
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

UNSUPERVISED EVALUATION OF SPEAKER
RECOGNITION SYSTEM
EVALUACE SYSTÉMU NA ROZPOZNÁVÁNÍ MLUVČÍHO NA NEZNÁMÝCH DATECH

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ ODEHNAL
AUTOR PRÁCE

SUPERVISOR Ing. PAVEL MATĚJKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Odehnal Ondřej
Programme: Information Technology
Title: Unsupervised Evaluation of Speaker Recognition System
Category: Speech and Natural Language Processing
Assignment:

1. Explore current state of the art systems for speaker verification based on DNN and different
clustering techniques.

2. Propose a methods for automatic control of audio quality and recording quality in the
evaluation set (length of recording, Signal to Noise Ratio, recording similarity, ...).

3. Propose a method for unsupervised evaluation of the speaker verification system on data
without annotation.

4. Evaluate your method and compare with the results on the set where the annotation is
known.

Recommended literature:
D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, "X-Vectors: Robust DNN
Embeddings for Speaker Recognition," 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 5329-5333, doi:
10.1109/ICASSP.2018.8461375.
Josef Slavíček and Albert Swart and Michal Klčo and Niko Brümmer, The Phonexia
VoxCeleb Speaker Recognition Challenge 2021 System Description,
https://arxiv.org/abs/2109.02052, 2021.

Requirements for the first semester:
Body 1 až 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Matějka Pavel, Ing., Ph.D.
Consultant: Klčo Michal, Ing., Phonexia
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 1, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24991/2021/xodehn09 Page 1/1

Abstract
The context of this thesis is the state-of-the-art system for speaker identification (SID)
based on the DNN with x-vector embeddings. This thesis aims to propose and experimen-
tally assess several techniques for evaluating the SID system using unlabelled datasets. For
this purpose, discriminative embedding is created for every recording in the dataset. These
embeddings are used to cluster the recordings and thus create pseudo-labels corresponding
to different clusters. The SID system evaluation is based on equal error rate (EER), which
uses these pseudo-labels. We proposed several unsupervised learning algorithms to achieve
this; K-means, Gaussian mixture models (GMM), and agglomerative hierarchical cluster-
ing (AHC). After thorough testing, the K-means model with the Silhouette value showed
the best results. This method achieved an estimate of 5.72 % EER with the reference EER
equal to 5.15 % on SITW dev-core-core. Similar results were observed on the SITW eval-
core-core, where the estimated EER is equal to 5.86 % and the reference 5.08 %. The dif-
ference between estimated and reference EER is 0.57 % for the dev-core-core and 0.78 %
for the eval-core-core. Another series of experiments were conducted on NIST SRE16 and
VoxCeleb1 to verify robustness of the proposed method. Generally, the developed testing
process had an estimated error of around ±1 % in all test databases, an excellent result for
an unsupervised learning technique.
Abstrakt
Tato práce je vystavěna nad moderním systémem pro rozpoznávání mluvčího (SID) za-
loženého na x-vektorech. Cílem bakalářské práce je navrhnout a experimentálně vyhodnotit
techniky pro evaluaci SID systému za použití audio nahrávek bez anotace tj. bez znalosti
mluvčího. Pro tento účel je z každé nahrávky bez anotace vytvořen embedding. Ty se poté
používají pro shlukování nahrávek a následné vytvoření pseudo-anotací. Na těchto ano-
tacích se SID systém evaluuje pomocí equal error rate (EER) metriky. Za účelem vytvoření
pseudo-anotací byly navrženy tyto shlukovací algoritmy učení bez učitele: K-means, Gaus-
sian mixture models (GMM) a aglomerativní shlukování. Po testování vyšel jakožto nejlepší
experimentální postup K-means se Silhouette metrikou, která používá kosinovou podobnost
jako míru vzdálenosti. Nejlepší metoda dosáhla 5, 72 % EER s referenčním EER = 5, 15 %
, které bylo spočítané se znalostí anotace na části datasetu SITW dev-core-core. Podobné
výsledky byly získány na části datasetu SITW eval-core-core s odhadnutým EER = 5, 86 %
a referenčním 5, 08 %. Rozdíl mezi hodnotami tvoří 0, 57 % pro eval-core-core a 0, 78%
pro dev-core-core. Další testy na NIST SRE16 a VoxCeleb1 datasetech byly provedeny za
účelem ověření správnosti navrženého postupu. Obecně se dá říct, že navržený testovací
postup měl chybu přibližně ±1 %, což je poměrně dobrý výsledek pro algoritmus učení bez
učitele.
Keywords
speaker recognition, speech verification, unsupervised learning, clustering, evaluation, GMM,
AHC, EER, elbow method, K-means
Klíčová slova
rozpoznávání mluvčího, verifikace mluvčího, učení bez učitele, shlukování, evaluace, GMM,
AHC, EER, K-means
Reference
ODEHNAL, Ondřej. Unsupervised Evaluation of Speaker Recognition System. Brno, 2022.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Pavel Matějka, Ph.D.

Rozšířený abstrakt
Tato práce se zabývá vývojem, implementací a testováním techniky pro evaluaci systému
na rozpoznávání mluvčího (SRE) na neznámých datech. Evaluace takového systému stan-
dardně probíhá na anotovaných datech, kde je předem jasné, kdo ve které nahrávce mluví.
Avšak v praxi tohoto není vždycky možné dosáhnout, neboť tvorba takového datasetu je
časově i finančně náročná. Ovšem velká část zákazníků, kteří chtějí SRE využívat, mají
k dispozici velké množství audio dat, které nejsou anotované. Kdyby existoval způsob, jak
otestovat SRE systém na těchto neznámých datech, tak by se otevřel přístup k velkému
množství testovacích dat a bylo by tak možné je využít pro evaluaci ještě před tím, než
bude SRE systém nainstalován v produkčním prostředí.

Jakožto SRE systém je v této práci použit Phonexia SID [1]. Ten získává z řeči tzv. em-
bedding, který je diskriminační pro daného mluvčího a používá se pro jejich rozpoznávání
či verifikaci. Embedding extraktor, který je použit v této práci, je vystavěn na x-vector ar-
chitektuře [2]. Avšak metodika navrhnutá v této práci se dá využít i v systémech založených
na jiné architektuře.

Pro evaluaci systému na neznámých datech je potřeba prvně vytvořit pro každý embed-
ding, který reprezentuje jednu audio nahrávku, nějakého pseudo-mluvčího. Pro tento proces
jsme využili shlukovací algoritmy, které uskupí data do shluků. Každý shluk reprezen-
tuje jiného pseudo-mluvčího pro každý embedding, který je součástí tohoto shluku. Takto
vytvořená anotace se pak použijí pro výpočet metriky EER, která je standardní mírou
používanou v biometrických systémech. Ale předtím než se vypočítá EER, tak je potřeba
odhadnout, kolik shluků v datech skutečně je a ověřit, jestli dané shlukovací algoritmy us-
pořádali data adekvátně, tak aby reprezentovali skutečné uspořádání dat. Pro to využíváme
sérii čtyř různých metrik a jejich závislosti na počtu shluků. V grafu vykresleném pomocí
těchto metrik se objevuje tzv. loket podle kterého se dá odhadnout optimální počet shluků.
Hledání tohoto bodu může být poměrně složité a nerozhodné, proto jsme využili algorit-
mus Kneedle [3], který tuto činnost automatizuje. S takto odhadnutými shluky je poté
možné vypočítat metriku EER a porovnat ji s referenční, kde dopředu víme, od koho který
embedding pochází.

Pro shlukovací analýzu jsme využili tyto algoritmy: K-means, Gaussian mixture models
(GMM) a také aglomerativní shlukování (AHC) s úplnou a průměrovací spojovací funkcí.
Bylo zjištěno, že se nejlépe chová K-means, protože shluky vytvořené tímto algoritmem ne-
jvíce odpovídají realitě. AHC s úplnou spojovací funkcí trpí fenoménem nazvaným řetězení,
kde se objeví jeden velký shluk, který začne pohlcovat další. Naopak AHC s průměrovací
spojovací funkcí tvořil velké množství shluků, které měli jen jednoho člena, a to u dat, která
podle reference žádný takový shluk neobsahovaly.

Jakožto evaluační metriky shlukovací analýzi byla zvolena čtveřice; EER, Silhouette
hodnota, Calinski-Harabasz (CH), a Davies-Bouldin (DB) index. Nejlepší podle experi-
mentů vychází Silhouette hodnota, kde bylo vidět zřetelné maximum, které bylo zvoleno
jako loket. Podle EER se pokaždé určil vyšší počet shluků, tato metrika by potřebovala
optimalizovat pro daný problém. CH a DB index u některých datasetů ukázali zřetelné
lokální minimum nebo maximum v místě reálného počtu mluvčích, ale u jiných ne, proto
je dobré je využívat jen v kombinaci s předešlými metrikami.

Vývoj evaluační metody nejprve extenzivně probíhal na datasetu SITW, kde jakožto
nejlepší metrika byl algoritmus K-means se Silhouette hodnotou, ta se pak použila i pro
testování na dalších datastech. Takto odhadnuté EER bylo 5, 72 % s dev-core-core testovací
podmnožinou, což je poměrně dobrý výsledek vzhledem k tomu, že EER vypočítané se

znalostí mluvčích v nahrávkách bylo 5, 16 %. Na testovací podmnožině SITW eval-core-
core vyšlo EER = 5, 86 % a referenční EER = 5, 08 %.

Další použité datasety byly NIST SRE16 a VoxCeleb1, na kterých bylo experimentálně
odhadnuto EER s hodnotami 2, 40 % a 3, 28 %, respektive. Referenční hodnoty EER vyšli
2, 81 % a 3, 86%. Vzhledem k tomu, že se jedná o odhad metodou strojového učení bez
učitele, tak jsou to velmi dobré výsledky. Obecně se dá říct, že se odhad EER od reálné
hodnoty průměrně lišil o ±1 %.

Pro další zlepšení výsledků je možné použít jiné metriky, nebo shlukovací algoritmy jako
je X-means [4] a G-means [5], které sami odhadují počet shluků. Další experimenty by měli
také prozkoumat, jaký vliv hraje na evaluaci systému na neznámých datech poměr šumu
k řeči (SNR), nebo celková délka řeči v audio nahrávce.

Unsupervised Evaluation of Speaker Recognition
System

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Pavel Matějka, Ph.D. The SID system and other supplemen-
tary information were provided by Ing. Michal Klčo from Phonexia. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Ondřej Odehnal

May 11, 2022

Acknowledgements
I would like to sincerly thank my supervisor Ing. Pavel Matějka, Ph.D. for his support,
advice, and helpful remarks while working on this thesis. In addition, I would like to thank
Phonexia and Ing. Michal Klčo who provided me with valuable advices, audio datasets and
the Phonexia SID system which was used in this thesis.

Contents

1 Introduction 4

2 Theoretical Introduction 6
2.1 Speaker Recognition . 6
2.2 Speech Feature Extraction . 7

2.2.1 MFCC – Mel Frequency Cepstral Coefficient 8
2.2.2 FBANK Features . 9

2.3 VAD – Voice Activity Detection . 9
2.4 DNN – Deep Neural Network . 10
2.5 x-vector Extraction . 11
2.6 Scoring Backend . 12

2.6.1 Score Normalization . 12
2.6.2 LDA – Linear Discriminant Analysis 13
2.6.3 PLDA – Probabilistic Linear Discriminant Analysis 14

2.7 Filtering – Automatic Control of Audio Quality 16
2.7.1 Speech signal length . 16
2.7.2 SNR – Signal-to-noise ratio . 16
2.7.3 PESQ – Perceptual Evaluation of Speech Quality 16

2.8 Clustering – Unsupervised Learning . 17
2.8.1 Curse of Dimensionality . 17
2.8.2 PCA – Principal Components Analysis 18
2.8.3 K-means . 20
2.8.4 GMM – Gaussian Mixture Model . 23
2.8.5 AHC – Agglomerative Hierarchical Clustering 25
2.8.6 Comparison of Clustering Algorithms 26

2.9 Evaluation Metrics and Criteria . 27
2.9.1 EER – Equal Error Rate . 27
2.9.2 Elbow Method . 28
2.9.3 The Silhouette Score . 29
2.9.4 Calinski-Harabasz (CH) score . 30
2.9.5 Davies-Bouldin (DB) score . 31
2.9.6 Other Notable Methods . 31

3 Datasets 32
3.1 SITW – Speakers in the Wild . 32
3.2 NIST SRE16 . 33
3.3 VoxCeleb1 . 34
3.4 Datasets Summary . 36

1

4 Experiments 37
4.1 Experimental Setup . 37

4.1.1 SID System . 37
4.1.2 Clustering Algorithms . 38

4.2 Evaluation Method Development . 39
4.2.1 Baseline . 39
4.2.2 Embeddings Preprocessing . 41
4.2.3 Clustering and Evaluation . 42

4.3 Testing on Other Datasets . 52
4.3.1 SITW eval-core-core . 55
4.3.2 SRE16 yue . 57
4.3.3 SRE16 tg . 59
4.3.4 VoxCeleb1 . 61

5 Conclusion 63
5.1 Summary . 63
5.2 Future work . 64

Bibliography 65

A Used Software and Libraries 70

2

Nomenclature

Linear Algebra

A Matrix is written in bold capital letters

𝐴𝑖𝑗 j-th element of the i-th matrix

𝑥 Vectors or observations are written in small letters

||𝑥|| Vector length

�̂� ℓ2-Normalized vector �̂� = 𝑥
||𝑥||

𝑥𝑖𝑗 j-th component or feature of the i-th vector

𝑋 Vector features are denoted with capital letters

Abbreviations

AI Artificial Inteligence

ASR Automatic Speech Recognition

DNN Deep Neural Network

EER Equal Error Rate

GMM Gaussian Mixture Model

LDA Linear Discriminant Analysis

MFCC Mel Frequency Cepstral Coefficient

ML Machine Learning

PCA Principal Component Analysis

PLDA Probabilistic Linear Discriminant Analysis

SID Speaker Identification

SITW Speakers in the Wild

SRE Speaker Recognition

VP Voice Print

3

Chapter 1

Introduction

With the arrival of modern communication technologies, there has been a shift in the way
humans interact. In some areas, in-person communication has been replaced by calls or
other voice technologies. This trend has developed because this type of interaction is fast, in-
expensive, and convenient. As such, banks, insurance companies, and retail finance quickly
adopted them to communicate with their broad clientele. However, these technologies have
weaknesses that criminals have exploited. Several layers of security have been added, such
as various identification details or passwords, to prevent fraud and scams. The heightened
security results in additional operational costs and time to authenticate clients, yet there is
a unique medium suitable for authentication which we can easily share and that is difficult
to fabricate or mimic – our own speech. In recent years, the so-called voice biometry or
speaker recognition (SRE) systems have been successfully deployed to help companies verify
their clients over the phone. The state-of-the-art speaker recognition technology can rec-
ognize speakers based on their voice in just three seconds. The speaker verification process
can take place without clients even noticing, which leads to a better customer experience
and increases account security.

In addition to the seamless voice authentication, the solution helps companies comply
with various security regulations and shorten the authentication phase of an average call
by 30+ seconds, leading to a significant cost reductions for the contact center [6].

So far, only the use of speaker verification for security purposes has been described.
However, this technology can be used for different purposes, e.g. identifying criminals over
a wide range of recordings, conversational AI platforms that can easily identify the person
who is speaking, or other interactive voice response systems which can provide a more
personalized experience.

Modern speaker recognition systems are language independent. The uniqueness of hu-
man voice characteristics makes it possible that even though someone tries to speak in a dif-
ferent language or accent, they are recognized anyway. This also means that the speaker
does not need to say a specific sentence or word to be recognized successfully. Moreover,
this technology is channel independent and works with various sources, such as phone calls,
YouTube videos, eavesdropping recordings, and other types of audio media [7].

The performance of the speaker recognition system is evaluated on labeled data, i.e. we
know who is speaking in which recording. Although, when the system is used in the
production environment, it is not always possible to obtain a labeled dataset from the
customer. This makes it impossible to evaluate it under the specific conditions of this work
environment. Creating such a testing dataset is time-consuming and financially costly.
Nevertheless, it is often the case that the customer has a lot of unlabeled data collected

4

throughout their operations. It would be beneficial to analyze the collected data to evaluate
the system on a customer-specific dataset.

Therefore, the aim of this thesis is to carry out experiments and discover possible ways
to evaluate SRE systems on unlabeled, or, in other words, unsepervised data. For that, the
speaker recognition system is introduced in Sections 2.1–2.6 followed by Section 2.8 deal-
ing with clustering which is a machine learning technique, used to create pseudo-labels
for unsupervised system evaluation. The evaluation of clustering algorithms and these
pseudo-labels is explained in the next section 2.9, most notably equal error rate (EER),
which is a standard measure used in biometric systems and also a main measure used in
this thesis. Chapter 3 briefly introduces the datasets used and their testing conditions.
Chapter 4 describes the experiments. It contains Section 4.1 on experimental setup, unsu-
pervised technique development on a part of SITW dataset in Section 4.2 and evaluation
on other dataset in Section 4.3. The results are summarized and discussed in the last Chap-
ter 5 with reference to future work. This approach was developed and tested on Phonexia
SID system [1], nonetheless, it is meant to be system-invariant.

5

Chapter 2

Theoretical Introduction

2.1 Speaker Recognition
Speaker recognition (SRE) is a process of recognizing a person based on their voice record-
ing. Similarly to fingerprints, it is nearly impossible to have two people with the same
voice. This uniqueness arises from both the physical and the learned parts. Every indi-
vidual has a different physical structure of their speech organs, which functions as voice
modulators – larynx – or signal filters – pharynx, tongue, nasal cavity, and other parts of
voice production. In addition, every speaker has a distinct speaking habit, such as accent,
pronunciation, intonation, and speech rhythm [8]. SRE applications can be divided into
four main categories [1]:

• Speaker Verification – which can be used in banks to verify that the customer who
calls the bank is the person he claims to be. This verification approach is also used
in Voice-as-a-Password systems, adding additional layer of security to multifactor
authentication over the telephone.

