Publication Details

Traffic Surveillance Camera Calibration by 3D Model Bounding Box Alignment for Accurate Vehicle Speed Measurement

SOCHOR, J.; JURÁNEK, R.; HEROUT, A. Traffic Surveillance Camera Calibration by 3D Model Bounding Box Alignment for Accurate Vehicle Speed Measurement. COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, vol. 2017, no. 161, p. 87-98. ISSN: 1077-3142.
Czech title
Kalibrace dopravní dohledové kamery s využitím zarovnání 3D modelu pro přesné měření rychlosti vozidel
Type
journal article
Language
English
Authors
Sochor Jakub, Ing., Ph.D.
Juránek Roman, Ing., Ph.D. (DCGM)
Herout Adam, prof. Ing., Ph.D. (DCGM)
Keywords

camera calibration; fully automatic; traffic surveillance; bounding box alignment; vanishing point detection

Abstract

In this paper, we focus on fully automatic traffic surveillance camera calibration, which we use for speed measurement of passing vehicles. We improve over a recent state-of-the-art camera calibration method for traffic surveillance based on two detected vanishing points. More importantly, we propose a novel automatic scene scale inference method. The method is based on matching bounding boxes of rendered 3D models of vehicles with detected bounding boxes in the image. The proposed method can be used from arbitrary viewpoints, since it has no constraints on camera placement. We evaluate our method on the recent comprehensive dataset for speed measurement BrnoCompSpeed. Experiments show that our automatic camera calibration method by detection of two vanishing points reduces error by 50% (mean distance ratio error reduced from 0.18 to 0.09) compared to the previous state-of-the-art method. We also show that our scene scale inference method is more precise, outperforming both state-of-the-art automatic calibration method for speed measurement (error reduction by 86% -- 7.98km/h to 1.10km/h) and manual calibration (error reduction by 19% -- 1.35km/h to 1.10km/h). We also present qualitative results of the proposed automatic camera calibration method on video sequences obtained from real surveillance cameras in various places, and under different lighting conditions (night, dawn, day).

Published
2017
Pages
87–98
Journal
COMPUTER VISION AND IMAGE UNDERSTANDING, vol. 2017, no. 161, ISSN 1077-3142
DOI
UT WoS
000410718600009
EID Scopus
BibTeX
@article{BUT144444,
  author="Jakub {Sochor} and Roman {Juránek} and Adam {Herout}",
  title="Traffic Surveillance Camera Calibration by 3D Model Bounding Box Alignment for Accurate Vehicle Speed Measurement",
  journal="COMPUTER VISION AND IMAGE UNDERSTANDING",
  year="2017",
  volume="2017",
  number="161",
  pages="87--98",
  doi="10.1016/j.cviu.2017.05.015",
  issn="1077-3142",
  url="https://www.fit.vut.cz/research/publication/11455/"
}
Files
Back to top