
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AGILE MODEL EDITOR
AGILNÝ EDITOR MODELOV

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ KOREC
AUTOR PRÁCE

SUPERVISOR doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Korec Tomáš
Programme: Information Technology
Title: Agile Model Editor
Category: Software Engineering
Assignment:

1. Study graphical frameworks suitable for model editing.
2. Study general-purpose graphical languages used for model definition.
3. Design an editor allowing agile editing of models described in the chosen language, with the

focus on easy refactoring and regrouping of model elements.
4. Implement the editor.
5. Discuss the usability and limitations of the editor.

Recommended literature:
Dori, Dov (2016). Model-Based Systems Engineering with OPM and SysML. New
York: Springer-Verlag. (https://doi.org/10.1007%2F978-1-4939-3295-5)
STPA Handbook
(http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf)
Systems Modeling Language (SysML): https://sysml.org/
Eclipse Sprotty, a diagramming framework for the
web: https://github.com/eclipse/sprotty (https://typefox.io/sprotty-a-web-based-diagramming-
framework)

Requirements for the first semester:
First three items of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rogalewicz Adam, doc. Mgr., Ph.D.
Consultant: Fiedor Jan, Ing., Ph.D., UITS FIT VUT
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23038/2020/xkorec04 Page 1/1

Abstract
The thesis aims to minimize time spent on modeling software architecture and provide a
practical tool to create, order, and visualize system models. The current modeling ap-
proaches consume too much time, often creating and editing the model costs more time
than implementing such a system. The work focuses primarily on representing complex
models efficiently, finding the best modeling language to do this task, and developing an
agile editor.

Abstrakt
Cieľom práce je minimalizovať čas strávený modelovaním softvérovej architektúry a poskyt-
núť praktický nástroj na vytváranie, zoraďovanie a vizualizáciu systémových modelov.
Súčasné prístupy k modelovaniu zaberajú príliš veľa času, pričom vytvorenie a úpravy
modelu často stoja viac času ako ich implementácia. Práca sa zameriava predovšetkým
na efektívne zobrazenie zložitých modelov, nájdenie najlepšieho modelovacieho jazyka na
vykonávanie tejto úlohy a vytvorenie agilného editora.

Keywords
modeling, OPM, system architecture, system model, modeling languages, UML, SysML,
web editor, model editor

Kľúčové slová
modelovanie, OPM, systémová architektúra, systémový model, modelovacie jazyky, UML,
SysML, webový editor, editor modelov

Reference
KOREC, Tomáš. Agile Model Editor. Brno, 2021. Bachelor’s thesis. Brno Univer-
sity of Technology, Faculty of Information Technology. Supervisor doc. Mgr. Adam Ro-
galewicz, Ph.D.

Agile Model Editor

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Mgr. Adam Rogalewicz, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Tomáš Korec
May 11, 2021

Acknowledgements
I would like to thank my supervisor, doc. Mgr. Adam Rogalewicz, Ph.D. for professional
guidance of the bachelor’s thesis. I would also like to thank my technical supervisor of
the bachelor’s thesis, Ing. Jan Fiedor, Ph.D., for his time, valuable advice, and factual
comments that helped me to complete this work.

Contents

1 Introduction 2

2 Editor requirements 4
2.1 Modeling practices survey . 4
2.2 Code-Centric and Model-Centric Approaches 6

2.2.1 Problems with the model-centric approach 7
2.2.2 Problems with the code-centric approach 9

2.3 Summary . 10

3 Comparison of standard modeling languages 11
3.1 Unified Modeling Language . 11
3.2 Systems Modeling Language . 13
3.3 Object Process Methodology . 15
3.4 Modeling languages comparison . 17

4 Implementation 22
4.1 Web diagramming frameworks . 23
4.2 Cytoscape js . 24
4.3 Ionic Framework . 25

5 Usability, limitations, and use cases 28
5.1 Application usage . 28

5.1.1 Application frame . 28
5.1.2 Control elements in the canvas . 29

5.2 Limitations and known issues . 29
5.3 Comparison of a model in OPM and SysML 29
5.4 Comparison of the project and existing OPM application 34

6 Conclusion 36

Bibliography 37

A All tested frameworks 38

B Used Cytoscape extensions 39

C Data model 40

D Content of the attached media 41

1

Chapter 1

Introduction

Modeling is broadly used in both science and engineering to provide abstractions of a sys-
tem at some level of detail and precision. The model is analyzed in order to obtain a
better understanding of the system being developed. As reported by the Object Modeling
Group (OMG): ”modeling is the designing of software applications before coding“1. In
model-based software development, modeling is used as an essential part of the software
development process. Models are built and analyzed before implementing the system and
are used to manage the following implementation. In this work, we are looking at using
models for both software and system development.