• Speaker Identification – where we want to know whose voice is this from a pool of
people. A great example is an entrance access to the building.

• Speaker Search – a case where we are looking for the occurrence of a specific speaker
in a large number of audio recordings.

• Diarization – technique for partitioning audio or video recordings to classes corre-
sponding with speaker identity or, in short, a task of deciding who is speaking when.

The application of this system can be categorized by knowledge of the spoken text into;
text-dependent or text-independent. This thesis considers only text-independent recognition.

6

Audio

Preprocessing VADFeature
Extraction

Embedding
extractor

Scoring
backend

Frame level Utterance level

Score

Figure 2.1: Overview of the processing pipeline of the SRE system.

The whole process of SRE starts with sampling the raw audio. This audio is used as
input to the SRE processing pipeline shown in Figure 2.1, which works on two different
levels. The frame level produces features (FBANK, MFCC) processed and aggregated on
an utterance level. After all the audio is processed, the final product of this stage is single
embedding. It is a vector used to represent the specific recording and speaker. These
embeddings are used to compare two recordings, yielding a score that is a single positive
or negative number that represents the likelihood that the same speaker will be present in
these two recordings. The higher the score, the higher the likelihood.

The processing pipeline in Figure 2.1 can be divided into two parts. The first part, com-
monly referred to as the frontend, starts by processing the audio and ends with embedding
from the embedding extractor. The second part, the scoring backend, consists of processing
the embedding and obtaining a score.

2.2 Speech Feature Extraction
The extracted speech features are ideally discriminative for each speaker and robust to
noise in the environment and other distortions, and are relatively simple to measure from
an acoustic signal. The acoustic signal of a speech is information-rich. However, it contains
various information that has little to no relevance to speaker recognition. Furthermore,
we have a different sense of distance between frequencies. Physiological and psychological
studies of human speech and auditory systems were used to develop the extraction of
speech characteristics [9]. Feature extraction typically starts with applying a pre-emphasis
filter. This filter amplifies higher frequencies. The signal is then cut into small segments
(frames) by windowing. The bell-shaped Hamming-window function is commonly used for
this process, usually with a window length of 20–25 ms and a time change of 10 ms. This
process is illustrated in Figure 2.2. Such a window length is enough to consider the segment
spectrum relatively stationary, and the time shift enables us to capture the dynamics among
frames.

7

Frame width
20–25 ms

Frame shift
10 ms

Hamming window

16
0–

20
0

fe
at

ur
es

sp

ee
ch

 fr
am

e

Figure 2.2: Windowing of an audio with 20–25 ms frame width and 10 ms time shift. Each
frame is processed by the Hamming window obtaining speech frames with 160–200 features
depending on the frame width.

The final features should be independent of each other, making it easier to develop
machine learning (ML) models. Furthermore, the number of features should be relatively
low due to the curse of dimensionality phenomena (see Section 2.8.1), as the number of
training samples required increases exponentially with the number of features. Such features
are explained in the following subsections. Another distinct approach explained in [10] is to
use the raw waveform to give more freedom to neural networks, potentially allowing better
capture of important narrow-band speaker characteristics such as pitch and formants.

2.2.1 MFCC – Mel Frequency Cepstral Coefficient

Mel Frequency Cepstral Coefficients (MFCCs) [11] are commonly used as features in au-
tomatic speaker recognition and speech recognition tasks. The extraction pipeline for a
single MFCC vector is shown in Figure 2.3. It starts with applying a short-term Discrete
Fourier Transform (DFT) to obtain the magnitude spectrum. This is followed by the use
of the Mel filterbank, which is a set of triangular functions based on the Mel scale [12].
This is a perceptual scale of pitches, judged by listeners to be equal in distance from each
other, and is related to the Mel frequency which has a relation to the original frequency
𝑓 as 𝑓𝑀𝑒𝑙(𝑓) = 2595 log

(︁
1 + 𝑓

700

)︁
. The logarithm of the Mel spectrum is then reduced as

well as decorrelated using the Discrete Cosine Transform (DCT) to an optimal number of
coefficients called MFCC. The zeroth coefficient, which represents the average log-energy
of the input signal, is often excluded because it only carries little speaker-discriminative in-
formation. Traditional systems for speech recognition use 8–13 coefficients, and for speaker
recognition 12–20.

8

Short Term
DFT

Magnitude
spectrum Mel

frequency
filter bank

log

Mel
spectrum Discrete

cosine
transform

(DCT)

M
FC

C

FBANK

Figure 2.3: Extraction of MFCC and FBANK from a single speech frame

To further enhance the information collected from this process, derivatives are added
to the static MFCC single speech frame to provide dynamic information on the power
spectrum. The first-order derivative cepstrum can be expressed as

Δ𝑖 =

∑︀𝑇
𝜏=1 𝜏(𝑐𝑖+𝜏 − 𝑐𝑖−𝜏)

2
∑︀𝑇

𝜏=1 𝜏
2

(2.1)

where 𝑇 is the size of the width of the context, 𝜏 is the delay in the frame, and 𝑐𝑖 is
the 𝑖th frame of the vector of the basic cepstrum coefficient. This derivative is called the
delta cepstrum Δ𝑖. The second-order derivative ΔΔ𝑖 (acceleration) is obtained similarly
to (2.1), with the difference of using Δ𝑖 instead of 𝑐𝑖. Both derivatives are used in modern
SRE systems, increasing the number of single-frame MFCCs threefold. These coefficients
can then be used as input in ML algorithms, such as deep neural networks (DNNs). Never-
theless, deltas are not used in some DNN architectures, notably time-delay neural networks
(TDNNs), which use time delays to capture temporal patterns in speech signals.

2.2.2 FBANK Features

Another approach is to use the FBANK features, which are calculated similarly to the
MFCC coefficients. They are extracted as logarithmic Mel-filter bank channel output, as
shown in Figure 2.3. Typically 20-80 of these coefficients are used in modern SRE systems.
Since FBANK features do not use deltas, they are generally used in DNNs that are designed
to capture dynamic patterns, such as TDNNs.

2.3 VAD – Voice Activity Detection
Voice Activity Detection (VAD) is an important preprocessing stage of many systems that
work with speech. It detects the presence or absence of human speech in frames from the
analyzed utterance, and thus filters unwanted sections which provide little to no information
about speaker or speech. This is beneficial for two reasons. First, a computational time and
resources saving – the frames without speech are not further porcessed. Second, it helps to
start and stop voice-triggered services. In SRE there are several approaches to VAD; they
can be summarized as follows:

1. Extract features from noisy signal. (there might be a noise reduction stage)

2. Apply classification rule to determine if the section contains speech or non-speech.

The classification rules for VAD are various ranging from hidden Markow model (HMM),
Gaussian mixture model (GMM) to neural networks (NN). The modern approach is to use

9

the NN that was trained for this task from selected features on a large dataset. Previous
methods typically used signal energy thresholding. VAD is aimed at being resource-leight-
weight, since its mostly used as a fast preprocessing step.

2.4 DNN – Deep Neural Network
The deep neural network (DNN) is an artificial neural network composed of several lay-
ers, sometimes considered a stacked neural network, and is used to obtain the x-vectors
explained in more detail in the following Section 2.5. In recent years, it has been progres-
sively gaining popularity as an alternative to i-vectors1 [13] for speaker recognition, and
x-vectors have de facto become a new standard in SRE. As mentioned above, the neural
network consists of several layers and each layer consists of the same components: neurons,
synapses, weights, biases, and activation functions. These components can be viewed as
simple functions that together in DNN can model complex non-linear relationships. Extra
layers of such components lead to the composition of lower-layer features, potentially mod-
eling complex data. There is a wide range of DNN architectures; each of them is successful
in specific domains. Some of the notable ones are introduced below:

• Feed-Forward DNN – the flow of information is unidirectional without looping
back [14].

• Recurrent Neural Networks (RNN) – the data can flow in any direction, intro-
duce loops in networks. They are quite effective in language modeling [15].

• Convolutional Neural Network (CNN) – convolves the input of previous lay-
ers with convolution kernels or filters that slide along the input features. They are
used in automatic speech recognition (ASR) [16], SRE systems, acoustic modeling, or
computer vision.

• Residual Neural Network (ResNet) – introduces residual block that utilizes a
technique called skip connections that skips several layers of connections (typically
up to three layers) and connects directly to the residual block output. ResNet is made
up of several of these blocks stacked together. This type of DNN is popular in ASR,
SRE systems [17], and computer vision.

• Time-Delay Neural Network (TDNN) – in TDDN the output of nodes from
a different time step can be used as input for forward nodes. This type of network
found a number of successful applications in speech, because in its nature it can
capture dynamic information. TDDNs are nicely explained in this blog post [18].

These architectures can be combined to provide better efficiency, such as the residual con-
volutional neural networks used in SRE [19].

The topic of DNNs is a wide research area and contains much more than what is
described in this section, which provided a brief overview of this topic, a detailed explanation
is out of the scope of this thesis.

1In comparison to x-vectors, i-vectors are based on GMM, training is unsupervised and are more versetile.
An i-vector extractor system can be used in a broader variety of applications. An x-vector extractor is trained
supervised toward a specific application.

10

2.5 x-vector Extraction
One approach to extract discriminatory speech embeddings from speech features using DNN
are the x-vectors introduced in [2] based on previous work [20]. As shown in Figure 2.4, the
DNN is divided into a frame level and an utterence level. The network typically consists of
several hidden layers followed by a statistical pooling layer. This layer is used to aggregate
the output of previous layers over time, compute their average and standard deviation, and
forward this pooled information to the next layer. The statistics aggregated at the frame

Frame
level

Output:

Temporal pooling layer

Utterence
levelEmbedding

Loss Function (Softmax)

Speech
Features

Input:

Hidden
layers

Figure 2.4: DNN architecture with several hidden layers followed by temporal pooling
layer which aggregates their output and passes it to final hidden layer. Linear output layer
produces the speaker embedding. Last layer is used only during training.

level are then propagated at an utterance level to a final hidden layer, succeeded by a linear
layer that produces final speaker embedding – x-vector. The last layer is used for training
purposes only and is discarded afterward.

The network is commonly trained with the softmax function, such as the ensemble ad-
ditive margin softmax proposed in [21]. The objective function works to maximizes the
between-speaker and minimizes the within-speaker variances, so the final embeddings are in
the best case close together if they are extracted from the same speaker and, as far as possi-
ble, if from a different speaker. Backpropagation is performed with a parallelized stochastic

11

gradient descent and angular margin loss. See [20] for a more detailed explanation. Modern
x-vector extractors use the ResNet-based deep neural network architecture [22].

Robust x-vector extractors are trained using a wide range of datasets (private or public)
consisting of different speaker groups such as age, sex, language, etc. To achieve better
performance, artificial noise, music, or revarberation are added to the training data.

2.6 Scoring Backend
Scoring backend models provide a way to compare embeddings and get results. It is usually
based either on cosine similarity explained in Section 2.8.3 or on a modification of PLDA
described in Section 2.6.3. Before applying these algorithms, the embeddings are typically
pre-processed with mean normalization, ℓ2-normalization, and feature dimensionality re-
duction. Generally, for a smaller number of features (less than or equal to 256), LDA is
used to reduce their dimension. However, it does not work well with too many features;
this is the result of curse of dimensionality phenomena introduced in Section 2.8.1. To
avoid this, PCA explained in Section 2.8.2 usually precedes LDA and reduces dimension to
a suitable number for LDA, for example, from 1028 to 256. Algorithm 1 summarizes the
version of the scoring backend used in the experiments.

Algorithm 1 Scoring backend algorithm – vpcompare SID model XL4
1: Mean normalization – subtract mean vector, calculated on a training dataset, from

embeddings.
2: Apply ℓ2 normalization on 256 feature embeddings.
3: LDA dimensionality reduction from 256 features to 128.
4: Mean Normalization of 128 feature embeddings. Mean vector was calculated on a train-

ing dataset.
5: Repeat step 2 on 128 feature embedding.
6: Calculate the cosine similarity. (or GPLDA)
7: Shift and scale to obtain the score.

The result of the scoring backend is a single number – score. It tells us how likely
two embeddings are coming from the same speaker. The decision threshold is adjusted to
meet the requirements for the use of SID. For example, it is lower for criminalists searching
through numerous voice recordings to find a criminal, and it is higher for banks and other
risk-sensitive applications. Score calibration is performed to obtain the shift and scale in
step 7 of Algorithm 1, typically with logistic regression.

This section describes the score normalization in Section 2.6.1 the theoretical back-
ground of a dimensionality reduction technique LDA in Section 2.6.2 and a generative prob-
abilistic model PLDA in Section 2.6.3. Cosine similarity is introduced in Section 2.8.3 in
the context of K-means in the section on clustering and unsupervised learning, where it is
more fitting.

2.6.1 Score Normalization

Score normalization can further increase the accuracy of SRE systems. This section men-
tions it just briefly, since it is not used in the version of Phonexia SID which was used in
this thesis for the development and testing of the unsupervised speaker evaluation tech-
nique. The normalization process generally aims to reduce the variability of the scores,

12

making it impossible to achieve a speaker-independent threshold during the decision phase.
These variabilities can be caused by different recording conditions, such as channel, lan-
guage, or acoustic conditions. This is reduced by normalization, which generally consists
of shifting and scaling score distributions 𝑠 for individual models and conditions as follows:

𝑠𝑛𝑜𝑟𝑚(𝑠) =
𝑠− 𝜇

𝜎
(2.2)

Here, the mean 𝜇 and standard deviation 𝜎 are estimated using a normalization cohort –
set of utterences of non-matching speakers. There are several types of normalization using
different cohorts, such as Z-norm, T-norm, S-norm and others.

2.6.2 LDA – Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [23] is a supervised technique whose objective is to
identify a linear combination of features that:

• maximize the between-class separation of data (between-class variance)

• while minimizing the within-class scatter (within-class variance)

The resulting combination can be used for classification or, more commonly, for dimen-
sionality reduction before a subsequent classification. LDA is closely related to the PCA
described in Section 2.8.2. Both of them search for linear combinations of variables that best
describe the data. However, the PCA algorithm identifies the subspace that concentrates
most of the data’s energy – variance.

Two distinct approaches can derive LDA. The first is generally referred to as Fisher’s lin-
ear discriminant and is suitable for dimensionality reduction, although this term and LDA
are often used interchangeably. The second approach is probabilistic based on Bayes’ theo-
rem and is better suited to explain LDA in terms of classification. They both make the same
assumption about the data and their scatter/covariances are shown in Figure 2.5. In order
to describe them, let us introduce some common ground terminology. Let {𝑥1, 𝑥2, . . . 𝑥𝑛}
denote a training dataset of 𝑁 examples, where each is a column vector of length 𝑑. Each
example belongs to exactly one of the 𝐾 classes defined as 𝐶1, . . . 𝐶𝐾 . The number of
examples in class 𝑘 = 1 . . .𝐾 is then 𝑛𝑘 = |𝐶𝑘|.

Multiclass Fisher’s Linear Discriminant

The main idea is to find a linear projection that maximizes the ratio of the between-class
scatter and within-class scatter; this ratio is called Fisher’s criterion [24]:

𝐽(W) =
W𝑇S𝑏W

W𝑇S𝑤W
(2.3)

W is a 𝑑×𝑑′ transformation matrix where 𝑑′ is the desired number of dimensions. The between-
class scatter S𝑏 is defined as the sample covariance of the class means and within-class scat-
ter S𝑤 as covariance of samples accross all clusters. The matrices S𝑏 and S𝑤 are computed
as follows:

S𝑤 =

∑︀
𝑘

∑︀
𝑖∈𝐶𝑘(𝑥𝑖−𝑚𝑘)(𝑥𝑖−𝑚𝑘)𝑇

𝑁
, S𝑏 =

∑︀
𝑘 𝑛𝑘(𝑚𝑘 −𝑚)(𝑚𝑘 −𝑚)𝑇

𝑁
(2.4)

13

where 𝑚𝑘 = 1
𝑛𝑘

∑︀
𝑖∈𝐶𝑘

𝑥𝑖 is the mean of the 𝑘th class and 𝑚 = 1
𝑁

∑︀
𝑖 𝑥𝑖 is the mean of the

entire dataset. Our aim is to find the linear transformation 𝑥 → W𝑇𝑥 that satisfies the LDA
objective – maximize S𝑏 relative to S𝑤, in other words, maximize Fisher’s criterion (2.3).
It can be shown that the columns 𝑤 of the optimal W are generalized eigenvectors such that
S𝑏𝑤 = 𝜆S𝑤𝑤 corresponds to the 𝑑′ highest eigenvalues. For a more detailed description of
this approach, see [25].

The LDA projection can be derived by fitting GMM to the training data. The results
of the mixture model can be used to classify examples of the classes represented in the
training data, but not the novel classes. A different probability model is required for this
purpose and is provided by Probabilistic LDA described in Section 2.6.3.

