Details

Toroidal Probabilistic Spherical Discriminant Analysis

SILNOVA, A.; BRUMMER, J.; SWART, A.; BURGET, L. Toroidal Probabilistic Spherical Discriminant Analysis. In Proceedings of ICASSP 2023. Rhodes Island: IEEE Signal Processing Society, 2023. p. 1-5. ISBN: 978-1-7281-6327-7.
Czech title
Toroidální pravděpodobnostní sférická diskriminační analýza
Type
conference paper
Language
English
Authors
Silnova Anna, M.Sc., Ph.D. (DCGM)
Brummer Johan Nikolaas Langenhoven, Dr.
Swart Albert du Preez
Burget Lukáš, doc. Ing., Ph.D. (DCGM)
URL
Keywords

speaker recognition, PSDA, Von Mises-Fishe

Abstract

n speaker recognition, where speech segments are mapped to
embeddings on the unit hypersphere, two scoring back-ends are
commonly used, namely cosine scoring and PLDA. We have
recently proposed PSDA, an analog to PLDA that uses Von
Mises-Fisher distributions instead of Gaussians. In this paper,
we present toroidal PSDA (T-PSDA). It extends PSDA with
the ability to model within and between-speaker variabilities
in toroidal submanifolds of the hypersphere. Like PLDA and
PSDA, the model allows closed-form scoring and closed-form
EM updates for training. On VoxCeleb, we find T-PSDA accu-
racy on par with cosine scoring, while PLDA accuracy is infe-
rior. On NIST SRE'21 we find that T-PSDA gives large accu-
racy gains compared to both cosine scoring and PLDA.

Published
2023
Pages
1–5
Proceedings
Proceedings of ICASSP 2023
Conference
2023 IEEE International Conference on Acoustics, Speech and Signal Processing IEEE, Rhodes Island, Greece, GR
ISBN
978-1-7281-6327-7
Publisher
IEEE Signal Processing Society
Place
Rhodes Island
DOI
EID Scopus
BibTeX
@inproceedings{BUT185199,
  author="Anna {Silnova} and Johan Nikolaas Langenhoven {Brummer} and Albert du Preez {Swart} and Lukáš {Burget}",
  title="Toroidal Probabilistic Spherical Discriminant Analysis",
  booktitle="Proceedings of ICASSP 2023",
  year="2023",
  pages="1--5",
  publisher="IEEE Signal Processing Society",
  address="Rhodes Island",
  doi="10.1109/ICASSP49357.2023.10095580",
  isbn="978-1-7281-6327-7",
  url="https://ieeexplore.ieee.org/document/10095580"
}
Files
Back to top