Let us start with two questions first. Why do we create a system model? What are
the benefits we can gain? These questions need to be answered before the implementation
of the editor could start. If we look at what vendors of existing modeling tools are saying,
we will see declarations of how models help us with software development. Let us name a
few of the central claims.

• Models help us to visualize a system as it is or as we want it to be.

• Models permit us to specify the structure or behavior of a system.

• Models give us a template that guides us in constructing a system.

• Models document the decisions we have made.

• Helps to understand complex systems part by part2.

as a result of these attributes, model-based development should also

• Improve the understandability of the system.

• Ease the integration of new team members.

• Allows the decomposition and modularization of the system.

• Facilitates system evolution and maintenance.

• Enable the reuse of parts of the system in new projects3.
1https://www.uml.org/what-is-uml.htm
2https://www.visual-paradigm.com/guide/uml-unified-modeling-language/why-uml-modeling/
3https://modeling-languages.com/list-supposed-benefits-software-modeling/

2

https://www.uml.org/what-is-uml.htm
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/why-uml-modeling/
https://modeling-languages.com/list-supposed-benefits-software-modeling/

Although these promises of model-centered development are very plausible, they can
carry obstacles along the way. Today, model-driven development is not common practice in
many companies, or it has been done only partially. The main problems of creating large
system models that may first come to our minds may be that:

• It requires people trained to use a specialized, complex modeling language.

• We need to have multiple diagrams to describe different parts of the system.

• We need to have professional tooling to create and maintain complex models.

• It consumes a significant amount of time that may be better invested in developing,
fixing, and testing the existing system.

The thesis first discusses the usage of modeling tools in the field and concludes which fea-
ture users need the most and what are the reasons modeling approaches are not commonly
adopted in many companies. Along with that, we discuss the advantages and disadvantages
of current code-based development. The rest of the work is organized as follows. In the next
section, we discussed several modeling languages, their strong and weak sides. In section
three, we present the different graphical web frameworks and compare them against each
other. Next, we discuss the vital parts of editor implementation and the main obstacles
that the development faced. Section 4 presents the final project, provides the OPM model
created in the implemented editor, and compares the same model modeled in the SysML
modeling language. Finally, the last section summarizes the work done and discusses some
ideas for follow-up works.

3

Chapter 2

Editor requirements

First, we look for references in the field and see which are the biggest challenges that
modeling approaches meet. As there are some studies done on evaluating the effectiveness
of modeling systems, we can use them to assess user needs and notice this information in
designing the editor.

2.1 Modeling practices survey
There was a study [5] conducted in 2007 about the usage of models in software develop-
ment. The survey aimed to reveal attitudes and experiences of software professionals about
software modeling and develop approaches that avoid modeling. The study was motivated
by observations that modeling is not widely adopted since many developers continue to
take a code-centric approach. It consists of 113 software practitioners with an average of
14 years of experience. With demographics, about two-thirds of the respondents were from
Canada or the United States, and the last third respondents worldwide.

Most participants work on business software, followed by design and engineering software
and website content management.

Type of software that participants work on (in percentage):

• 46% business software

• 25% design engineering software

• 23% website content management

• 6% other

The sample included participants from management positions and developer posts, each
performing at least some design or modeling activity.

Involved in leadership roles (team leader, project manager)

• 90% at least sometimes

• 53% very often or always

Work with source code (developing new code, maintaining and bug fixing)

4

• 86% at least sometimes

• 49% very often or always

Performing design or modeling

• 95%+ at least sometimes

• 57% do this very often or always

The survey has 18 questions, most of which involve different sub-questions with 5-point
scales. The scale ranges from strongly disagree to strongly agree, or from never to always.

The first question is discussing the most common answers for creating models and how
they were received, represented in Table 2.1.