LDA with Bayes’ Theorem

What we want for classification is the probability that 𝑥 comes from the cluster 𝑘 or simply
𝑃 (𝑌 = 𝑘|𝑋 = 𝑥). To obtain this, let us define 𝑓𝑘(𝑋) ≡ 𝑃 (𝑋 = 𝑥|𝑌 = 𝑘) as density function
of X and prior 𝜋𝑘 ≡ 𝑃 (𝑌 = 𝑘) where 𝜋𝑘 represents the probability that a randomly chosen
observation comes from the 𝑘th class. Using the Bayes’ rule, we get the following:

𝑃 (𝑌 = 𝑘|𝑋 = 𝑥) =
𝑃 (𝑋 = 𝑥|𝑌 = 𝑘)∑︀

𝑖 𝑃 (𝑋 = 𝑥|𝑌 = 𝑖)𝑃 (𝑌 = 𝑖)
=

𝑓𝑘(𝑥)𝜋𝑘∑︀
𝑖 𝑓𝑖(𝑥)𝜋𝑖

(2.5)

The objective is to classify 𝑥 into the cluster group 𝑘 which has the highest probability.
In (2.5) the denominator is constant for different clusters. This means that the probability
is proportional to the enumerator:

𝑃 (𝑌 = 𝑘|𝑋 = 𝑥) ∼ 𝑓𝑘(𝑥)𝜋𝑘 (2.6)

We assume that the 𝑑-dimensional random variable 𝑋 has a multivariate Gaussian distri-
bution 𝑋 ∼ 𝒩 (𝜇,Σ𝑤) where 𝜇 is the mean of 𝑋 (vector with 𝑑 components), Σ𝑤 is the
covariance matrix 𝐶𝑜𝑣(𝑋) = Σ𝑤 of 𝑋. The multivariate Gaussian density is defined as:

𝑓(𝑥) = 𝒩 (𝑥|𝜇,Σw) =
1√︀

(2𝜋)𝑑|Σw|
exp

(︂
−1

2
(𝑥− 𝜇)𝑇Σw

−1(𝑥− 𝜇)

)︂
(2.7)

By comparing two classes 𝑘, 𝑙 probabilities log-ratio

log
𝑃 (𝑌 = 𝑘|𝑋 = 𝑥)

𝑃 (𝑌 = 𝑙|𝑙|𝑋 = 𝑥)
(2.8)

from the (2.8) we can derive to linear discriminant function:

𝛿𝑘(𝑥) = 𝑥𝑇Σ−1𝜇𝑘 −
1

2
𝜇𝑇
𝑘Σ

−1𝜇𝑘 + log 𝜋𝑘 (2.9)

Where 𝑘 is the specific class. Σ𝑘, 𝜇𝑘, 𝜋𝑘 are estimated from the training data. The linear
discriminant function (2.9) is used to estimate the LDA decision boundaries of the data.
Detailed explanation with derivations can be found in [23] and in [26].

2.6.3 PLDA – Probabilistic Linear Discriminant Analysis

Probabilistic LDA [27] is a generative probabilistic model that can be applied to a wide
range of problems, such as classification, hypothesis testing, class inference, and clustering,

14

all on classes not observed during training. On the contrary, LDA can only cluster data to
known classes during model training. In the case of SRE systems, PLDA and its derivatives
are frequently used [28][29][30] for hypothesis testing where they help to answer the question:

”Are those two examples from the same class?“ For that, it computes the likelihood ratio.
PLDA can be thought of as a model in which the vector x represents the observation of

the speaker and y is a latent vector representing the class of speaker. The class-conditional
distribution

𝑃 (𝑥|𝑦) = 𝒩 (𝑥|𝑦,Σ𝑤) (2.10)

have a common within-class covariance matrix Σ𝑤, which is similar to LDA (2.7). However,
in contrast to this, the prior 𝑃 (𝑦) is made continuous by imposing a Gaussian prior

𝑃 (𝑦) = 𝒩 (𝑦|𝜇,Σ𝑏) (2.11)

where 𝜇 is the mean of the class and Σ𝑏 is a between-class covariance matrix. Note that
the covariance matrices Σ𝑏, Σ𝑤 are same for all observations as illustrated in Figure 2.6.3.

Figure 2.5: PLDA (and also LDA) assumption about data. Class distribution 𝑦 ∼
𝒩 (𝑦|𝑚,Σ𝑏) with center 𝑚 representing the distribution of classes of speakers with class-
conditional distributions 𝑥 ∼ 𝒩 (𝑥|𝑦,Σ𝑤) representing the distribution of y-th speaker
recordings. Hue of the distributions illustrates the spread of the data.

Variations of PLDA model use distinct priors or different numbers of latent variables.
The two most popular variants are heavy-tailed PLDA (HTPLDA), which uses Student’s
t-distribution for priors, and Gaussian PLDA (GPLDA), which assumes Gaussian priors,
as shown in Equation (2.11).

15

2.7 Filtering – Automatic Control of Audio Quality
Estimating the quality of speech in an audio recording is an important pre-processing step.
It is used to improve the accuracy of SRE systems and increase the speed of data processing
by discarding low-quality audio recordings or audio segments. In this section, we introduce
several statistics that are used to estimate the quality of the audio. The most important
are the length of the speech signal and the signal-to-noise ratio (SNR).

• Speech signal length – detected length of speech detected in audio [31]. This statis-
tic is calculated with VAD explained in Section 2.3.

• Signal-to-noise ratio (SNR) – ratio of a speech signal to the power of background
noise [32].

• Perceptual Evaluation of Speech Quality (PESQ) – subjective of an audio
sample. Values in range ⟨−0.5, 4.5⟩, the higher the rating, the better the quality of
the recording [33].

2.7.1 Speech signal length

Generally, the more speech in the recording, the better decisions the SRE system makes.
However, it is shown in [31] that on average as little as 2–10 seconds of active speech can
produce results that are close to those of using an average of more than 100 seconds of
speech. It is no surprise that the study also demonstrated a steep increase in EER if there
was less than 2 seconds of speech in an audio. Production SRE systems typically use at
least 3 seconds of speech [1].

2.7.2 SNR – Signal-to-noise ratio

SNR can be expressed as a measurement of decibels (dB), where a signal with more useful
information, speech, typically has higher numbers than noise. If the background, for exam-
ple during a phone call on a busy street, is noisy, then the SRE system will have difficulty
recognizing the speaker.

Generally, we want to reduce background noise as much as possible. However, if we filter
all noisy recordings during evaluation on unsupervised data, we will get an unrepresentative
subset of the whole dataset and the estimated EER value will be too optimistic.

2.7.3 PESQ – Perceptual Evaluation of Speech Quality

PESQ is a family of standards which are used as a subjective quality test of audio recording.
It is standardized as Recommendation ITU-T P.862 [34]. It analyzes specific parameters
such as variable delays, noise, or time warping. PESQ is typically used in conjunction
with other quality estimation techniques to test the quality of VoIP telephones or for codec
evaluation. It requires setting a threshold for values between ⟨−0.5, 4.5⟩, which can be
dataset specific.

16

2.8 Clustering – Unsupervised Learning
Unsupervised learning, or ”learning without a teacher,“ is a type of machine learning in
which the algorithm learns or discovers patterns from data without labels. It is a set
of statistical tools designed to provide thoughtful insight into measurements. The main
difference between supervised learning and unsupervised learning is that the latter does
not aim to predict the data [26].

In the case of this thesis, we can describe unsupervised learning as a setting in which
there is a set of x-vector embeddings 𝑥1, 𝑥2, ..., 𝑥𝑛 extracted from 𝑛 recordings. Each em-
bedding has 𝑝 features. Our aim is to discover the subgroups among the embeddings. These
subgroups correspond to pseudo-labels or the so-called pseudo-speakers. Evaluation of the
speaker recognition system is then done using these pseudo-labels.

This chapter describes two particular types of unsupervised learning techniques, their
advantages and disadvantages:

• Principal components analysis – data pre-processing tool used before applying
another supervised or unsupervised learning algorithm.

• Clustering – a class of algorithms for discovering subgroups in the data.

2.8.1 Curse of Dimensionality

Before explaining the unsupervised techniques, let us introduce the Curse of Dimensionality
phenomenon. This phenomenon occurs naturally when analyzing high-dimensional data,
and it might cause inaccuracies or overfitting when using machine learning techniques. The
root of this problem is that when the number of dimensions increases, the space among
observations expands exponentially as shown in, leading to a sparse dataset with huge
distances among these observations as shown in Figure 2.6.

0.0 0.2 0.4 0.6 0.8 1.0
1st Dimension

0.0 0.2 0.4 0.6 0.8 1.0
1st Dimension

0.0

0.2

0.4

0.6

0.8

1.0

2n
d

Di
m

en
sio

n

1st Dimension

0.0 0.2 0.4 0.6 0.8 1.0 2n
d D

im
en

sio
n

0.0
0.2

0.4
0.6

0.8
1.0

3r
d

Di
m

en
sio

n

0.0
0.2
0.4
0.6
0.8
1.0

Figure 2.6: The behaviour of the curse of dimensionality when projected in (1) one di-
mension, (2) two dimensions, and (3) three dimensions.

Take an example of the Euclidean distance, in Equation (2.16), between two randomly
chosen points. In a unit square, it is roughly 0.52 units. A unit 3D cube has the average

17

distance increased to 0.66 units. However, in a unit 256-dimensional hypercube, the distance
grows to 6.5 units.2

The curse of dimensionality is related to the Hughes phenomenon [35], which can be
described as follows: As the number of dimensions used increases, the performance of a
machine learning model increases for the first time. However, it starts to deteriorate with
higher dimensions beyond a certain point, rather than gradually improving.

Therefore, with increasing number of dimensions, it becomes cumbersome to calculate
the distance between observations, making difficulties for clustering algorithms that rely
on a distance metric, such as K-means described in Section 2.8.3. One way to solve this
problem is to select features and reduce dimensionality. In the context of processing the x-
vectors, feature selection becomes difficult since the features do not coincide with anything
tangible. For dimensionality reduction, there are several choices with different objectives,
such as; unsupervised t-SNE, PCA explained in Section 2.8.2 or supervised LDA introduced
in Section 2.6.2 and PLDA in Section 2.6.3.

The high dimensionality might not always be a curse, but sometimes a blessing, as
outlined in a quote from Blessing of dimensionality [36]:

For example, the typical property of a random finite set in a high-dimensional
space is: the squared distance of these points to a selected point are, with high
probability, close to the average (or median) squared distance. This property
drastically simplifies the expected geometry of the data (blessing) but, at the
same time, makes the similarity search in high dimensions difficult and even
useless. (curse)

To summarize this subsection, the curse and blessing of dimensionality are two sides of
the same coin, and there is always a trade-off between using many features or not. Some
algorithms, such as clustering, are more sensitive to the curse, yet others are favorable
to the blessing and can find patterns throughout many dimensions – notably the neural
networks.

2.8.2 PCA – Principal Components Analysis

Principal component analysis (PCA) [23][37] is a multivariate statistical technique that
computes the principal components (PC) and, using them, performs a change in basis on
the dataset utilizing a portion of the PCs. To do that, PCA uses an unsupervised approach
that involves only a set of features and no associated response or labels.

This algorithm is used mainly because it can significantly reduce the size of the whole
dataset, remove noise features or those with low information value, and thus make other
algorithms, in general, more effective on such a reduced dataset as was previously mentioned
with LDA in Section 2.6. The objective of PCA can be summarized as follows [23]:

(a) Extract essential information from the data table in form of principal components.

(b) Compress the size of the dataset by keeping only this essential information by the
change of basis.

(c) Simplify the description of the dataset.

(d) Analyze the structure of the observations.
2Average distance between two randomly selected points is 𝑑 =

√︀
𝑛
6

, where 𝑛 is the magnitude of a di-
mension.

18

Finding the Principal Components

Using the example of observation in a two-dimensional space as shown in Figure 2.7, the
PCA begins with the extraction of essential information. It is done by finding the 𝑝 principal
components (PC) of the 𝑝-dimensional space.

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

c1

c2

2 1 0 1 2
z1

Figure 2.7: PCA – selecting the subspace to project on the observations from two features
space 𝑋2, 𝑋1, on the left, to the single feature space 𝑍1, on the right, where the solid,
dashed, and dotted lines represent projection axes. The singular vectors 𝑐1 and 𝑐2 are the
eigen-vectors for 𝑃𝐶1 and 𝑃𝐶2. Projection onto 𝑃𝐶1 preserve most variance of the data.

The first component 𝑃𝐶1 must have the largest variance, as shown in the projection to
one dimension in Figure 2.7 (upper left figure). The second component 𝑃𝐶2 is calculated as
orthogonal to 𝑃𝐶1 and is also required to have the largest possible variance. This process
would repeat for the 𝑝 dimensional space until 𝑃𝐶𝑝. Mathematically, first principal com-
ponent 𝑃𝐶1 of the 𝑝-dimensional space with features 𝑋1, 𝑋2, ..., 𝑋𝑝 is a linear combination
of the features.

𝑍1 = 𝑐11𝑋1 + 𝑐21𝑋2 + ...+ 𝑐𝑝1𝑋𝑝 (2.12)

with the largest variance where the 𝑐11, 𝑐21, ...𝑐𝑝1 are called loading scores of the 𝑃𝐶1 and
are ℓ2-normalized3. Together, these scores form the principal component loading vector
𝑐1 = (𝑐11, 𝑐21, ...𝑐𝑝1)

𝑇 .
In other words, the first principal component 𝑃𝐶1 solves the optimization problem of

finding the linear combination that has the largest variance across samples 𝑥1, 𝑥2, ..., 𝑥𝑛.
The samples are centered to have mean zero since we are interested only in variance. Using
(2.12), this can be written as

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑐11,...,𝑐𝑝1

{︃
1

𝑛

𝑛∑︁
𝑖=1

(︃
𝑝∑︁

𝑗=1

𝑐𝑗1𝑥𝑖𝑗

)︃}︃
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑝∑︁
𝑗=1

𝑐2𝑗1 = 1. (2.13)

3ℓ2-normalized vector is 𝑐𝑖 =
𝑐𝑖

||𝑐𝑖||

19

The optimization problem in Equation (2.13) is solved using Singular Value Decomposi-
tion or SVD [37] that can decompose the training set matrix into the matrix multiplication
of three matrices UΣV𝑇 , where all loading vectors 𝑐𝑝 are contained in V.

Dimensionality Reduction – Change of Basis

Now that we have defined how to obtain all principal components, the dimensionality of
the dataset matrix X can finally be reduced. A matrix multiplication

X𝑑 = XW𝑑 (2.14)

projects the dataset down to dimensionality 𝑑. Wd is defined as the matrix that contains
the first 𝑑 columns of V from SVD.

Explained Variance Ratio

The explained variance ratio is useful information about 𝑃𝐶𝑠. Indicates the proportion of
variance in the dataset along each 𝑃𝐶. If a component has a relatively smaller variance
than the others, it is reasonable to assume that it carries little information.

Choosing the Right Number of Dimensions

PCA is a trade-off between having all the information at hand or keeping just the most
valuable part – with the most variance. Using the explained variance ratio, it is possible to
choose how much variance to preserve. For example, 95%. Therefore, the cumulative sum
of PCs’ variance must be above this threshold, and the lower components will be reduced
to the lowest dimension possible given the condition of total variance 95%.

PCA variations

With randomized PCA, the algorithm runs much faster, but finds only an approximation of
𝑃𝐶𝑠. If the data are larger than what can fit in main memory, then Incremental PCA [38]
can be used. It splits data into mini-batches.

2.8.3 K-means

The K-means algorithm is one of the most popular iterative descent clustering methods
and is comparatively fast [39]. This subsection covers a more detailed explanation of this
algorithm, which is important to explain why and how cosine similarity can be used in
K-means. To perform this algorithm, the number of clusters 𝐾 must be specified; then the
K-means algorithm assigns each observation 𝑥𝑖 to exactly one of the 𝐾 clusters. First, let us
define some notation. Let 𝐶1, ..., 𝐶𝐾 denote sets containing the indicies of the observations
in each cluster. These sets satisfy two properties:

1. 𝐶1 ∪ 𝐶2 ∪ ... ∪ 𝐶𝐾 = 1, ...𝑛. In other words, each observation belongs to at least one
of the 𝐾 clusters.

2. 𝐶𝑘 ∪ 𝐶𝑘′ = ∅ for all 𝑘 ̸= 𝑘′. In other words, the clusters are non-overlapping: no ob-
servation belongs to more than one cluster

20

For every cluster 𝐶𝑘 there is a centroid 𝑐𝑘 that is a mean of points in the 𝐶𝑘 given as

𝑐𝑘 =
1

|𝐶𝑘|
∑︁

𝑥𝑖∈𝐶𝑘

𝑥𝑖. (2.15)

The K-means algorithm is intended for a situation in which all variables are of quanti-
tative type and squared Euclidean distance

𝑑(𝑥𝑖, 𝑥
′
𝑖) =

𝑝∑︁
𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2 = ||𝑥𝑖 − 𝑥𝑖′ ||2 (2.16)

is chosen as dissimilarity measure. Where 𝑥𝑖 is in our case the x-vector of 𝑝 features and
𝑥𝑖𝑗 is a single feature of this vector.

The amount in which the observations within a cluster differ from each other can be
defined as cluster variance:

𝑊 (𝐶𝑘) =
∑︁
𝑖∈𝐶𝑘

||𝑥𝑖 − 𝑐𝑘||2 (2.17)

This metric is also called the model’s inertia4 and is the mean squared distance between
each instance and its cluster’s centroid. (also the closest centroid) The objective function
of the K-means is to solve the optimization problem of

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐶1,...,𝐶𝐾

{︃
𝐾∑︁
𝑘=1

𝑊 (𝐶𝑘)

}︃
. (2.18)

In other words, divide the observations into 𝐾 clusters while minimizing the total cluster
variance (2.17). The complexity of the problem is 𝒪(𝑘𝑛) and it is difficult to find a precise
solution. However, there is a fairly simple yet effective algorithm to find local optimum for
the K-means optimization problem (2.18). This approach is laid out in Algorithm 2.

Algorithm 2 K-means Clustering [23][Algorithm 14.1]
1: Initialize the algorithm with the centroids 𝑐1, ..., 𝑐𝐾 chosen from the observations

𝑥𝑖, ..., 𝑥𝑛 where 𝑛 ≥ 𝐾. The value 𝐾 corresponds to both the number of clusters,
and centroids.

2: ASSIGNMENT STEP: Given a current set of centroids 𝑐1, ..., 𝑐𝐾 , the dissimilarity mea-
sure (2.16) is minimized by assigning each observation to the closest cluster centroid.
That is,

𝐶(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾

||𝑥𝑖 − 𝑐𝑘||2. (2.19)

3: UPDATE STEP: For every cluster 𝐶𝑘, where 1 ≤ 𝑘 ≤ 𝐾, recalculate the cluster centroid
𝑐𝑘 with (2.15) and thus minimize the total cluster variance (2.18).

