Publication Details
Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data
JAROŠ, M.; JAROŠ, J. Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data. In Job Scheduling Strategies for Parallel Processing. Lecture Notes in Computer Science, LNCS 13592. Virtual Event: Springer Nature Switzerland AG, 2023. p. 152-171. ISBN: 978-3-031-22697-7.
Czech title
Optimalizace spoutěcích parametrů tvarovatelných řetězců úloh využívající neúplné datové sady škálování
Type
conference paper
Language
English
Authors
Keywords
task graph scheduling, workflow, genetic algorithm, moldable
tasks, makespan estimation, performance scaling interpolation
Abstract
Complex ultrasound workflows calculating the outcome of ultrasound procedures
such as neurostimulation, tumour ablation or photoacoustic imaging are composed
of many computational tasks requiring high performance computing or cloud
facilities to be computed in a sensible time. Most of these tasks are written as
moldable parallel programs being able to run across various numbers of compute
nodes. The number of compute nodes assigned to particular tasks strongly affects
the overall execution and queuing times of the whole workflow (makespan) as well
as the total computational cost.
Published
2023
Pages
152–171
Proceedings
Job Scheduling Strategies for Parallel Processing
Series
Lecture Notes in Computer Science, LNCS 13592
Volume
13592
Conference
25th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2022), Lyon, France, FR
ISBN
978-3-031-22697-7
Publisher
Springer Nature Switzerland AG
Place
Virtual Event
DOI
UT WoS
000972597400009
EID Scopus
BibTeX
@inproceedings{BUT180221,
author="Marta {Jaroš} and Jiří {Jaroš}",
title="Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data",
booktitle="Job Scheduling Strategies for Parallel Processing",
year="2023",
series="Lecture Notes in Computer Science, LNCS 13592",
volume="13592",
pages="152--171",
publisher="Springer Nature Switzerland AG",
address="Virtual Event",
doi="10.1007/978-3-031-22698-4\{_}8",
isbn="978-3-031-22697-7",
url="https://www.fit.vut.cz/research/publication/12691/"
}
Files