The survey found out that creating models was the most frequent way of drawing or
writing on a whiteboard [5]. The second most frequent was using diagramming tools and
word-processing software and finally, very few used drawing software to maintain models.
Note that respondents can agree on using more than one way or not responding to some
option at all, so the sum of the percentage does not need to be 100%.

Table 2.1: Responses for Question: Way of creating models [5].
Participants opinion agree disagree
Drawing or writing on a whiteboard 45% 33%
Diagramming tools 37% 42%
Word-processing software 27% 46%
Other 22% - 30% -
Drawing software 13% 72%

The survey interestingly found that sources of receiving models are drastically different
from the ways people create models. All responses are included in Table 2.2.

Table 2.2: Responses for Question: Source of design information [5].
Frequency of usage very often never
Word of mouth 55% 24%
Word processors 48% -
Whiteboards/diagram tools 42% -
Fully-integrated modeling tools 32% 33%
Handwritten material 20% 24%

As we can see, the first source of design information was word of mouth. The second
most important source was material created in word processors and diagramming tools (that
can create structured diagrams but not integrated models). The interesting observation was
that fully integrated modeling tools were one of the least important source of the information
material.

The primary usage of modeling tools was designing a software system or transcribing a
design into a digital format [5].

Code generation from the model was not commonly used. It may be because partici-
pants do not need it or it was not done the way expected. Brainstorming design ideas are
also not a very common activity done in modeling tools, mainly because whiteboards seem

5

sufficient to provide the desired outcome.

The main uses of modeling tools (participants responses in percentage)

• 48% to develop the design of a software system

• 39% transcribe a design into a digital format

• 23% to brainstorm about possible design ideas and alternatives

• 18% to generate part of code

• 14% to generate all code

Now when we know how models are most often created and received, we can define
more precisely what model-centric and code-centric approaches are.

2.2 Code-Centric and Model-Centric Approaches
The following section is discussing the differences between code and model-centric ap-
proaches highlighting their problems and advantages.

The model-centric approach uses the model to see the overall design, any change to the
project is first performed in the model. In this approach, developers perform modeling as
a primary activity, and code is being generated, or it is written strictly according to the
model [5].

The code-centric approach focuses on code as the main source of understanding the de-
sign, and every change is done directly in code.

The survey asked the participant about their perceptions of which approach works best
for various activities. The answers are presented in Table 2.3. Where N stands for the
number of people who responded to the question, mean is a central value calculated from
the weight of each response multiplied by its percentage and divide by range, and s.d. is
standard deviation, a measure of how close responses are to the average value.

6

Table 2.3: Responses for Question: Tasks that are better in a model-centric versus code-
centric approach [5].

Available activities N mean s.d.

%
Much

easier in
Models

(1)

%
Easier

in
Models
(1 + 2)

%
Easier

in
Code

(4 + 5)

%
Much
easier

in
Code
(5)

Explaining a system to
others 92 1.7 1.1 61.1 81.8 7.6 6.5

Comprehending a
system’s behavior 89 2.0 1.3 51.7 71.9 15.7 5.6

Creating a new
system overall 92 2.2 1.3 43.5 68.5 20.7 7.6

Creating a re-usable
system 92 2.2 1.3 44.6 63.0 15.2 9.8

Creating a system that
most accurately meets
requirements

91 2.2 1.3 42.9 67.0 19.8 8.8

Modifying a system
when requirements
change

91 2.5 1.4 34.1 54.9 24.2 13.2

Creating a usable
system for end users 92 2.7 1.3 26.1 42.4 22.8 10.9

Creating a prototype 92 2.9 1.5 26.7 43.0 32.6 22.8
Creating a system as
quickly as possible 92 3.0 1.5 23.9 46.7 42.4 23.9

Creating efficient
software 92 3.1 1.4 16.3 35.9 43.5 21.7

Fixing a bug 90 3.2 1.5 21.1 28.9 43.3 25.6
Note: Values range from Much easier in a model-centric approach (1),
to much easier in a code-centric approach (5).

The answers indicate that most activities are performed easier in a model-centric ap-
proach. There was no prejudice about the model-centric approach. Also, tasks such as
creating efficient software were examined by nearly half of the respondents as achievable.