4: Steps 2 and 3 are iterated until the assignments do not change.

At each step, the cluster variance (2.17) is guaranteed to decrease. With this approach,
the algorithm eventually reaches local optimum when the assignments do not change any-
more. An example of nicely clustered observations with cluster centroids is shown in Fig-
ure 2.8.

4Inertia used in Scikit-Learn https://scikit-learn.org/stable/modules/clustering.html#k-means

21

https://scikit-learn.org/stable/modules/clustering.html##k-means

0 5 10
xi1

5

0

5

10

xi2

0 5 10
xi1

c1

c2

c3

c4

c5

Figure 2.8: Example of a clustered dataset with K-means where the dataset has 2 features
𝑋1, 𝑋2, 300 observations 𝑥𝑖 and the number of clusters 𝐾 set to 5.

Optimization of K-means Algorithm

Although the K-means algorithm is guaranteed to converge, it usually converges to local
optimum most of the time. The final solution depends mainly on centroid initialization,
which is an essential part of the algorithm and influences the result. The different centroids
used for initialization usually give different results. The traditional approach is to run the
algorithm several times and select the best solution – the one with the lowest total cluster
variance introduced in Equation (2.18). Another option to find a better solution is to use
a smart initialization technique [40].

Initialization Techniques

There are many K-means initialization techniques. Traditional ones are the Forgy method,
which chooses the initial centroids at random. However, the K-means++ [41] method is
currently the most widely used. The Scikit-Learn library, which is used for experiments in
Chapter 4, uses K-means++ as the default initialization method [42].

Mini Batch K-means

Another important variance to the K-means algorithm is the Mini Batch K-means [43]. The
algorithm can use mini-batches, instead of the entire dataset in each iteration. Mini-batches
are subsets of the input data, randomly sampled in each training iteration. The speed-up is
typically by a factor of three or four, and also it makes it possible to cluster huge datasets
that do not fit in memory. Although providing a significant acceleration, the total cluster
variance explained in Equation (2.18) is generally slightly worse [42].

Cosine Similarity

As mentioned in this section, the K-means algorithm uses the Euclidean distance. This
metric is not always helpful, mainly when the magnitude of the observations/vectors does
not matter. A typical case is text data represented by word count in documents of uneven

22

length. For this example, the cosine similarity is a more suitable metric and is also preferable
in speaker recognition systems.

The cosine similarity is simply the cosine of the angle between two vectors 𝑢, 𝑣 of non-
zero length defined as:

𝑐𝑜𝑠(𝑢, 𝑣) =
𝑢 · 𝑣

||𝑢|| · ||𝑣||
(2.20)

A smaller angle between two vectors results in a higher cosine similarity. Our motive
is to use this metric for K-means. Recall that the K-means algorithm is defined for the
Euclidean distance, where the objective is to minimize the cluster variance (2.18). It can be
proved that the cosine similarity for ℓ2-normalized vectors5 is proportional to the Euclidean
distance as follows:

𝑐𝑜𝑠(�̂�, 𝑣) =
�̂� · 𝑣

||�̂�|| · ||𝑣||
= �̂� · 𝑣 (2.21)

From (2.16):

||�̂�− 𝑣||2 =
(︀√︀

(�̂�− 𝑣)2
)︀2

= (�̂�− 𝑣)2 = �̂�2 − 2 · 𝑣 · �̂�+ 𝑣2 = 2− 2 · �̂� · 𝑣 (2.22)

Substitute the �̂� · 𝑣 for ℓ2-normalized cosine similarity (2.21):

||�̂�− 𝑣||2 = 2− 2 · 𝑐𝑜𝑠(�̂�, 𝑣) (2.23)

From now on, it is clear that for ℓ2-normalized vectors, solving the optimization problem
of minimizing the sum of cluster variances in all clusters (2.18) also maximizes the sum of
cosine similarity between cluster observations 𝑥𝑖 and centroid 𝑐𝑘 over all clusters. In other
words,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐶1,...,𝐶𝐾

{︃
𝐾∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

||𝑥𝑖 − 𝑐𝑘||2
}︃

∼ 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝐶1,...,𝐶𝐾

{︃
𝐾∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

𝑐𝑜𝑠(𝑥𝑖, 𝑐𝑘)

}︃
(2.24)

In summary, the use of the cosine similarity metric in the K-means algorithm is achieved
using ℓ2-normalized vectors / observations and running the algorithm with Euclidean dis-
tance. The resulting clusters have minimized the cluster variance and maximized cosine
similarity.

2.8.4 GMM – Gaussian Mixture Model

Gaussian mixture model (GMM) is a probabilistic model that makes the assumption that
data were generated from a mixture of Gaussian distributions. The goal of this model is to
find the parameters of such distributions. The probability density function for multivariate
Gaussian density is illustrated in Figure 2.9, and described in Equation (2.7), from which
we need to find Σ𝑘, 𝜇𝑘 of each class 𝑘. This is typically done using the Expectation-
Maximization soft clustering algorithm, which is in some cases similar to the K-means
algorithm described in Section 2.8.3; Clusters also have to be initialized, randomly or
ideally with some better heuristics, and it reapeats expactation and maximization steps
until convergence. For each observation, in the expactation step, the algorithm estimates

5The ℓ2 norm is defined for a vector 𝑢 as ||𝑢| =
√︀∑︀

𝑢2
𝑖 . ℓ2-normalized vector is �̂� = 𝑢

||𝑢|| where ||�̂�|| = 1

23

the probabilities of observations belonging to each cluster6, and in the maximization step
it updates the groups using all observations in the dataset.

The covariance of the clusters Σ𝑘 of each mixture can be of any ellipsoidal shape, size,
and orientation, i.e. has its own general covariance matrix. Such a matrix is usually refered
to as full. However, this can additionally be adjusted to several variants:

• Spherical – all clusters are spherical, but with different diameters. (very similar to
how K-means works)

• Diagonal – clusters are of ellipsoidal shape of varying sizes. The ellipsoids are parallel
to the coordinate axes as in Figure 2.9. (The Σ𝑘 is diagonal)

• Tied – clusters have the same shape and size. In other words, they come from the
same distribution with different mean (mixture center); this is illustrated in Figure 2.5.

Multivariate Gaussian Probability Density Function

0.0

0.2

0.4

4 2 0 2 4

4

2

0

2

4

0.0 0.2 0.4

Figure 2.9: Multivariate (bi-variate) gaussian probability density function with two com-
pounding gaussians. Covariance matrix Σ is diagonal. Darker hue represents more density.

The selection of the optimal number of clusters for GMM can also be achieved with
Bayesian information criterion (BIC) or Akaike information criterion (AIC) using the
minimum of these criteria or the elbow method which is introduced in Section 2.9.2.

6In the context of GMM, clusters are sometimes called mixtures

24

2.8.5 AHC – Agglomerative Hierarchical Clustering

Agglomerative clustering (AHC) is a type of hierarchical clustering that uses a bottom-up
approach [23]. It begins with assigning all observations into a singleton cluster, and at each
step two clusters are joined according to the linkage function producing one less cluster at
each step. This process can be visualized in the form of a hierarchical tree called dendogram.
Clustering can be set to a specific number of clusters or a threshold value. In connection
with SRE, it is popular in speaker diarization and is featured in a tool called Phonexia
Orbis Investigator7.

Linkage Functions

The linkage function can be defined as a measure of dissimilarity 𝑑(𝐶𝑘, 𝐶𝑘′) between two
clusters or groups 𝐶𝑘 and 𝐶𝑘′ with assigned observation 𝑥𝑖, 𝑥𝑖′ , respectively. It is calculated
from the set of pairwise dissimilarities 𝑑𝑥𝑖𝑥𝑖′ using the Euclidean distance, cosine similarity,
or even a precomputed dissimilarity matrix, such as the one created from scores from the
scoring backend introduced in Section 2.6. Cluster pairs with the lowest dissimilarity are
merged at each step of the AHC algorithm.

Single linkage (SL) considers the pair with a minimal dissimilarity measure

𝑑𝑆𝐿(𝐶𝑘, 𝐶𝑘′) = min
𝑥𝑖∈𝐶𝑘
𝑥′
𝑖∈𝐶𝑘′

𝑑𝑥𝑖𝑥𝑖′ (2.25)

This single linkage criterion (2.25) combines two clusters based only on two observations,
regardless of the others in those clusters. It tends to combine observations, at relatively low
thresholds, through intermediate observations, leading to a phenomenon called chaining,
the potential drawback of this method, which also causes not very compact clusters with
relatively large diameters.

Complete linkage (CL) is the opposite of single linkage, it takes two clusters and their
two furthest neighbors i.e. the most dissimilar pair. This measure is given as follows:

𝑑𝐶𝐿(𝐶𝑘, 𝐶𝑘′) = max
𝑥𝑖∈𝐶𝑘
𝑥′
𝑖∈𝐶𝑘′

𝑑𝑥𝑖𝑥𝑖′ (2.26)

CL merges two clusters with minimal 𝑑𝐶𝐿 (2.26). This results in very compact clusters.
The negative side of this linkage function is that, as it considers only two observations at
a time, it might assign some observations in a way that makes them closer to members of
a different cluster than of their own cluster members.

Average linkage (AL) is the average dissimilarity between the groups

𝑑𝐴𝐿(𝐶𝑘, 𝐶𝑘′) =
1

|𝐶𝑘||𝐶𝑘′ |
∑︁

𝑥𝑖∈𝐶𝑘

∑︁
𝑥𝑖′∈𝐶𝑘′

𝑑𝑥𝑖𝑥𝑖′ (2.27)

The effects of the average linkage function (2.27) are clusters relatively far apart, as well
as relatively compact. However, it is influenced by scale of the observations and, as a
consequence, scaling could change the result of clustering. The AHC with average linkage
is also known as the ”Unweighted Pair Group Method with Arithmetic Mean“ (UPGMA).

7Orbis, a tool which automatically identifies speakers and other key information in audio https://
www.phonexia.com/product/orbis/

25

https://www.phonexia.com/product/orbis/
https://www.phonexia.com/product/orbis/

2.8.6 Comparison of Clustering Algorithms

This section shows a concise comparison of the clustering algorithms described above in
Table 2.1. In addition to this information, it is also important to note that only AHC
can use a precomputed distance matrix8, which can significantly accelerate the algorithm;
additionally, due to its nature, it is possible to run the algorithm just once with the stopping
condition set to a single cluster 𝐾 = 1 and use previous steps to calculate various metrics,
since the algorithm starts with all features in a separate cluster and merges them one by
one. In contrast, K-means and GMM have to be initiated every time for different numbers
of clusters 𝐾.

Comparison of Clustering Algorithms

Algorithm K-means GMM AHC
Data
assumption

Spherical clusters
of even size

Gaussian,
ellipsoidal shapes None

Scalability

Very large number
of samples,

medium number
of clusters9

Not scalable

Large number
of samples,

large number
of clusters

Noisy data
resistance Sensitive to outliers Robust to outliers Sensitive to outliers

Distance
metric Euclidean10 Mahalanobis Any pairwise distance,

very flexible

Deterministic Depends on
initialization

Depends on
initialization Deterministic

Required
parameters

Number of
clusters 𝐾

Number of
clusters

(mixtures) 𝐾

Number of
clusters 𝐾,
or threshold
for merging

Table 2.1: Comparison of K-means from Section 2.8.3, GMM from Section 2.8.4, and
AHC from Section 2.8.5 algorithms.

8There is a derivation of K-means called K-medoids which can also use precomputed distance matrix,
but its runtime is very slow.

9Good scalability due to the MiniBatch K-means introduced in Section 2.8.3
10Distance metric is only Euclidean, if not convergance is not guaranteed. However, cosine similarity can

be utilized as explained in Section 2.8.3

26

2.9 Evaluation Metrics and Criteria
The goal of this thesis is to find the most accurate way to evaluate SRE on unlabeled
datasets. For that we need to create pseudo-labels which correspond to clusters obtained
from clustering algorithms. This is influenced not only by the choice of the algorithm,
but also by the number of created clusters. All the clustering algorithms mentioned in
Section 2.8 have one thing in common; the number of clusters must be specified beforehand.
The evaluation metrics and criteria described in this section can be divided into two groups.

• Biometric system evaluation metric

– Equal Error Rate (EER) in Section 2.9.1.

• Clustering performance metric

– Elbow Method in Section 2.9.2.
– Silhouette Score in Section 2.9.3.
– Calinski-Harabasz (CH) Score in Section 2.9.4.
– Davies Bouldin (DB) Score in Section 2.9.5.

2.9.1 EER – Equal Error Rate

Equal Error Rate (EER) is a measure frequently used in biometric systems, typically when
operating in the verification task [44]. It predetermines the threshold values for the system’s
false alarm (FA) rate and miss rate. For clarity, the miss and the false alarm are shown
in Table 2.2. The EER is the location on the receiver operating characteristic (ROC) or
detection error tradeoff (DET) curve where the common value of the false alarm and the
miss rate are equal. The lower the EER, the higher the accuracy of the biometric system.
It is also important to note that this metric is calibration-insensitive. In the context of this
thesis, EER is used to obtain the baseline calculated in the labeled dataset, and is also used
in the elbow method in Section 2.9.2.

Confusion Matrix

Actual
Same Speaker Imposter

Same Speaker Hit
(True Positive)

False Alarm
(False Positive)Predicted

Imposter Miss
(False Negative)

Correct Rejection
(True Negative)

Table 2.2: Confusion matrix with actual and predicted result. The same speaker is the
correct outcome and the imposter is the false outcome. The cells in red are used to obtain
the EER.

The scores gathered from SRE on testing data with several non-target and target em-
beddings typically create two Gaussian-like curves as shown in Figure 2.10. This shows us
how scores are distributed and can be used for a simple visual evaluation of each algorithm
against the baseline.

27

4 2 0 2 4
Scores

0.0

0.1

0.2

0.3

0.4

Li
ke
lih
o
o
d

True PositiveTrue Negative

False
Negative

Same speakerImposter

False
Positive

Threshold

Figure 2.10: Two probability distributions of an imposter and same speaker scores. The
threshold corresponds to the score where the probability (area under curve) of false negative
and false positive are the same values. This value is EER.

2.9.2 Elbow Method

The elbow method is an approach used in the analysis of clustering algorithms to find the
right number of clusters 𝐾, which in perfect case can be infered visually from the figure [45].
The idea behind this method is to choose a point where increasing the number of clusters
𝐾 is no longer worth the additional cost and adding another cluster 𝐾+1 does not provide
better data modeling and leads to overfitting.

In cluster analysis, the elbow curve is displayed as a dependency of the number of
clusters 𝐾 on an evaluation metric that forms a shape that resembles an ”elbow“. The
criterion can be inertia for K-means explained in Section 2.8.3, as is also illustrated in
Figure 2.11, BIC and AIC for Gaussian Mixture Models in Section 2.8.4, or even EER
introduced in Section 2.9.1.

The Elbow curve

Figure 2.11: Function in a shape of an elbow showing inertia per number of clusters11.
Optimal number of clusters 𝐾 was chosen by Kneedle [3].

28

The main drawback of this method, as we can see in Figure 2.11, is the ”fuzzines“ of
choosing a single value as the elbow point. If we ask several people to find the elbow, we
might get different results. This problem becomes even worse when the spread between
possible elbow points increases and the elbow point becomes less sharp. Using the visual
elbow method becomes unreliable; luckily, there exists a way to automate it. Another issue
arises when the curve does not resamble the elbow curve; however, this might be a problem
of the chosen metric, the clustering algorithm, or the data itself might not be suitable for
cluster analysis as a result of too much noise or the overall distribution of the data which
does not form groups or clusters at all.

The Elbow Method and its Automation

The problem of finding an elbow (or a knee of curvature) in systems behavior seems straight-
forward. Nonetheless, there are not many general-purpose tools to automate this task, nor
is there an accepted definition of what an elbow is. In many areas, researchers usually use
system-specific approaches to detect elbows. However, this requires a robust and fine-tuned
detection system. That might be demanding or close to impossible to develop if the input
to such a system is difficult to predict and volatile. In the case of speech singals, there are
way too many variables such as channel, language, background noise etc. These directly
influence the output of the SRE systems and thus make the creation of a system-specific
approach problematic.

Fortunetely, there is an algorithm and tool called Kneedle [3] that can be used for
general-purpose elbow detection. It defines the elbow with a mathematical definition of
curvature – the measure of how much the function differs from a straight line. Detailed
explanations of the inner workings of the Kneedle algorithm are described in this paper [3].
The authors also maintain a Python package12 with implementation of this tool, which is
simple to integrate, and found its use cases in various areas.

2.9.3 The Silhouette Score

The Silhouette score is a metric that is used to calculate the goodness of a clustering
technique [46][47]. Assume that the data are clustered into 𝐾 groups 𝐶. The Silhouette
score takes into account the mean within-cluster distance of an observation 𝑥𝑖 assigned
to 𝐶𝑘:

𝑎(𝑥𝑖) =
1

|𝐶𝑘| − 1

∑︁
𝑖′∈𝐶𝑘

𝑑(𝑥𝑖, 𝑥𝑖′) (2.28)

The lower the value of 𝑎(𝑥𝑖), the better the assignment. Next, we define the mean dissimi-
larity of 𝑥𝑖 from a different cluster 𝐶𝑘′ as:

𝑏(𝑥𝑖) = min
1

|𝐶𝑘′ |
∑︁

𝑖′∈𝐶𝑘′

𝑑(𝑥𝑖, 𝑥𝑖′) (2.29)

𝑏(𝑥𝑖) is the mean distance from 𝑥𝑖 to all the points in 𝐶𝑘′ . The distance 𝑑(𝑥𝑖, 𝑥𝑖′) used
in (2.28) and (2.29) can be defined as Euclidean, cosine similarity, or any other pairwise

11Iris dataset provided by Scikit-learn Python library with three different groups was used and clustered
with K-means.