2.2.1 Problems with the model-centric approach

The biggest problem of model-centric approaches is keeping the model updated with the
code [5]. Also, it can be because participants did not want to generate code from models so
much. The results highlighting the problems with a model-centric approach are presented
in Table 2.4.

7

Table 2.4: Responses for Questions: Problems with a model-centric approach [5].

Potencial problems N mean
%

Strongly
D

isagree
(1)

%
D

isagree
(1+

2)

%
A

gree
(4+

5)

%
Strongly

agree
(5)

Models become out of date and
inconsistent with code 92 3.8 7.6 16.3 68.5 37.0

Models cannot be easily exchanged
between tools 91 3.3 15.4 26.4 51.6 17.6

Modeling tools are ’heavyweight’ (to
install, learn, configure, use) 92 3.1 10.9 31.5 39.1 12.0

Code generated from a modeling tool not
of the kind I would like 91 3.0 18.7 39.6 38.5 16.5

You cannot describe the kinds of details
that need to be implemented 89 2.8 23.6 43.8 36.0 7.9

Creating and editing a model is slow 92 2.7 17.4 43.5 22.8 12.0
Modeling tools change, models become
obsolete 92 2.7 22.8 44.6 32.6 5.4

Modeling tools lack features I need or want 89 2.6 19.1 44.9 21.3 5.6
Modeling tools hide too many details
that would be visible in the source code 92 2.6 19.6 44.6 23.9 1.1

Modeling tools are too expensive 90 2.6 26.7 46.7 26.7 6.7
Modeling tools do not allow be to
analyze my design in ways I would want 90 2.5 28.9 51.1 25.6 6.7

Organization culture does not like
modeling 92 2.5 31.5 48.9 23.9 4.3

Semantics of models different from
those of programming Languages used
for implementation

90 2.4 31.1 56.7 23.3 8.9

Modeling languages are not expressive
enough 91 2.4 28.6 54.9 17.6 2.2

Modeling language hard to understand 91 2.2 28.6 62.6 9.9 3.3
Have had bad experiences with modeling 91 2.2 39.6 63.7 16.5 6.6
Do not trust companies will continue to
support their tools 89 2.0 44.9 67.4 10.1 0.0

Note. Values range from Not a problem (1), to Terrible problem (5).

8

The study also identified that UML was the dominant modeling language with 52%
usage among the survey participants. Also, the difficulty of modeling languages is not the
limiting factor to adopting model-centric since they were considered easy to understand.

The authors also pointed out that text and source code has a longer lifespan and that
it will be a good idea to explore better ways to render models in a textual manner that
is human editable. This option is based on the fact that 34% of participants felt that a
model’s underlying storage format would become obsolete.

2.2.2 Problems with the code-centric approach

Participants were asked about problems involved with code-centric approaches to software
development. All the results are included in table 2.5.

Table 2.5: Responses for Questions: Problems with a code-centric approach [5].

Potencial problems N mean

%
Strongly

Dis-
agree

(1)

%
Dis-

agree
(1 + 2)

%
Agree

(4 + 5)

%
Strongly

Agree
(5)

Hard to see overall design 94 3.8 4.3 13.8 66.0 35.1
Hard to understand
behavior of system 94 3.6 4.3 19.1 60.6 21.3

Code becomes of poorer
quality over time 92 3.4 9.8 28.3 55.4 25.0

Too difficult to restructure
system when needed 93 3.4 8.6 22.6 51.6 17.2

Difficult to change code
without adding bugs 93 3.4 9.7 22.6 50.5 18.3

Changing code takes
too much time 94 2.8 20.2 39.4 27.7 8.5

Our programming language
leads to complex code 94 2.5 26.6 51.1 20.2 8.5

More skill is required
than is available to
develop high quality code

91 2.5 29.7 53.8 22.0 6.6

Programming languages
are not expressive enough 91 2.1 46.2 64.8 14.3 5.5

Organization culture does not
like the code-centric approach 92 1.9 58.7 72.8 14.1 4.3

Our programming language
is likely to become obsolete 93 1.9 51.6 75.3 9.7 3.2

Note. Values range from Not a problem (1), to Terrible problem (5).

Participants experience that code-centric approaches fail to deliver a high-level view of
the system, and over time expect the situation only gets worse. Programming languages,
in contrast to modeling tools, are not likely to become obsolete. The participants were
divided as to whether or not changing the code takes too much time.

9

We see that both approaches have their own problems and advantages. While there is
clear evidence that we can benefit from both, the synchronization and maintenance of both
approaches together is a pressing issue. The survey conclusion and more detailed analysis
from the survey authors are presented in the next section.

2.3 Summary
The study concluded that most participants have an expansive view of what modeling is.
They consider informal material such as hand-drawn diagrams to be a model. However, over
a third of participants never use formal modeling tools. The dominant modeling language is
UML but rarely used differently than as an information carrier. The central use of modeling
tools is to create documentation of the system or transform the design into a digital format
and are rarely used to generate code [5].

According to the authors of the study, model-centric tools may benefit from features
that help to better:

• ”Synchronize code and models to reduce inconsistencies.

• Provide better traceability between models and code to help identify relationships
among code and model artifacts to help indicate aspects of models that may require
maintenance should the code change (and vice-versa).

• Provide better modeling capabilities and expressions within the programming code
to reduce the need for external and disjoint modeling artifacts. “ (Forward, Andrew
and Lethbridge, Timothy, 2008, page 7 [5])

Participants believe that the model-centric approach has multiple advantages, and they
also have a desire to incorporate more modeling into their workflow, but it is hardly achiev-
able since most of the participants work in a code-centric environment.

Now that we have expertise from the field, we can continue and find formal modeling
language that will suit these requirements the best.

10

Chapter 3

Comparison of standard modeling
languages

This chapter discusses different modeling languages (ML) that are used today. The goal
is to determine the most suitable ML for system description. The most well-known for-
malisms for system modeling are UML, SysML, and OPM, and they are the main focus
of our research. We look at several basic parameters. We discuss basic units, the type of
diagrams, and complexity management for each language.

Diagrams essentially present how compact the language is, and it can make a possible
estimation of the learning curve to handle the whole language.

Complexity management is an essential part of the modeling language. If we try to in-
corporate all the details into one diagram, the amount of drawn symbols gets very large,
and their interconnections quickly become a complicated web. Furthermore, the whole
model structure will be hard to follow. So a system modeling languages include their in-
tegral mechanisms for controlling and managing its complexity, such as presenting and
viewing the system at various levels of detail. Now we can start with an analysis of the
most common language - UML.

3.1 Unified Modeling Language
Unified Modeling Language (UML) is a general-purpose modeling language in software
engineering that is intended to provide a standard way to visualize the design of a system.
UML has 14 diagram types. The current version is 2.5. It is mainly used in modeling
business processes and in software to analyze and design software implementation [1].

Diagram types

UML diagrams can be divided into two main groups Structure and Behavior diagrams.
Furthermore, the Behavior diagram group also includes Interaction diagrams.

As the name indicates, structure diagrams describe static application structure. These
include six types: Diagram, Object Diagram, Component Diagram, Composite Structure
Diagram, Package Diagram, and Deployment Diagram.

Following group behavior diagrams describe general behavior of a system and are three
of them: Use Case Diagram, Activity Diagram, and State Machine Diagram and also

11

included four that represent the aspect of interactions: Sequence Diagram, Communication
Diagram, Timing Diagram, and Interaction Overview Diagram. For a better understanding
of UML diagrams structure, they are all presented in Figure 3.2.

Figure 3.1: UML 2.5 diagrams1.

Note that the items in Figure 3.1 shown in blue are not part of the official UML 2.5
taxonomy of diagrams.

UML has various diagram types suited for specific modeling needs, thus missing one
underlying diagram that connects them. The most significant advantage of UML is that it
is very well known and has a large ecosystem of modeling tools.

1diagram taken from: https://www.uml-diagrams.org/uml-25-diagrams.html

12

https://www.uml-diagrams.org/uml-25-diagrams.html

Complexity management

Complexity management evolved mainly from UML version 2.0, where the new version can
nest models inside the component that manages them. In other words, nearly every building
block is a classifier, including classes, objects, components, and behaviors such as state
machines and others, and those classifiers can be nested on to each other. This feature allows
building complex structures and behaviors with interactions that are described sideways in
Interaction Overview Diagram.