12Kneed – Knee-point detection in Python

29

https://github.com/arvkevi/kneed

distance. Even the scores generated from the scoring backend described in Section 2.6 can
be provided as a pre-computed distance matrix.

The Silhouette score for the observation 𝑥𝑖 is then defined as

𝑠(𝑥𝑖) =
𝑎(𝑥𝑖)− 𝑏(𝑥𝑖)

max{𝑎(𝑥𝑖), 𝑏(𝑥𝑖)}
(2.30)

It yields values between -1 and 1. The closer to -1, the more likely the observation is
assigned to a wrong cluster, and the closer to 1 the more likely it is to be in the correct
cluster.

Estimating number of clusters in the data with Silhouette score

Figure 2.12: Silhouette score for K-means with number of clusters 𝐾 on the horizontal
axis in (1). The maximum of the Silhouette curve 𝐾 = 5 was used in clustering, result is
shown in (2). Data were clustered with K-means.

The average Silhouette score (2.30) across all observations 𝑥𝑖 is then a measure of the
quality of the clustering of the data. As illustrated in Figure 2.12, the maximum value of
the Silhouette score computed for different numbers of clusters 𝐾 can be a good indicator
of how many clusters there are in the data.

2.9.4 Calinski-Harabasz (CH) score

The Calinski-Harabasz (CH) [48] score (or index) is an unsupervised evaluation method for
clustering models. The CH score is also known as Variance Ratio Criterion because it is
defined as

𝐶𝐻(𝐶) =
𝑁 −𝐾

𝐾 − 1
·

𝐾∑︁
𝑘=1

𝐵(𝐶𝑘)

𝑊 (𝐶𝑘)
(2.31)

where 𝑁 is the total number of all observations and 𝐾 is the total number of all clusters,
within cluster variance 𝑊 (𝐶𝑘) defined in (2.17) and 𝐵(𝐶𝑘) is between cluster variance
defined as

𝐵(𝐶𝑘) =

𝐾∑︁
𝑘=1

𝑛𝑘||𝑐𝑘 − 𝑐||2 (2.32)

30

where 𝑐 is the centroid of the entire dataset and 𝑐𝑘 is a class centroid, 𝑛𝑘 is the number of
points in the cluster 𝐶𝑘.

From (2.31) it is clear that models with clusters that are further apart with higher
𝐵(𝐶𝑘) and have low within-cluster variance 𝑊 (𝐶𝑘) will have higher 𝐶𝐻(𝐶) Which means
that higher values of CH score means indicate better clustering. Additionally, we might
also be interested in peak values with local maximum.

2.9.5 Davies-Bouldin (DB) score

The Davies-Bouldin (DB) score [49][47] is an unsupervised evaluation technique for clus-
tering models. The DB score is obtained as

𝐷𝐵 =
1

𝐾

𝐾∑︁
𝑘=1

max
𝑘 ̸=𝑙

𝑅𝑘𝑗 (2.33)

where 𝐾 is the number of clusters and 𝑅𝑘𝑗 is the similarity defined as

𝑅𝑘𝑙 =
𝑠𝑘 + 𝑠𝑙
𝑑𝑘𝑙

(2.34)

where 𝑠𝑘 is cluster diameter, the average distance between each point of a cluster 𝑘 and
the centroid 𝑐𝑘 and 𝑑𝑘𝑗 is a distance between cluster centroids 𝑐𝑘 and 𝑐𝑗 . The similarity
𝑅𝑘𝑗 compares distance between clusters with their size. The farther apart and with lower
variance the clusters are, the better score from (2.33) we get. Thus, lower values of DB are
an indication of better clustering models.

2.9.6 Other Notable Methods

Several other methods were tested in regard to estimating the number of pseudo-labels from
the embeddings. However, they did not show reliable results for this type of data and were
not used later:

• Gap Statistics

• Jensen-Shannon metric (GMM only)

• Elbow strength13

13How to Automatically Determine the Number of Clusters in your Data: https://community.ibm.com/
community/user/datascience/blogs/moloy-de1/2020/07/02/points-to-ponder

31

https://community.ibm.com/community/user/datascience/blogs/moloy-de1/2020/07/02/points-to-ponder
https://community.ibm.com/community/user/datascience/blogs/moloy-de1/2020/07/02/points-to-ponder

Chapter 3

Datasets

3.1 SITW – Speakers in the Wild
Speakers in the Wild (SITW) speaker recognition database contains open source media
samples [50]. As the name suggests, the database includes speech data acquired under

”wild“ conditions with natural speech-degrading artifacts, such as real noise, reverberation,
and compression artifacts. The same factors are ubiquitous in the real world. Speech
samples are hand-annotated and consist of 299 different speakers. All of the above makes
the database well-suited for speaker recognition technology benchmarking.

Male
68%

Female
32%

Gender

Figure 3.1: SITW gender distribution.

Bincount of recordings length

10 15 20 25
Recordings count

0

10

20

30

40

Sp
ea

ke
rs

 c
ou

nt

Mean: 16.2

Figure 3.2: Bincount of recordings count per
speaker with binwidth set to 1.

Most SITW speakers are male, as shown in Figure 3.1. The number of recordings per
individual speaker in Figure 3.2 has a mean of 16 recordings. This might be different from
some production environments, where the ratio of the number of recordings to a speaker
can follow an exponential distribution. The average length is approximately 216 𝑠 with
a median of 91 𝑠. The lower part of the length distribution of the recording is shown in
Figure 3.3. The longest recording has as much as 5715 𝑠.

The sitw dataset features two enrollment conditions (core, assist) and two test conditions
(core, multi). The final four trial conditions for development and evaluation purposes are
formed as their combination. In this thesis, we use only the dev-core-core and eval-core-core
conditions with the core enrollment and core test conditions.

32

Bincount of recordings length for SITW

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Recordings length [s]

0

20

40

60

80
Re

co
rd

in
gs

 c
ou

nt Median: 91.0 s

Figure 3.3: SITW recordings bincount showing subset of recordings length distribution
from 0 𝑠 to 90 𝑠 with median at 91 𝑠.

The core enrollment condition contains audio files with a contiguous speech segment of
only one speaker. Similarly, the core test condition also contains speech only from a single
speaker with an expected amount of speech between 6 and 180 seconds. Note that we use
these trial conditions to select recordings for further processing with clustering algorithms
and to evaluate the result on all selected recordings. A detailed explanation of the extraction
of audio segments in SITW dataset is given in [50].

3.2 NIST SRE16
The 2016 speaker recognition evaluation (SRE16) dataset is part of the ongoing series of
speaker recognition started in 1996 by NIST1 [51]. The SRE16 is made of telephone speech
recordings that were collected as part of the Call My Net Speech Collection to support
research in speaker recognition. Participants were instructed to call people from their
social networks. They were encouraged to use different types of phone devices, such as a
cell phone or landline, and to make calls from various environments ranging from a noisy
street to a quiet office.

The mean recording length is 88 𝑠 with a median of 80 𝑠 and the longest recording
is 386 𝑠 long as illustrated in Figure 3.5. It has a similar proportion of male and female
speakers as shown in Figure 3.4 and the distribution of the recordings approximately follows
the normal distribution with a mean of 52.2 recordings. However, this data set features less
speech-degrading artifacts than SITW introduced in Section 3.5 and VoxCeleb1 explained
in following Section 3.3.

For this data set, we use the languages Tagalog2 (tgl) and Cantonese3 (yue) as test
conditions in the experiments in Chapter 4.

1National Institue of Standards and Technology
2Tagalog language is spoken by native Tagalog people who make up a quarter of Philippines.
3Cantonese is a dialect of the Chinese language spoken by more than 60 million people in China.

33

Male
42%

Female
58%

Gender

Figure 3.4: SRE16 gender percentage

Bincount for K-means K=200

30 40 50 60 70 80 90
Recordings count

0

5

10

15

20

25

Sp
ea

ke
rs

 c
ou

nt

Mean: 52.2

Figure 3.5: Bincount of recordings count per
speaker with binwidth set to 2.

Bincount of recordings length for SRE16

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Recordings length [s]

0

50

100

150

200

250

300

350

R
e
co

rd
in

g
s

co
u
n
t

Median: 80.0 s

Figure 3.6: SRE16 recordings bincount showing subset of recordings length distribution
from 0 𝑠 to 386 𝑠 with the median at 80 𝑠.

3.3 VoxCeleb1
VoxCeleb1 dataset consists of audio recordings of celebrities which were obtained from
YouTube videos [52]. The entire dataset contains over 100,000 utterances for 1,251 celebri-
ties obtained with an automated extraction pipeline. This dataset was created for speaker
recognition under noisy and unconstrained conditions. It contains extrinsic variations such
as background music, chatter, reverberation, and channel or microphone effects. In addi-
tion, there are various intrinsic variants including different ages, accents, intonations, or
emotions.

34

Male
62%

Female
38%

Gender

Figure 3.7: VoxCeleb1 gender percentage.

Bincount of recordings count

50 100 150 200 250
Recordings count

0

1

2

3

4

Sp
ea

ke
rs

 c
ou

nt

Mean: 117.9

Figure 3.8: Bincount of recordings count per
speaker with binwidth set to 5.

This dataset is divided into verification and identification split. We used only the
verification split with 40 different speakers and 4715 recordings. This dataset has an average
recording length 8 𝑠 with a median of 6 𝑠 as shown in Figure 3.8. The longest recording
has length of 69 𝑠. It also roughly follows an exponential distribution. In this work, the
whole dataset is labeled as the eval condition. The distribution of recordings in Figure 3.8
has a large variance ranging from speakers with around 50 recordings to speakers with
a recording count greater than 250 – a very disproportionate dataset. As mentioned in
Section 2.8.6, various cluster sizes might be problematic for some clustering algorithms.
In this verification split, there are slightly more male speakers than female, as shown in
Figure 3.7.

Bincount of recordings length for VoxCeleb1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Recordings length [s]

0

200

400

600

800

R
e
co

rd
in

g
s

co
u
n
t

Median: 6.0 s

Figure 3.9: VoxCeleb1 recordings bincount showing subset of recordings length distribution
from 0 𝑠 to 30 𝑠 with median at 6 𝑠.

35

3.4 Datasets Summary
Datasets used in this thesis are summarized in Table 3.1. SITW is the smallest dataset, as
such, it is fast to process and also has a large number of speakers. We used the dev-core-
core condition for the development of the evaluation technique in Section 4.2. The other
datasets and conditions were used during the testing phase in Section 4.3.

Dataset Condition Recordings
count

Speakers
count

Mean
[𝑠]

Median
[𝑠]

SITW dev-core-core 823 119 37 29
eval-core-core 1,202 180 38 30

SRE16 yue (Cantonese) 5,152 100 84 77
tgl (Tagalog) 4,744 101 85 77

VoxCeleb1 eval 4,715 40 8 6

Table 3.1: Comparison of datasets with specific conditions and their mean and average
recording durations.

36

Chapter 4

Experiments

4.1 Experimental Setup
The experimental setup is divided into two parts. Firstly, a brief description of the SID
system used for extracting the embeddings from voice recordings, and the scoring back-
end which compares two embeddings and returns a single score. Secondly, the setup for
clustering algorithms and their evaluation techniques. These algorithms are used to create
pseudo-labels from the embeddings or by using a score matrix.

4.1.1 SID System

All experiments were carried out with the Phonexia SID system (SID4-XL4), which consists
of these programs:

• vpextract4 – SRE system frontend for feature extraction using the x-vector extrac-
tion technique described in Section 2.5. The output after processing one recording is
a single voiceprint1, an embedding that represents speech in this recording.

• vpcompare4 – SRE scoring backend explained in Section 2.6 that compares two
voiceprints and returns the likelihood score as a floating point number. It can also
compare a list of files and in this case create a score matrix. This scoring backend
uses the cosine metric (older versions use GPLDA).

For the evaluation of SID system we use EER explained in Section 2.9.1.

SID Frontend and x-vector Extractor Architecture

The x-vector extractor works on 8 kHz recordings and uses a deep neural network architec-
ture based on ResNet34 [22]. The input to the neural network are 64 log FBANK features
extracted with a 25 ms window with a 10 ms time shift. The frequency range spanned by
the Mel filters is 20–3700 Hz. Stochastic gradient descent and angular margin loss are used
to train the x-vector extractor. After the pooling layer, a linear transformation is used to
reduce the dimensionality to obtain the (256-dimensional) x-vectors.

1Voiceprint is a catchy name for embeddings used in the context of Phonexia SID which is more suitable
for marketing purposes. Although it is not frequently used in research.

37

The frontend was trained on various datasets, private and several public2 such as NIST
SRE19 CTC [53] and SWITCHBOARD [54] datasets. To further increase performance of
this system, an artificial noise, reverberation, or music was added to the training data.
Specific training details are Phonexia’s trade secret and are not further discussed.

Scoring Backend Architecture

The scoring backend uses Algorithm 1 explained in Section 2.6. Both the precomputed
mean vectors, the LDA projection matrix, and the PLDA were trained on a subset of the
training set which was used to train the SID frontend.

4.1.2 Clustering Algorithms

We decided to use centroid-based K-means described in Section 2.8.3, distribution-based
GMM introduced in Section 2.8.4 and an algorithm based on hierarchical clustering called
AHC explained in Section 2.8.5 with a single and average linkage function. All of these
algorithms are used for the development of a technique for unsupervised evaluation and are
briefly compared in Table 2.1. We used these distance metrics and hyperparameters for
each algorithm:

• K-means – Euclidean3, initialization with K-means++, initialized 10 times.

• GMM – Mahalanobis, K-means initialization, full covariance matrix, initialized once.

• AHC average linkage – cosine similarity.

• AHC single linkage – cosine similarity.

The performance of these clustering algorithms was evaluated with the metrics described
in Section 2.9. To find an optimal number of clusters, we fit a 7th-order polynomial curve to
the data and used the elbow method and automated it with a Kneedle algorithm introduced
in Section 2.9.2. The 7th-order polynomial is a default in Kneedle and works optimally. We
tested Kneedle algorithm without a polynomial curve fitting, but it did not worked well.
The clustering algorithms created pseudo-labels for the embeddings. The pre-processed
embeddings and pseudo-labels were then used in following metrics and criteria:

• EER – equal error rate calculated on trials created from pseudo-labels and scores
from scoring backend described in Section 2.9.1.

• Silhouette value – with the cosine metric explained in Section 2.9.3.

• CH score – Calinski-Harabasz score introduced in Section 2.9.4.

• DH score – Davies-Bouldin score explained in Section 2.9.5.
2Some public datasets have licensing issues and cannot be easily used in commercial products, for example

VoxCeleb1 which is created from YouTube videos.
3Euclidean distance for K-means with ℓ2-normalized embeddings also maximize cosine similarity.

38

4.2 Evaluation Method Development
SITW dataset was chosen for the development of the evaluation method; this dataset con-
tains male and female speech recordings, the length is variable, and the speech conditions
are with and without speech-degrading artifacts. Thus, it makes for a great development
dataset that is close to real-world data. The development of the evaluation method consists
of several parts. Preprocessing of the embeddings, grouping with clustering algorithms
using different numbers of clusters at each iteration to obtain pseudo-labels, and finally
evaluating the clustered data with several evaluation metrics.

4.2.1 Baseline

SITW baseline was evaluated for conditions eval-core-core and dev-core-core. Baseline
values were obtained with reference labels by following these steps:

1. Extract embeddings of recordings which are part of the condition mask, i.e. remove
those columns/rows from the score matrix that are not part of the condition mask.

2. Use the upper triangular part of the score matrix (excluding the diagonal) to create
trials consisting of two embeddings, the target or non-target label, and the comparison
score of these two embeddings from the score matrix.

3. Use these trials to create baseline figures and calculate baseline EER.

The results of these steps are the baseline histograms for the conditions dev-core-core
Figure 4.1 showing two Gaussian-like curves of the score density at each subfigure. Densities
of target and non-target trials are normalized separately. The area under each score density
is equal to 1. Lines are estimated with KDE4. Note that the number of non-target scores is
in an order of magnitude larger than the number of target scores; however, when they are
normalized with respect to each score type, they are more or less of the same height and
can be visually compared.

4Kernel density estimation (KDE) – non-parametric way to estimate the probability density function of
a random variable.

39

(a) coisne scoring backend – SITW baseline for dev-core-core condition

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
n
si

ty

Score: 0.291

EER: 0.0516

Non-Target Target

(b) GPLDA scoring backend – SITW baseline dev-core-core for condition

200 150 100 50 0 50 100
Score

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

D
e
n
si

ty

Score: -35.095
EER: 0.0470

Non-Target Target

Figure 4.1: Baselines for SITW dev-core-core condition with target and non-target trials.
The thresholds are at scores 0.291 (a) and -35,095 (b) with EER equal to 0.0516 (a) and
0.0470 (b) which represents the value where the probability of miss and false alarm is the
same. Scores were calculated using the cosine (a) and GPLDA (b) scoring backend. The
contour of the above bins was estimated with KDE.

40

EER is equal to 0.0516 for the dev-core-core condition in Figure 4.1a with cosine scoring
backend and 0.0470 with GPLDA backend in Figure 4.1b, The goal of the unsupervised
evaluation technique is to get as close as possible to the baseline EER without knowing
which two pairs of embeddings are the target and which are non-target trials, this infor-
mation has to be inferred, by clustering or other means, from comparing embeddings and
giving them pseudolabels.