That level of complexity gives a choice to present an abstraction of the system in various
ways. For example, UML 2 allows modeling a state machine inside the class that implements
it. However, with variability comes the cost of an increased effort to keep all components
synchronized and the need for at least one extra diagram to describe integrations between
all layers and diagram types, making it vulnerable to become inconsistent over time.

Some other of UML’s criticism is that the language is too ”software-centric“ so it can
be harder to describe other than a software type of system2. Since we had described all
critical parts of UML, let us move into examining its descendant SysML.

3.2 Systems Modeling Language
Systems Modeling Language (SysML) is a general-purpose graphical modeling language
and represents an extension of a subset of UML 2. The portion of which SysML has in
common with his ancestor is graphically represented in Figure 3.2. The current version is
1.63, and version 2.0 is coming in the fall of this year.

The language is used for specifying, analyzing, designing, and verifying complex systems
that include hardware, software, information, personnel, procedures, and facilities.

SysML leverages the OMG XML Metadata Interchange (XMI®) to exchange modeling
data between tools intended to be compatible with the evolving ISO 10303-233 systems
engineering data interchange standard.

2mentioned in MITOPENCOURCEWARE Session 3: Systems Modeling Languages course, transcript
availeble: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-
of-systems-engineering-fall-2015/class-videos/session-3-systems-modeling-languages/
CTVFDb44ses.pdf search ”software centric“

3https://sysml.org/sysml-faq/what-is-current-version-of-sysml.html

13

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/class-videos/session-3-systems-modeling-languages/CTVFDb44ses.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/class-videos/session-3-systems-modeling-languages/CTVFDb44ses.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/class-videos/session-3-systems-modeling-languages/CTVFDb44ses.pdf
https://sysml.org/sysml-faq/what-is-current-version-of-sysml.html

Figure 3.2: UML SysML relation [3].

Basic unit

The block is the basic unit of structure in SysML and can represent hardware, software,
facilities, personnel, or any other system element [3].

Diagram types

SysML has 9 diagram types with four Pillars. Two pillars are the same as in UML Behavior
and Structure and two more Requirements and Parametrics. From UML, SysML reuses
four diagrams, namely: Sequence, State machine, and Use case diagrams. Three diagrams
are taken and modified from UML: activity, block definition, and internal block diagrams.
And two completely new types: Parametric and Requirement diagrams. SysML diagram
structure is illustrated in Figure 3.3.

14

Figure 3.3: SysML Diagram types [3].

Plus, SysML also has an allocation with associates or maps model elements of differ-
ent types or in different hierarchies. They enable traceability of components which is a
crucial part of model-based development in general. Allocate Dependency patterns are
generally helpful in improving model architecture integrity and consistency. These alloca-
tion relationships can dynamically create allocation tables to summarize connections in the
model [2].

Complexity management

SysML’s idea is to provide us with language capable of describing a system at multiple levels
and describing systems further from the software domain. SysML provides relationships
for Cross Connecting Model Elements, for example, mentioned allocation relations. Also,
in contrast to UML, SysML model management constructs support models, views, and
viewpoints.

SysML shows an effort to connect pieces of models together in order to see the picture of
the whole system in fewer diagrams. There is also an idea to start supporting multiple levels
of the system at different layers, which increases the flexibility of presenting the complex
and extensive system in a more accessible manner.

Finally, let us present the last discussed language - OPM.

3.3 Object Process Methodology
Object Process Methodology (OPM) is a conceptual modeling language and methodology
for capturing knowledge and designing systems, specified as ISO/PAS 19450. OPM is
designed to be able to model any system no matter the domain. In contrast to UML-like
languages, OPM does not separate behavior and structure in different diagrams. Another

15

cornerstone of OPM is its bi-modal graphical-textual representation called Object Process
Language (OPL). It is generated by each connection in Object Process Diagram (OPD)
and is translated to a subset of natural English.

Basic unit

OPM builds on a minimal set of concepts. The fundamental element in the diagram is not
a block but a ”thing“ representing either process or object. Attributes to a stateful object
are called ”states.“ Things are also distinguished by their physical or informatical existence.
All possible types of ”things“ are presented in figure 3.4

Figure 3.4: OPM Things (Dori, 2008, page xxi [4])

Diagram types

OPM has one kind of diagram called Object Process Diagram (OPD), and it is the only
kind of diagram of OPM. The primary promise of OPM is that it can show everything in
one diagram type, so the functions, the functional attributes, the objects, different types
of objects, operands, system components, consumables, the attributes of those objects, and
then the links.

The author of OPM made a point of the simplicity of language that is worth mentioning;
he states: ”We cannot do much about the inherent complexity of the system, but by using a
simple modeling framework, we can significantly reduce the system’s complicatedness.“(Dori,
2008, page 295 [4])

Complexity management

OPM has mechanisms to handle the complexity of the model, and it is based on managing
multiple layers represented by a set of hierarchically organized OPDs.

To move between the model layer, in/out-zooming and folding methods are used. With
these, the OPM can conceptually model systems at any level of complexity with no limited
number of nested levels.

16

Whenever an OPD becomes hard to comprehend due to an excessive amount of details,
a new descendant OPD needs to be created. The determination of when an OPD becomes
too complex is left to the responsibility of the modeler because it is hard to define by static
references such as the number of model elements or other characteristics.

Now as we presented the languages let us move to their comparison.

3.4 Modeling languages comparison
In this section, we compare the three modeling languages discussed in the previous sections.
Table 3.1. lists the parameters of each of the ML’s. As this work focuses on the modeling
aspect of these languages, the most important properties to look at are the theoretical foun-
dations, support for decomposition of complex models, learning complexity, and existing
tooling support. These properties are discussed in more detail in the rest of this section.

17

Table 3.1: UML vs SysML vs OPM4

Feature UML SysML OPM
Theoretical foundation UML; Object- UML; Object- Minimal universal

Oriented paradigm Oriented paradigm ontology; Object-
Process Theorem

Standard 1400 ~1670 ~180
documentation number =700 (UML =UML + 270 =100 (ISO 19450
of pages Infrastructure) (OMG SysML) main standard)

+ 700 (UML + 80 (append)
Superstructure)

Standardization body OMG and ISO OMG ISO
Number of diagram 14 9 1
Top-level concept Block (UML object Block (UML object Thing (object or

class) class) process)
Complexity Aspect-based Aspect-based Detail-level-based
management guiding decomposition decomposition decomposition
Number of symbols Many ~120 ~20
Graphic modality Yes Yes Yes
Textual modality No No Yes
Built-in physical- Yes Yes Yes
informatical distinction
Systemic- Partial (using Partial (using Yes
environmental boundaries) boundaries)
distinction
Logical relations (OR, No No Yes
XOR, AND)
Probability modeling No No Yes
Execution, animated Partial (in some Partial (in some Yes
simulation, validation tools for some tools for some
and verification diagram kinds) diagram kinds)
capability
Tool availability many many 1 limited in

functionality
Registered in 1997 September 2007 December 2015

In 2005 by ISO by ISO

The object-oriented paradigm vs the minimal universal ontology

The first significant difference is the difference between the Object-oriented paradigm (OOP)
and minimal universal ontology (MUO). Let us describe what these two approaches are and
how they differ.

Ontology is a set of concepts and their relations in some domain of debate [4]. The
Minimal Ontology principle states that if a system can be specified at the same level of
accuracy by two languages of different ontology sizes, then the language with the smaller
size is preferred over the other. Minimal universal ontology is formed by stateful objects,

4modified table from (Dori, 2008, p. 297 [4]), added UML column

18

processes, and relations among them and can conceptually model any system in any domain.
Therefore minimal universal ontology means OPM can be used to describe itself and not
only itself, but it is sufficient to model the universe and systems in it.

Object-oriented paradigm (OOP), on the other hand, is closely related to Object-
oriented programming and software development. It puts an object as a center of attention
and represents a real-world element in an object-oriented environment that may have a
physical or a conceptual existence. In the OOP view, every system is described by its ob-
jects. We can say that in the ability to model different systems, SyML is able to describe
only a subdomain of what can be described with OPM.

Now, when we defined the terms, we can highlight differences. Objects and processes
are the two types of OPM’s universal building blocks, and processes are modeled as equals
that are not inferior to objects. This object-process orientation is a primary difference from
the object-oriented (OO) software paradigm, which places objects as the only dominant
players.

The table is also pointing to top-level concept differences. In OOP, processes are referred
to as methods or services and can not exist without the object itself. In OPM, system-level
processes are as important as the objects in the system; thus, they are independent of
objects and can be modeled separately.