4.2.2 Embeddings Preprocessing

Raw embeddings with 256 features, as they come in the form of x-vectors explained in
Section 2.5, are not suitable for clustering and must be preprocessed before being used in
another algorithm. Pre-processing is summarized in Figure 4.2, we decided to use the same
steps as in Algorithm 1, steps 1.–5. The embeddings are mean normalized with the pre-
computed mean vector, which was calculated on the training dataset, and are additionally
ℓ2-normalized. The next step is to reduce the dimensionality with LDA to 128 features.
This is useful mainly for two reasons; the reduction of features speeds up computations
and due to curse of dimensionality in Section 2.8.1. (Clustering algorithms work generally
better with a smaller number of features per embedding.) Then the steps with mean and
ℓ2-normalization are repeated. This process results in embeddings that have length equal
to 1 and mean close to 0. Furthermore, ℓ2-normalization makes it possible for K-means to
work with cosine similarity, as proved in Equation (2.24). Finally, we use these embeddings
in a clustering algorithm to obtain a pseudo-label for each embedding.

Mean
Norm

L^2
Norm

LDA
dimensionality

reduction

Clustering
algorithm

Mean
Norm

L^2
Norm

128 DIM

pseudo-labels

258 DIM

25
8-

fe
at

ur
e

em
be

dd
in

g

Figure 4.2: Diagram of a pipeline which was used to obtain pseudo-labels for embeddings
with clustering algorithm.

41

4.2.3 Clustering and Evaluation

Before evaluating the dataset we have to create pseudo-labels which are then used to cal-
culate the EER evaluation metric. For this purpose, we use clustering algorithms to create
clusters that correspond to these pseudo-labels. K-means and GMM are a good fit because
the embeddings follow a Gaussian distribution. AHC with a single and average linkage
function is a flexible clustering algorithm and can cluster up to a given threshold.

We also run experiments with AHC and a precomputed similarity matrix from the
cosine or GPLDA scoring backend; they showed nearly identical results as those of AHC
with cosine similarity. Similar results to those obtained with AHC with an average linkage
function were also obtained using AHC with a complete linkage. These results are not
discussed in further detail.

Testing Criterions for Different Algorithms

The hardest part of unsupervised evaluation is how to find an optimal number of clusters
and overall representative clusters that best describe the data, i.e. they are clustered
similarly as in baseline. We used the evaluation metrics discussed in Section 4.1.2 of the
experimental setup. Their dependancy on some variable, in our case, the number of clusters,
increases or decreases sharply up to a breaking point, called an elbow. From this point on,
the trend becomes steady. Others display a visible maximum, such as the Silhouette value,
or minimum. Detection of these knee points was automated with the Kneedle [3] algorithm.
The results of the tests are illustrated in Figure 4.3.

The dev-core-core condition of SITW was used for the development purposes of the
evaluation method. The algorithms were run with 𝐾 ranging from 10 to 820 with step 10.
For each step, the cirterions were calculated from generated clusters and pseudo-labels.
These runs are called models because they categorize and model embeddings into a certain
number of clusters. As shown in Figure 4.3, the K-means and GMM test runs perform very
similarly, resulting in the same 𝐾 for all criteria. The AHC with average linkage also shows
comparable performance, but slightly worse in finding the optimal 𝐾. On the contrary, the
AHC with single linkage displays a distinct behavior, making it difficult to find the optimal
number of clusters, and the gray dashed line that marks the found 𝐾 is omitted for this
algorithm.

42

(a) EER elbow plot.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clusters K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500
E
E
R

K = 180 (AHC (average))

K = 180 (GMM)

K = 190 (K-means)

K = 119

model
AHC (average)

AHC (single)

GMM

K-means

(b) Silhouette value elbow plot

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clusters K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

S
ilh

o
u
e
tt

e
 v

a
lu

e

K = 160 (AHC (average))

K = 130 (GMM)

K = 130 (K-means)

K = 119
model

AHC (average)

AHC (single)

GMM

K-means

43

(c) DB score elbow plot

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clusters K

0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
1.95
2.10
2.25
2.40
2.55
2.70
2.85
3.00
3.15
3.30
3.45
3.60
3.75

D
a
v
ie

s-
B

o
u
ld

in
 s

co
re

K = 160 (AHC (average))

K = 130 (GMM)

K = 130 (K-means)

K = 119

model
AHC (average)

AHC (single)

GMM

K-means

(d) CH score elbow plot

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Number of clusters K

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2
8.0
8.8
9.6

10.4
11.2
12.0
12.8
13.6
14.4
15.2
16.0
16.8
17.6
18.4

C
a
lin

sk
i-

H
a
ra

b
a
sz

 s
co

re K = 100 (AHC (average))

K = 120 (GMM)
K = 120 (K-means)

K = 119

model
AHC (average)

AHC (single)

GMM

K-means

Figure 4.3: Criteria for finding the number of clusters 𝐾 with four metrics; EER (a),
Silhouette (b), DB (c), CH (d). Each for four models tested on the SITW dataset with con-
dition dev-core-core. Orange dot-dashed line shows real number of clusters, and orange cross
shows value of given metric calculated on true labels. Gray dashed lines mark 𝐾 obtained
from each metric and model with the Kneedle algorithm. This condition has 119 speakers
and 823 embeddings.

44

K-means GMM AHC
(average)

AHC
(single)

Baseline
values

Infered number
of cluters 𝐾

130 130 160 240 119

EER cosine
scoring backend 0.0572 0.0572 0.0246 0.0438 0.0516

EER GPLDA
scoring backend 0.0544 0.0563 0.0242 0.0438 0.0470

Table 4.1: Summary for each clustering algorithm, 𝐾 decided by the Silhouette value and
Kneedle algorithm with EER calculated from pseudo-labels generated by the algorithm run
with infered 𝐾. The baseline and optimal values are shown in bold.

The results from Figure 4.3 are summarized in Table 4.1, optimal 𝐾 was decided using
the elbow of the Silhouette value elbow in Figure 4.3b. We chose 𝐾 for AHC with a single
linkage as the maximum value. The highlighted values are chosen as the optimal among the
results from the algorithm runs. Note that the EER in Figure 4.3a for AHC with a single
linkage is quite close to the baseline value for GPLDA; however, the model did not show
good clustering properties, as shown in the later Figure 4.12 in comparison of cluster sizes.
These results are then used in the following figures to explain how the data was clustered.

K-means Inertia

In the K-means algorithm, the inertia measure shows how well a dataset is clustered. It is
the sum of the squared distances from their closest cluster center. The good model has low
inertia and an optimal number of clusters. This metric is used in the elbow method. The
result of this approach is shown in Figure 4.4. There is not a very significant elbow, so we
decided not to use this method in further experiments.

K-means Inertia

0 100 200 300 400 500 600 700 800
Number of clusters

0

100

200

300

400

500

600

K-
m

ea
ns

 In
er

tia

K = 119
K = 180 (K-means)

inertia

Figure 4.4: K-means inertia for SITW with condition dev-core-core from 10 to 820 number
of clusters 𝐾 with step 10. The gray dashed line shows 𝐾 found with Kneedle and a knee
point. Orange dot-dashed line shows real number of speakers in the dataset.

45

GMM with BIC and AIC

For GMM, we also tested BIC and AIC 5. The results of these values can be used in the
elbow method; however, for this specific setting, the trend in Figure 4.5 is impossible to
use to determine the optimal number of clusters 𝐾. For this reason, we did not use this
metric in other experiments.

BIC and AIC metrics for GMM

0 100 200 300 400 500 600 700 800
Number of clusters

0

1

2

3

4

In
fo

rm
at

io
n

cr
ite

rio
n

1e7

Figure 4.5: BIC and AIC for GMM tested on SITW dataset with condition dev-core-core
from 10 clusters to 820 with step 10.

Trials Distribution

From pseudo-labels we can create target and non-target trials consisting of two embeddings
and their score. The same pseudo-labels in the trials are marked as target, and different
are non-target. The distribution of these trials obtained from clustering models and their
scores is shown in Figure 4.6 compared to the baseline in Figure 4.6a. The distribution for
the K-means model in Figure 4.6b and the GMM model in Figure 4.6c are similar to the
baseline, there is a large overlap of the miss and FA trials, which contributes to higher EER
values.

In contrast, the AHC (average) in Figure 4.6d has a smaller overlap of the miss and FA
trials. In general, this model did not assign many embeddings to the same cluster if they
have score less than 0.25.

Note that the non-target score distribution does not change in all figures in Figure 4.6.
This is caused by a large disproportion between target and non-target scores, which are
both normalized independently of each other.

5Bayesian and Akaike Information Criterion

46

(a) SITW baseline with 118 speakers.

0.25 0.00 0.25 0.50 0.75
Score

0

1

2

3

De
ns

ity

Score: 0.291
EER: 0.0516

Non-Target Target

(b) K-means with 𝐾 = 130

0.25 0.00 0.25 0.50 0.75
Score

0

1

2

3

De
ns

ity

Score: 0.284
EER: 0.0572

Non-Target Target

(c) GMM with 𝐾 = 130

0.25 0.00 0.25 0.50 0.75
Score

0

1

2

3

De
ns

ity

Score: 0.284
EER: 0.0572

Non-Target Target

(d) AHC (average) with 𝐾 = 160

0.25 0.00 0.25 0.50 0.75
Score

0

1

2

3

De
ns

ity

Score: 0.342
EER: 0.0246

Non-Target Target

Figure 4.6: Score distribution for target and non-target trials modeled on condition SITW
dev-core-core. Comparison of baseline condition (a) with the trials created by the K-means
𝐾 = 130 (b), GMM 𝐾 = 130 (c), and AHC (average) 𝐾 = 160 (d) models.

Clusters Size for Different Models

To evaluate results of the clustering algorithms, we use bincounts, with cluster size as bins
and number of clusters as heights, to show the distribution of pseudo-speakers after using
a specific clustering algorithm. We used the number of clusters 𝐾 from Table 4.1 and
also used 𝐾 = 130 to compare clustering with AHC algorithm with both linkage functions
to GMM and the K-means. We compared these figures with the baseline for the SITW
dev-core-core condition in Figure 4.7

47

Baseline bincount for SITW dev-core-core condition

1 2 3 4 5 6 7 8 9 10 11
Recordings count

0
5

10
15
20
25
30
35

Sp
ea

ke
rs

 c
ou

nt

Mean: 6.9

Figure 4.7: Baseline bincount for SITW with dev-core-core condition which has 119 unique
speakers and 823 recordings.

The bincount of K means in Figure 4.8 follows roughly the same distribution as the
baseline in Figure 4.7. The GMM displays similar results. Note that these two clustering
algorithms use a nondeterministic initialization technique K-means++6 discussed in Sec-
tion 2.8.3 and produce different results in different runs. However, the results of different
runs do not differ much.

Bincount for K-means K=130

1 3 5 7 9 11
Cluster size

0

5

10

15

20

25

30

Nu
m

be
r o

f c
lu

st
er

s

Mean: 6.3

Figure 4.8: Bincount of recordings for
K-means with number of clusters 𝐾 =
130.

Bincount for GMM K=130

1 3 5 7 9 11 13
Cluster size

0

5

10

15

20

25

30

Nu
m

be
r o

f c
lu

st
er

s

Mean: 6.3

Figure 4.9: Bincount of recordings for
GMM with number of clusters 𝐾 = 130.

The AHC with the average linkage function bincounts illustrated in Figure 4.10 with
130 clusters and Figure 4.11 with 160 clusters shows that there are many singleton clusters
and several large clusters. With increasing 𝐾, the number of large clusters decreases because
they are divided into smaller clusters. These distributions are quite different from the
baseline in Figure 4.7 and also have several large clusters that have more than 11 members.

6GMM uses K-means to initialize clusters which in turn uses nondeterministic K-means++.

48

Bincount for AHC (average linkage)
K=130

1 3 5 7 9 11 13 15 17 19
Cluster size

0

5

10

15

20

25

Nu
m

be
r o

f c
lu

st
er

s

Mean: 6.3

Figure 4.10: Bincount of recordings for
AHC (average linkage) with number of clus-
ters 𝐾 = 130.

Bincount for AHC (average linkage)
K=160

1 3 5 7 9 11 13 15 17 19
Cluster size

0
5

10
15
20
25
30
35

Nu
m

be
r o

f c
lu

st
er

s

Mean: 5.1

Figure 4.11: Bincount of recordings for
AHC (average linkage) with number of
clusters 𝐾 = 160.

The AHC with the single linkage function shows the worst behavior. 𝐾 = 240 infered
from the maximum of the Silhouette value used in Figure 4.12 displays many singleton
clusters and is drastically different from the baseline. Figure 4.13 illustrates chaining phe-
nomen introduced in Subsection 2.8.5. As the algorithm worked from the bottom up, it
started to link several major clusters by comparing two embeddings/observations from each
cluster at a time, resulting in a ”chain reaction“ and the creation of three huge clusters
highlited in Figure 4.13.

Bincount for AHC (single linkage) K=240

1 3 5 7 9 11 13 15 17 19
Cluster size

0

20

40

60

80

100

120

140

Nu
m

be
r o

f c
lu

st
er

s

Mean: 3.4

Figure 4.12: Bincount of recordings for AHC (single linkage) with number of clusters
𝐾 = 240. 131 clusters are singletons (their size is 1).

49

Bincount for AHC (single linkage) K=130

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Cluster size

0

10

20

30

40

50

60

70
N

u
m

b
e
r

o
f

cl
u
st

e
rs

Mean: 6.3

Huge clusters with > 50 recordings

Figure 4.13: Bincount of recordings for AHC (single linkage) with number of clusters
𝐾 = 130. Displaying three huge clusters with size 54, 112, and 181 cluster members and
65 clusters are singletons (size is 1).

50

Projection of embeddings by UMAP with true and K-means clusters

ABXG

AEEY

AHGS

AMLH

AOIZ

ATVD

BBFE

BGRR

BHZD

BKXW

BPJV

BUHD

BXUS

CENR

CVOQ

DIIV

DLBG

EGGM

ESRD

FYFP

GDNG

GKDX

IDAB

IHAT

IJAJ

IJUC

IKRF

IOJK JDWZ

JNDH

LDFC

LRLL

MDXF

MMCC

MVSW

NEJA

OUCO

PGAK

PLVY

PNTR

PXRS

QHKP

QLYT

QXCQ

QXYO

QZPR

QZVH

RJJI

RLIP

SBTL

SWKI

TYTI

UTNN

UYBJ

VHOJ

YDMI

YLYZ

ZDSQ

ZPYJ

ZQNY

Cluster centroid (female)
Cluster centroid (male)
Shape – K-means labels
Color – true labels

Female
speakers

Male
speakers

Figure 4.14: Unsupervised projection of unprocessed embeddings with UMAP6 showing a
subset of 60 different speakers (from total 119) separated by a different hue (true labels).
Shape represents labels obtained after clustering from K-means with 𝐾 = 130. Small black
and red dots with text labels are cluster centroids obtained as mean of true speaker label
embeddings (mean calculated after 2D UMAP projection). Dashed line separates male and
female speakers.

Projecting Embeddings to Two Dimensions with UMAP

To provide an approximate picture of what clustering algorithms do in multidimensional
feature space, we decided to use the dimensionality reduction algorithm called UMAP6.
Raw embeddings with 256 features were projected with it to two dimensions using an
unsupervised approach with the cosine metric as a metric. The resulting projection is
shown in Figure 4.14. It displays 60 distinct speakers and their embeddings with different
hue and centroids visualized as small dots; some are influenced by outliers and are not in the
center of the ”blob“ with the same speaker recordings. There is a visible distinction between
male and female speakers. Shapes represent cluster assignments (or pseudo-labels) obtained
with the K-means algorithm. Many clusters are accurately clustered, as also indicated by
the number of correct trials counted in Table 4.2. Only 78 target trials are false.

6Uniform Manifold Approximation and Projection (UMAP) was run with cosine metrics and with the
spread value set to 28. The total number of 118 speakers was not used because the resulting figure was
difficult to read.

51

Trials

Total trials Total trials
correct

Percentage
correct

Trial type Target 2597 2519 97.0 %
Non-target 335656 335656 100 %

Table 4.2: Total number of trials and correct predictions for K-means with 𝐾 = 130.

4.3 Testing on Other Datasets
For further testing, we decided not to use GMM, as it yields results similar to K-means
and is not scalable, that is, it is slow for larger datasets. Furthermore, we did not use the
AHC with single linkage, as this algorithm has a problem with chaining. The test setup
for K-means and AHC with average linkage is similar to that in the previous experiment.
Each algorithm was run from 10 to 1000 clusters with step 10 and metrics were sweeped
for each consecutive run. The elbow point was determined using the Kneedle algorithm.
The results for each dataset and their conditions are summarized in Table 4.3. We used
these 𝐾s to calculate EER for each dataset, backend, and clustering algorithm model.
EER was obtained from generated pseudo-labels from each model, and we compared it to
their baseline. These results are shown in Table 4.4. Similarly to previous experiments, to
further explain how the clustering algorithms worked on these datasets and conditions, we
use figures for all criteria, as well as bincounts with cluster size.

K obtained from metrics

Dataset Condition Algorithm EER Silh. DB CH Real
K

SITW
dev-core-core AHC (average) 180 160 160 100 119K-means 190 130 130 120

eval-core-core AHC (average) 240 240 290 140 180K-means 260 200 170 120

SRE16

yue
(Cantonese)

AHC (average) 150 140 140 320 100K-means 160 120 120 280
tgl

(Tagalog)
AHC (average) 210 210 210 260 101K-means 170 170 130 140

VoxCeleb1 eval AHC (average) 120 80 110 210 40K-means 110 40 30 180

Table 4.3: Results of finding the optimal 𝐾 for different datasets, each 𝐾 was found with
Kneedle.

52

EER calculated from 𝐾

Dataset Condition Backend Algorithm EER Silh. DB CH Baseline
EER

SITW

dev-core-core
cosine AHC (average) 0.0146 0.0246 0.0246 0.0802 0.0516K-means 0.0300 0.0572 0.0572 0.0676

gplda AHC (average) 0.0133 0.0242 0.0242 0.0759 0.0469K-means 0.0285 0.0544 0.0544 0.0639

eval-core-core
cosine AHC (average) 0.0282 0.0282 0.0158 0.0873 0.0508K-means 0.0434 0.0586 0.0770 0.1112

gplda AHC (average) 0.0282 0.0282 0.0165 0.0923 0.0503K-means 0.0398 0.0607 0.0777 0.1078

SRE16

yue
cosine AHC (average) 0.0161 0.0176 0.0176 0.0062 0.0281K-means 0.0193 0.0240 0.0240 0.0126

gplda AHC (average) 0.0172 0.0190 0.0190 0.0068 0.0295K-means 0.0195 0.0249 0.0249 0.0131

tgl
cosine AHC (average) 0.0534 0.0534 0.0534 0.0393 0.1195K-means 0.0563 0.0563 0.0730 0.0689

gplda AHC (average) 0.0564 0.0564 0.0564 0.0409 0.1196K-means 0.0568 0.0568 0.0743 0.0706

VoxCeleb1 eval
cosine AHC (average) 0.0244 0.0293 0.0265 0.0191 0.0386K-means 0.0328 0.0568 0.1247 0.0286

gplda AHC (average) 0.0268 0.0304 0.0279 0.0204 0.0392K-means 0.0335 0.0575 0.1225 0.0289

Table 4.4: EER calculated with 𝐾 and pseudo-labels obtained from K-means and AHC with average linkage. Colors represent the
difference from the baseline EER; the darker the red, the more negative the difference; the darker the green, the more positive the
difference. Lighter hues are closer to the baseline. The numbers in bold are optimal EER values.

53

In Table 4.3 we show that the K-means and the Silhouette value work quite well for
every test case except SRE16 tgl. DB score in conjunction with the K-means is also a good
indicator of the number of clusters. Interestingly, the EER is always around 60 clusters
above the real value of 𝐾. As mentioned in Section 2.9.2, Kneedle is a general-purpose
algorithm to find an elbow point. To be more system-specific, it might be a good step to
adjust the final 𝐾 with bias. On the other hand, the CH score showed that it behaved
well only under the specifics of the SITW data set with the condition dev-core-core. Note
that all algorithms and criteria did not work well when they were used on the most difficult
dataset and condition – SRE16 tgl with EER slightly below 0.12.

Overall, using different scoring backend does not strongly influence the EER obtained by
different metrics. Although the EER values for the cosine distance backend were closer to
the baseline, this was most likely due to the fact that we used cosine similarity for K-means
and AHC.

54

4.3.1 SITW eval-core-core

The criteria graphs in Figure 4.15 for the eval-core-core condition are similar to those for the
dev-core-core condition in Figure 4.3. However, there are two notable distinctions. First,
the Silhouette is wider for both models, and the elbow here is not as precise. Second, the
elbow of the DB score for AHC (average) is much larger 𝐾 than the elbow of the K-means
model. This is the result of fitting a 7th degree polynomial line, which was influenced by
the steep increase at 𝐾 = 30.

SITW eval-core-core criteria

0 100 200 300 400 500
Number of clusters K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
E
R K = 240 (AHC (average))

K = 260 (K-means)

K = 180

EER elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

0.05

0.10

0.15

0.20

0.25

0.30

S
ilh

o
u
e
tt

e
 v

a
lu

e

K = 240 (AHC (average))

K = 200 (K-means)

K = 180

Silhouette value elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
a
v
ie

s-
B

o
u
ld

in
 s

co
re

K = 290 (AHC (average))
K = 170 (K-means)

K = 180

Davies-Bouldin score elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

C
a
lin

sk
i-

H
a
ra

b
a
sz

 s
co

re

K = 140 (AHC (average))
K = 120 (K-means)

K = 180

Calinski-Harabasz score elbow plot

model
AHC (average)

K-means

Figure 4.15: Criteria for dataset SITW eval-core-core. Real number of clusters and metric
value are orange. Gray dashed line represents 𝐾 from each model calculated with Kneedle
algorithm. This condition has 180 speakers and 1202 recordings.

55

Bincount for K-means K=200

1 2 3 4 5 6 7 8 9 10 11 12
Cluster size

0

10

20

30

40

Nu
m

be
r o

f c
lu

st
er

s Mean: 6.0

Figure 4.16: Bincount of recordings for
SITW eval-core-core with K-means and
number of clusters 𝐾 = 200 chosen by
Silhouette value.

Bincount for AHC (average) K=240

1 2 4 6 8 10 12 14
Cluster size

0

10

20

30

40

50

Nu
m

be
r o

f c
lu

st
er

s Mean: 5.0

Figure 4.17: Bincount of recordings for
SITW eval-core-core with AHC (average) and
number of clusters 𝐾 = 240 chosen by Silhou-
ette value.

SITW eval-core-core baseline

1 2 3 4 5 6 7 8 9 10 11
Recordings count

0

10

20

30

40

50

Sp
ea

ke
rs

 c
ou

nt

Mean: 6.7

Figure 4.18: Baseline for SITW eval-core-core with 180 speakers.

We compared the results for 𝐾 chosen by the Silhoutte metric with the baseline in
Figure 4.18. The K-means model in Figure 4.16 with 𝐾 = 200 is close to the baseline;
it also has the same values for the largest number of clusters of sizes 6, 7 and 8. On the
contrary, the AHC (average) model with 𝐾 = 240 shown in Figure 4.17 was comparably
worse and created many singleton clusters as in a previous experiment with the dev-core-
core condition in the same data set in 4.2.3.

56

4.3.2 SRE16 yue

The algorithms tested on the SRE16 dataset with yue condition showed satisfactory results
with visible elbows for the EER, Silhouette, and DB score in Figure 4.19. For the CH
metric there is a visible peak at 𝐾 = 100, however, it was not detected by the Kneedle
algorithm because it does not classify it as an elbow explained in 2.11. Nevertheless, this
peak point is probably dataset-specific as it was not shown in other results.

SRE16 yue criteria

0 100 200 300 400 500
Number of clusters K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
E
R

K = 150 (AHC (average))
K = 160 (K-means)

K = 100

EER elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
ilh

o
u
e
tt

e
 v

a
lu

e

K = 140 (AHC (average))
K = 120 (K-means)

K = 100

Silhouette value elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

1.5

2.0

2.5

3.0

3.5

D
a
v
ie

s-
B

o
u
ld

in
 s

co
re

K = 140 (AHC (average))

K = 120 (K-means)

K = 100

Davies-Bouldin score elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

40

60

80

100

120

C
a
lin

sk
i-

H
a
ra

b
a
sz

 s
co

re

K = 320 (AHC (average))
K = 280 (K-means)

K = 100

Calinski-Harabasz score elbow plot

model
AHC (average)

K-means

Figure 4.19: Criteria for dataset SRE16 yue. Real number of clusters and metric value are
orange. Gray dashed line represents 𝐾 from each model calculated with Kneedle algorithm.
This condition has 100 speakers and 5152 recordings.

The K-means model with 𝐾 = 120 in Figure 4.20 shows a distribution similar to the
baseline in Figure 4.22, nevertheless, it created more smaller clusters. The model for AHC
(average) with 𝐾 = 140 has many singletons as in other experiments.

57

SRE16 for K-means K=120

1 10 20 30 40 50 60 70
Cluster size

0

5

10

15
Nu

m
be

r o
f c

lu
st

er
s Mean: 42.9

Figure 4.20: Bincount of recordings for
SRE16 yue with K-means and number of
clusters 𝐾 = 120 chosen by Silhouette.

Bincount for AHC (average) K=140

1 10 20 30 40 50 60 70 80 90
Cluster size

0

5

10

15

Nu
m

be
r o

f c
lu

st
er

s Mean: 36.8

Figure 4.21: Bincount of recordings for
SRE16 yue with AHC (average) and number
of clusters 𝐾 = 140 chosen by Silhouette.

SRE16 yue baseline

1 10 20 30 40 50 60 70 80 90
Recordings count

0
2
4
6
8

10
12
14
16

Sp
ea

ke
rs

 c
ou

nt

Mean: 51.5

Figure 4.22: Baseline for SRE16 yue with 180 speakers.

58

4.3.3 SRE16 tg

The condition tgl in SRE16 dataset is the most challenging tested. In Table 4.4 it also
has the worst EER value and overall results. All the metrics tested in Figure 4.23 show
a steep curve that becomes steady after an elbow point. Significant distinction from the
other results is that both Silhouette curves do not decrease after an elbow – a sign of a
dataset that is difficult to cluster.

SRE16 tgl criteria

0 100 200 300 400 500
Number of clusters K

0.05

0.10

0.15

0.20

0.25

0.30

E
E
R

K = 210 (AHC (average))
K = 170 (K-means)

K = 101

EER elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
ilh

o
u
e
tt

e
 v

a
lu

e

K = 210 (AHC (average))
K = 170 (K-means)

K = 101

Silhouette value elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

1.5

2.0

2.5

3.0

3.5

D
a
v
ie

s-
B

o
u
ld

in
 s

co
re

K = 210 (AHC (average))
K = 130 (K-means)

K = 101

Davies-Bouldin score elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

20

40

60

80

100

120

C
a
lin

sk
i-

H
a
ra

b
a
sz

 s
co

re

K = 260 (AHC (average))

K = 140 (K-means)

K = 101

Calinski-Harabasz score elbow plot

model
AHC (average)

K-means

Figure 4.23: Criteria for dataset SRE16 tgl. Real number of clusters and metric value are
orange. Gray dashed line represents 𝐾 from each model calculated with Kneedle algorithm.
This condition has 101 speakers and 4744 recordings.

Both K-means and AHC with average linkage had problems in clustering this data set.
As shown in Figure 4.24 the K-means with 𝐾 = 170 and AHC in Figure 4.25 with 𝐾 = 210
created many smaller clusters than at the baseline in Figure 4.26. It is important to note
that this part of NIST SRE16 shows suspicious behavior not only for our experiments, but
also from the point of speaker recognition, and was reported by several sites.

59

Bincount K-means K=170

1 10 20 30 40 50 60
Cluster size

0

5

10

15

Nu
m

be
r o

f c
lu

st
er

s Mean: 27.9

Figure 4.24: Bincount of recordings for
SRE16 tgl with K-means and number of
clusters 𝐾 = 170 chosen by DB.

Bincount for AHC (average) K=210

1 10 30 50 70 90 110 130
Cluster size

0

10

20

30

40

Nu
m

be
r o

f c
lu

st
er

s Mean: 22.6

Figure 4.25: Bincount of recordings for
SRE16 tgl with AHC (average) and number of
clusters 𝐾 = 210 chosen by Silhouette, EER,
and DB.

SRE16 tgl baseline

1 10 20 30 40 50 60 70
Recordings count

0
2
4
6
8

10
12
14

Sp
ea

ke
rs

 c
ou

nt

Mean: 47.0

Figure 4.26: Baseline for SRE16 tgl with 180 speakers.

60

4.3.4 VoxCeleb1

Most metrics tested on the VoxCeleb1 dataset showed a visible elbow pattern and a local
minimum or maximum, as shown in Figure 4.27. However, finding 𝐾 close to the real value
does not always lead to a good estimation of EER values. In Table 4.4 the baseline EER is
approximately 0.039. However, the K-means model with 𝐾 = 40 has EER = 0.0575. This
error was probably caused by the distribution of VoxCeleb1 speakers and their recording
count illustrated in the baseline in Figure 4.31. The K-means model outperformed the AHC
with single linkage and with the Silhouette and DB score

VoxCeleb1 eval criteria

0 100 200 300 400 500
Number of clusters K

0.05

0.10

0.15

0.20

0.25

E
E
R

K = 120 (AHC (average))
K = 110 (K-means)

K = 40

EER elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

0.15

0.20

0.25

0.30

0.35

S
ilh

o
u
e
tt

e
 v

a
lu

e

K = 80 (AHC (average))

K = 40 (K-means)

K = 40

Silhouette value elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

D
a
v
ie

s-
B

o
u
ld

in
 s

co
re

K = 110 (AHC (average))

K = 30 (K-means)

K = 40

Davies-Bouldin score elbow plot

model
AHC (average)

K-means

0 100 200 300 400 500
Number of clusters K

25

50

75

100

125

150

175

C
a
lin

sk
i-

H
a
ra

b
a
sz

 s
co

re

K = 210 (AHC (average))
K = 180 (K-means)

K = 40

Calinski-Harabasz score elbow plot

model
AHC (average)

K-means

Figure 4.27: Criteria for dataset VoxCeleb1 eval. Real number of clusters and metric
value are orange. Gray dashed line represents 𝐾 from each model calculated with Kneedle
algorithm. This condition has 40 speakers and 4715 recordings.

The distribution of the size of the clusters is very different from the VoxCeleb1 baseline
in Figure 4.31. The K-means in Figure 4.28 with 𝐾 = 110 and AHC with average linkage
in Figure 4.29 with 𝐾 = 80 did not model the distribution of the cluster sizes according to
the baseline. In addition, the AHC created many singletons.

Furthermore, we added Figure 4.30 with K-means 𝐾 = 40, which is the same 𝐾 as the
baseline. The distribution of the size of the clusters is similar to Figure 4.31. However, as
shown in Table 4.4, the EER for this specific K-means model, the difference of the EER
from baseline is approximately 0.018. This is not the closest value. However, if we move the
elbow point in the EER criteria in Figure 4.27 between 𝐾 = 40 and 𝐾 = 110, to 𝐾 = 60,
we are very close to the real value, as illustrated in Table 4.5. To further increase the

61

accuracy, we could use a smaller step for the range 40–110 and then use the elbow method
to find the optimal number of clusters 𝐾.

Bincount for K-means K=110

1 30 60 90 120
Cluster size

0

5

10

15

20

Nu
m

be
r o

f c
lu

st
er

s Mean: 42.9

Figure 4.28: Bincount of recordings for Vox-
Celeb1 with K-means and number of clusters
𝐾 = 110 chosen by EER.

Bincount for AHC (average) K=80

1 30 60 90 120 150 180 210 240 270
Cluster size

0

10

20

30

Nu
m

be
r o

f c
lu

st
er

s Mean: 58.9

Figure 4.29: Bincount of recordings for
VoxCeleb1 with AHC (average) and num-
ber of clusters 𝐾 = 80 chosen by EER.

Bincount for K-means K=40

1 30 60 90 120 150 180 210 240
Cluster size

0

1

2

3

4

5

Nu
m

be
r o

f c
lu

st
er

s Mean: 117.9

Figure 4.30: Bincount of recordings for
VoxCeleb1 with K-means and number of
clusters 𝐾 = 40 chosen by EER.

VoxCeleb1 baseline

0 30 60 90 120 150 180 210 240 270
Recordings count

0

1

2

3

4

5

Sp
ea

ke
rs

 c
ou

nt Mean: 117.9

Figure 4.31: Baseline for VoxCeleb1 with 40
speakers.

Number of
clusters 𝐾

40 50 60 70 80 90 100 110

EER 0.0568 0.0529 0.0353 0.0324 0.0321 0.0325 0.0295 0.0328

Table 4.5: EER for Voxceleb1 dataset using K-means and cosine backend with different
𝐾 from 40 to 110 showing steep change in EER from 𝐾 = 50 to 𝐾 = 60.

62

Chapter 5

Conclusion

5.1 Summary
This work aimed to explore, implement, and test a technique for estimating results for
speaker recognition on data without speaker labels. The speaker recognition system used
in this thesis is based on the x-vector architecture. Nevertheless, the methods tested are
system-invariant. The speaker recognition system processes audio data with an embedding
extractor, creating a single discriminative embedding for each speech recording. The basic
idea of this work is to create a speaker embedding for each recording in the dataset, then
group them into a specific number of clusters 𝐾 and evaluate the system with these cluster
labels as if they were the reference.

Firstly, the so-called pseudo-labels have to be created by comparing each embedding and
grouping them into different clusters representing these pseudo-labels. K-means, Gaussian
mixture models (GMM) and agglomerative hierarchical clustering (AHC) were used for this
purpose. The most challenging part is to find an optimal number of clusters 𝐾 without
knowing them beforehand. Four metrics were used to evaluate the clustering algorithms
and estimate the correct 𝐾 value – EER, Silhouette index, Calinski-Harabasz (CH), and
Davies-Bouldin (DB) scores. These metrics have a peak or an elbow that indicates the
optimal 𝐾. The Kneedle algorithm [3] was used to detect these points automatically.

Secondly, the pseudo-labels generated by the clustering algorithms were used to calculate
Equal Error Rate (EER) – standard measure for comparison and evaluation of biometric
systems. The EER is then compared to the baseline with reference speaker labels.

This system was developed and tuned on one part of the SITW database (dev-core-core)
and tested on another part (eval-core-core). The best method achieved an estimate of 5.72 %
EER with the reference EER equal to 5.15 % on SITW dev-core-core. Similar results were
observed on the SITW eval-core-core, where the estimated EER is equal to 5.86 % and the
reference 5.08 %. The difference between estimated and reference EER is 0.57 % for the
SITW dev-core-core and 0.78 % for the SITW eval-core-core.

Two other tests on unseen datasets (NIST SRE16 and VoxCeleb1) were performed to
verify the robustness of the proposed method. The estimated EERs were 2.40 % and 3.28 %
for NIST SRE16 and VoxCeleb1, respectively. Reference EERs for these datasets are 2.8 %
and 3.86 %, respectively.

Generally, the developed testing process had an estimated error of around ±1 % in all
test databases, which is an excellent result for an unsupervised technique. It is important
to note that part of the NIST SRE16 (Tagalog) shows suspicious behavior not only for our

63

experiments but also from the point of speaker recognition, and was reported by several
sites.

Overall, the Silhouette value with the cosine distance metric is dominantly the best
technique. The elbow method for EER would need some adjustments, as it overestimates
the number of clusters 𝐾 in every test case. DB and CH scores show some interesting
results but are dataset-specific; thus, they can only be used in pairs with previous metrics
to provide additional clues for an optimal estimate of 𝐾.

As the results show, the K-means clustering algorithm is the best one. AHC (single
linkage) function suffer from the chaining phenomena, and the AHC (average linkage)
function creates many singleton clusters. Generally, the estimation of correct EER and
K was easier for datasets with speakers, where each of them has a roughly similar amount
of audio recordings, and the dataset has overall good clustering properties without many
outliers.

For the automatic control of audio quality and recording quality in the evaluation set,
we propose to preselect representative recordings which are close to the production environ-
ment. The idea is that there are large amounts of unsupervised data, some of which are of
poor quality. The recordings should have at least 3 seconds of speech signal length as used in
production [1]. Another proposed metric for quality estimation is the signal-to-noise ratio
(SNR), where the recordings should be close to the average SNR and do not contain many
outliers. These two main metrics could be extended with perceptual evaluation of speech
quality (PESQ) [33]. Furthermore, it is important to create a testing set with speakers who
have more than one recording to create enough target trials because without them there
will not be enough false alarms (FA) that are important for calculating the EER. This can
be done by sampling the trials with higher scores.

5.2 Future work
For the future work, there are several ways to improve the effectiveness of the developed
technique. The estimations with the EER and elbow method were slightly inaccurate,
overestimating the number of clusters in each experiment. This could be adjusted with
the system-specific elbow estimation method. Furthermore, it would be interesting to try
different evaluation metrics, or another clustering algorithm, such as the X-means [4] or the
G-means [5], which estimates the optimal 𝐾 by itself.

Another unexplored area is how much noise and other artifacts negatively interfere with
the unsupervised evaluation. To investigate this area, we propose experiments with adding
noise to recordings and measuring the impact of different SNR values. The length of the
speech signal is also an important aspect that influences speech recognition and should be
tested to see how the results of unsupervised evaluation change with different lengths of
speech.

64

Bibliography

[1] Phonexia. Speaker identification (SID). Brno: [b.n.], 2019. Accessed: 2022-01-23.
Available at:
https://web.archive.org/web/20220123224559/https://partner.phonexia.com/kb/sp/
speech-platform/spe/technologies-available-spe/speaker-identification-sid/.

[2] Snyder, D., Garcia Romero, D., Sell, G., Povey, D. and Khudanpur, S.
X-Vectors: Robust DNN Embeddings for Speaker Recognition. In: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2018, p. 5329–5333. DOI: 10.1109/ICASSP.2018.8461375.

[3] Satopaa, V., Albrecht, J., Irwin, D. and Raghavan, B. Finding a ”Kneedle“ in
a Haystack: Detecting Knee Points in System Behavior. In: 2011 31st International
Conference on Distributed Computing Systems Workshops. 2011, p. 166–171. DOI:
10.1109/ICDCSW.2011.20. ISBN 978-1-4577-0384-3.

[4] Pelleg, D. and Moore, A. X-means: Extending K-means with Efficient Estimation
of the Number of Clusters. Machine Learning, p. january 2002.

[5] Hamerly, G. and Elkan, C. Learning the K in K-Means. Advances in Neural
Information Processing Systems. march 2004, vol. 17.

[6] Phonexia. Voice verify. Brno: [b.n.], 2021. Accessed: 2021-12-04. Available at:
https://web.archive.org/web/20211204200111/https:
//www.phonexia.com/en/product/voice-verify/.

[7] Matějka, P., Plchot, O., Glembek, O., Burget, L., Rohdin, A. J. et al. 13
years of speaker recognition research at BUT, with longitudinal analysis of NIST
SRE. Computer Speech and Language. 2020, vol. 2020, no. 63, p. 1–15. DOI:
10.1016/j.csl.2019.101035. ISSN 0885-2308. Available at:
https://www.fit.vut.cz/research/publication/12211.

[8] Beigi, H. Fundamentals of Speaker Recognition. December 2011. ISBN
978-0-387-77591-3.

[9] Moore, B. An Introduction to the Psychology of Hearing: Sixth Edition. Leiden,
The Netherlands: Brill, 2013. ISBN 978-90-04-25242-4. Available at:
https://brill.com/view/title/24210.

[10] Ravanelli, M. and Bengio, Y. Speaker Recognition from Raw Waveform with
SincNet. arXiv, 2018. DOI: 10.48550/ARXIV.1808.00158. Available at:
https://arxiv.org/abs/1808.00158.

65

https://web.archive.org/web/20220123224559/https://partner.phonexia.com/kb/sp/speech-platform/spe/technologies-available-spe/speaker-identification-sid/
https://web.archive.org/web/20220123224559/https://partner.phonexia.com/kb/sp/speech-platform/spe/technologies-available-spe/speaker-identification-sid/
https://web.archive.org/web/20211204200111/https://www.phonexia.com/en/product/voice-verify/
https://web.archive.org/web/20211204200111/https://www.phonexia.com/en/product/voice-verify/
https://www.fit.vut.cz/research/publication/12211
https://brill.com/view/title/24210
https://arxiv.org/abs/1808.00158

[11] Tiwari, V. MFCC and its applications in speaker recognition. International journal
on emerging technologies. Citeseer. 2010, vol. 1, no. 1, p. 19–22. ISSN 0975-8364.

[12] Stevens, S. S., Volkmann, J. and Newman, E. B. A Scale for the Measurement of
the Psychological Magnitude Pitch. The Journal of the Acoustical Society of
America. 1937, vol. 8, no. 3, p. 185–190. DOI: 10.1121/1.1915893. Available at:
https://doi.org/10.1121/1.1915893.

[13] Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P. and Ouellet, P. Front-End
Factor Analysis for Speaker Verification. IEEE Transactions on Audio, Speech, and
Language Processing. 2011, vol. 19, no. 4, p. 788–798. DOI:
10.1109/TASL.2010.2064307.

[14] LeCun, Y., Bengio, Y. and Hinton, G. Deep Learning. Nature. may 2015,
vol. 521, p. 436–44. DOI: 10.1038/nature14539.

[15] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J. and Khudanpur, S.
Recurrent neural network based language model. In:. January 2010, vol. 2,
p. 1045–1048.

[16] Wang, Y., Deng, X., Pu, S. and Huang, Z. Residual Convolutional CTC Networks
for Automatic Speech Recognition. arXiv, 2017. DOI: 10.48550/ARXIV.1702.07793.
Available at: https://arxiv.org/abs/1702.07793.

[17] Joon Son Chung, A. Z. VoxCeleb2: Deep Speaker Recognition. In: Interspeech
2018. ISCA, Sep 2018. DOI: 10.21437/interspeech.2018-1929. Available at:
https://doi.org/10.21437%2Finterspeech.2018-1929.

[18] Tchistiakova, S. Time Delay Neural Network. Time Delay Neural Network Blog
post. Nov 2019. Accessed: 2021-01-29. Available at:
https://kaleidoescape.github.io/tdnn/.

[19] Xie, W., Nagrani, A., Chung, J. S. and Zisserman, A. Utterance-level
Aggregation for Speaker Recognition in the Wild. In: ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, p. 5791–5795. DOI: 10.1109/ICASSP.2019.8683120.

[20] Snyder, D., Ghahremani, P., Povey, D., Garcia Romero, D., Carmiel, Y.
et al. Deep neural network-based speaker embeddings for end-to-end speaker
verification. In: 2016 IEEE Spoken Language Technology Workshop (SLT). 2016,
p. 165–170. DOI: 10.1109/SLT.2016.7846260.

[21] Yu, Y.-Q., Fan, L. and Li, W.-J. Ensemble Additive Margin Softmax for Speaker
Verification. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2019, p. 6046–6050. DOI:
10.1109/ICASSP.2019.8683649.

[22] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. arXiv, 2015. DOI: 10.48550/ARXIV.1512.03385. Available at:
https://arxiv.org/abs/1512.03385.

66

https://doi.org/10.1121/1.1915893
https://arxiv.org/abs/1702.07793
https://doi.org/10.21437%2Finterspeech.2018-1929
https://kaleidoescape.github.io/tdnn/
https://arxiv.org/abs/1512.03385

[23] Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning.
Secondth ed. New York, NY, USA: Springer New York Inc., 2009. Springer Series in
Statistics. ISBN 978-0387848570.

[24] Li, S. Z. and Jain, A., ed. Fisher Criterion. Boston, MA: Springer US, 2009.
549–549 p. ISBN 978-0-387-73003-5. Available at:
https://doi.org/10.1007/978-0-387-73003-5_585.

[25] Tharwat, A., Gaber, T., Ibrahim, A. and Hassanien, A. E. Linear discriminant
analysis: A detailed tutorial. Ai Communications. may 2017, vol. 30, p. 169–190,.
DOI: 10.3233/AIC-170729.

[26] Gareth, J., Daniela, W., Trevor, H. and Robert, T. An introduction to
statistical learning: with applications in R. Spinger, 2013. ISBN 978-1461471370.

[27] Ioffe, S. Probabilistic Linear Discriminant Analysis. In: Proceedings of the 9th
European Conference on Computer Vision - Volume Part IV. Berlin, Heidelberg:
Springer-Verlag, 2006, p. 531–542. ECCV’06. DOI: 10.1007/11744085_41. ISBN
3540338381. Available at: https://doi.org/10.1007/11744085_41.

[28] Ramoji, S., Krishnan, P., Singh, P. and Ganapathy, S. Pairwise Discriminative
Neural PLDA for Speaker Verification. arXiv, 2020. DOI:
10.48550/ARXIV.2001.07034. Available at: https://arxiv.org/abs/2001.07034.

[29] Kenny, P., Stafylakis, T., Ouellet, P., Alam, M. J. and Dumouchel, P. PLDA
for speaker verification with utterances of arbitrary duration. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. 2013,
p. 7649–7653. DOI: 10.1109/ICASSP.2013.6639151.

[30] Garcia Romero, D., Zhou, X. and Espy Wilson, C. Y. Multicondition training of
Gaussian PLDA models in i-vector space for noise and reverberation robust speaker
recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2012, p. 4257–4260. DOI: 10.1109/ICASSP.2012.6288859.

[31] Vogt, R., Sridharan, S. and Mason, M. Making Confident Speaker Verification
Decisions With Minimal Speech. IEEE Transactions on Audio, Speech, and Language
Processing. 2010, vol. 18, no. 6, p. 1182–1192. DOI: 10.1109/TASL.2009.2031505.

[32] Plapous, C., Marro, C. and Scalart, P. Improved Signal-to-Noise Ratio
Estimation for Speech Enhancement. IEEE Transactions on Audio, Speech, and
Language Processing. 2006, vol. 14, no. 6, p. 2098–2108. DOI:
10.1109/TASL.2006.872621.

[33] Rix, A., Beerends, J., Hollier, M. and Hekstra, A. Perceptual evaluation of
speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. In: 2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings (Cat. No.01CH37221). 2001, vol. 2, p. 749–752
vol.2. DOI: 10.1109/ICASSP.2001.941023.

[34] Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end
speech quality assessment of narrow-band telephone networks and speech codecs.
Standard ITU-T Recommendation P.862. International Telecommunication Union,
2001. Accessed: 2022-02-15. Available at: https://www.itu.int/rec/T-REC-P.862.

67

https://doi.org/10.1007/978-0-387-73003-5_585
https://doi.org/10.1007/11744085_41
https://arxiv.org/abs/2001.07034
https://www.itu.int/rec/T-REC-P.862

[35] Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE
Transactions on Information Theory. 1968, vol. 14, no. 1, p. 55–63. DOI:
10.1109/TIT.1968.1054102.

[36] Gorban, A. N. and Tyukin, I. Y. Blessing of dimensionality: mathematical
foundations of the statistical physics of data. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences. 2018, vol. 376,
no. 2118, p. 20170237. DOI: 10.1098/rsta.2017.0237. Available at:
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0237.

[37] Abdi, H. and Williams, L. Principal Component Analysis. Wiley Interdisciplinary
Reviews: Computational Statistics. july 2010, vol. 2, p. 433 – 459. DOI:
10.1002/wics.101.

[38] Ross, D., Lim, J., Lin, R.-S. and Yang, M.-H. Incremental Learning for Robust
Visual Tracking. International Journal of Computer Vision. may 2008, vol. 77,
p. 125–141. DOI: 10.1007/s11263-007-0075-7.

[39] Wang, S., Sun, Y. and Bao, Z. On the Efficiency of K-Means Clustering:
Evaluation, Optimization, and Algorithm Selection. Proc. VLDB Endow. VLDB
Endowment. oct 2020, vol. 14, no. 2, p. 163–175. DOI: 10.14778/3425879.3425887.
ISSN 2150-8097. Available at: https://doi.org/10.14778/3425879.3425887.

[40] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better
clusterings. In:. January 2002, p. 600–607. DOI: 10.1145/584792.584890.

[41] Arthur, D. and Vassilvitskii, S. K-Means++: The Advantages of Careful
Seeding. In:. January 2007, vol. 8, p. 1027–1035. DOI: 10.1145/1283383.1283494.

[42] Aurélien, G. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow. 2nd ed. O’Reilly Media, Inc., 2019. ISBN 978-1492032649.

[43] Sculley, D. Web-scale k-means clustering. In:. January 2010, p. 1177–1178. DOI:
10.1145/1772690.1772862.

[44] Cheng, J.-M. and Wang, H.-C. A method of estimating the equal error rate for
automatic speaker verification. In: 2004 International Symposium on Chinese Spoken
Language Processing. 2004, p. 285–288. DOI: 10.1109/CHINSL.2004.1409642.

[45] Liu, F. and Deng, Y. Determine the Number of Unknown Targets in Open World
Based on Elbow Method. IEEE Transactions on Fuzzy Systems. 2021, vol. 29, no. 5,
p. 986–995. DOI: 10.1109/TFUZZ.2020.2966182.

[46] Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics. 1987,
vol. 20, p. 53–65. DOI: https://doi.org/10.1016/0377-0427(87)90125-7. ISSN
0377-0427. Available at:
https://www.sciencedirect.com/science/article/pii/0377042787901257.

[47] Halkidi, M., Batistakis, Y. and Vazirgiannis, M. On Clustering Validation
Techniques. Journal of Intelligent Information Systems. october 2001, vol. 17. DOI:
10.1023/A:1012801612483.

68

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0237
https://doi.org/10.14778/3425879.3425887
https://www.sciencedirect.com/science/article/pii/0377042787901257

[48] Caliński, T. and JA, H. A Dendrite Method for Cluster Analysis. Communications
in Statistics - Theory and Methods. january 1974, vol. 3, p. 1–27. DOI:
10.1080/03610927408827101.

[49] Davies, D. L. and Bouldin, D. W. A Cluster Separation Measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1979, PAMI-1, no. 2,
p. 224–227. DOI: 10.1109/TPAMI.1979.4766909.

[50] McLaren, M., Ferrer, L., Castan, D. and Lawson, A. The Speakers in the Wild
(SITW) Speaker Recognition Database. In: Proc. Interspeech 2016. 2016, p. 818–822.
DOI: 10.21437/Interspeech.2016-1129.

[51] Seyed, Kheyrkhah, T., Tong, A., Greenberg, C., Olson, D. et al. The 2016
NIST Speaker Recognition Evaluation. In:. Interspeech 2017, Stockholm, -1,
2017-08-20 2017. Available at:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922849.

[52] Nagrani, A., Chung, J. S., Xie, W. and Zisserman, A. Voxceleb: Large-scale
speaker verification in the wild. Computer Speech and Language. 2020, vol. 60,
p. 101027. DOI: https://doi.org/10.1016/j.csl.2019.101027. ISSN 0885-2308. Available
at: https://www.sciencedirect.com/science/article/pii/S0885230819302712.

[53] Sadjadi, O. NIST SRE CTS Superset: A large-scale dataset for telephony speaker
recognition. NIST SRE website, 2021-08-16 04:08:00 2021. Accessed: 2022-05-05.
Available at: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933116.

[54] Godfrey, J. J., Holliman, E. C. and McDaniel, J. SWITCHBOARD: Telephone
Speech Corpus for Research and Development. In: Proceedings of the 1992 IEEE
International Conference on Acoustics, Speech and Signal Processing - Volume 1.
USA: IEEE Computer Society, 1992, p. 517–520. ICASSP’92. ISBN 0780305329.

69

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922849
https://www.sciencedirect.com/science/article/pii/S0885230819302712
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933116

Appendix A

Used Software and Libraries

Python v3.9.12 was used with these libraries and their corresponding versions:

• sklearn v1.0.2
• numpy v1.20.3
• scipy v1.7.2
• pandas v1.3.4
• numba v0.54.1
• kneed v0.7.0
• gap-stat v2.0.1
• matplotlib v3.4.3
• seaborn v0.11.2
• jupyter v1.0.0

70

	Introduction
	Theoretical Introduction
	Speaker Recognition
	Speech Feature Extraction
	MFCC – Mel Frequency Cepstral Coefficient
	FBANK Features

	VAD – Voice Activity Detection
	DNN – Deep Neural Network
	x-vector Extraction
	Scoring Backend
	Score Normalization
	LDA – Linear Discriminant Analysis
	PLDA – Probabilistic Linear Discriminant Analysis

	Filtering – Automatic Control of Audio Quality
	Speech signal length
	SNR – Signal-to-noise ratio
	PESQ – Perceptual Evaluation of Speech Quality

	Clustering – Unsupervised Learning
	Curse of Dimensionality
	PCA – Principal Components Analysis
	K-means
	GMM – Gaussian Mixture Model
	AHC – Agglomerative Hierarchical Clustering
	Comparison of Clustering Algorithms

	Evaluation Metrics and Criteria
	EER – Equal Error Rate
	Elbow Method
	The Silhouette Score
	Calinski-Harabasz (CH) score
	Davies-Bouldin (DB) score
	Other Notable Methods

	Datasets
	SITW – Speakers in the Wild
	NIST SRE16
	VoxCeleb1
	Datasets Summary

	Experiments
	Experimental Setup
	SID System
	Clustering Algorithms

	Evaluation Method Development
	Baseline
	Embeddings Preprocessing
	Clustering and Evaluation

	Testing on Other Datasets
	SITW eval-core-core
	SRE16 yue
	SRE16 tg
	VoxCeleb1

	Conclusion
	Summary
	Future work

	Bibliography
	Used Software and Libraries