Aspect and detail based decompositions

Another significant difference is in the decomposition of complexity. UML and SysML
address the problem of managing systems complexity primarily by aspect decomposition
- dividing the system model into 14 (UML) and 9 (SysML) different diagram types for
modeling various aspects of the system – structure, dynamics, state transitions, timing,
and others [4].

The OPM approach is orthogonal, detail-based decomposition: Rather than applying
a separate model for each system aspect, OPM handles the internal system complexity by
decomposing the system into a hierarchy of diagrams of the same kind. The entire system
is completely specified through its Object Process Diagram (OPD) set, and each of the
diagrams provides a partial view of the system, which together provide a complete picture
of the system.

19

Figure 3.5: Decomposition (Dori, 2008, p. 297 [4])

Figure 3.5 shows the two orthogonal complexity management strategies. In the aspect-
based decomposition, two solid vertical lines separate the structure, behavior, and state
transition aspects. The thin bidirectional horizontal arrows across these lines symbolize dif-
ficult transition among the various models. The detail-based decomposition is represented
by the two dashed horizontal lines separating the various levels of detail from abstract to
detailed and concrete. The green bidirectional vertical arrows symbolize easy transition
between the detail levels. The diagram is schematic, and the number of transitions, levels,
or diagram types does not matter.

Learning difficulty

As we mentioned, the time and resources required to create a valid system model are crucial
for system modeling. Suppose we do a simulation of resources needed to integrate each ML
to a production flow properly.

When we look at the second and third rows in the table, we can deduct the time needed to
master each language. The learning curve of each language depends on how long the spec-
ification is and how complex the language is. To have full knowledge of a UML, we would
need multiple qualification courses with a few years of expertise in the field. About SysML,
let us assume a few months of training can be enough. OMP, with its short and straight-

20

forward specification, we will be okay with one book and possibly a few weeks to learn all
specifics of the language. OPM also provide automaticaly generated description of model.
This allows people not knowing the notation (language) to understand the diagrams.

Tooling

If we look at tool availability, UML and SysML are usually covered by one tool for complete
UML tooling. However, these tools are huge, complex, and expensive pieces of software.
The good news is that we can choose a relatively large base of software tools. On the
other hand, only one editor is available for OPM, which can be enough if it will provide the
satisfactory features required. Unfortunately, from practical experience, the current tool
for OPM is not optimal, which is also the motivation and goal of this work to provide a
concept for a better solution.

21

Chapter 4

Implementation

The technical decision was to make the editor web-based. The advantage to this approach
is that the application does not require a specific operating system to run, and the only
required software is a web browser. There is no need to install extensive desktop tools, and
so the application is more easily accessible to users.

The languages chosen to write the application were javascript and typescript mainly
because of the well-extended graphical and UI libraries.

Frameworks, especially graphical ones, play an important role and are core to providing
the editor’s main feature. Choosing the suitable framework was done by examining prede-
fined parameters mentioned in the next section, testing available demonstration examples,
carefully studying each framework documentation, and looking at GitHub parameters re-
garding the community.

The project structure is divided into two main graphical parts, canvas and frame of the
application. Canvas has a primary role in manipulating the diagram and frame components
in managing the entire project.

22

4.1 Web diagramming frameworks
For choosing the proper graphical framework, there was the need to define critical properties
that such a framework must-have. The first base functionality was interactive nodes along
with the ability to connect elements together. The following crucial features were text and
position saving and also the performance of all mentioned operations. Other features were
regarded as welcoming benefits of the framework, such as grouping, nesting, undo-redo
features, and context menus. All features together and a comparison of different libraries
are listed in Table 4.1.

Other not graphical related parameters play a role as well. Parameters such as if the
project is well documented, still supported, provide enough helpful demonstration examples,
and community involvement. Also, an essential requirement is that the selected framework
must be open-source.

Table 4.1: Framework Comparison
Cytoscape D3 jgraph Draw2D Sprotty

(Draw.io)
Interactivity
TextWrite
Connecting
Saving position
Saving text
Resizing
MultipleSelection
Grouping/Nesting
Expansion/Folding
Visibility
Undo/Redo
Contex menu
Active project yes yes no yes yes
Documentation great great medium medium poor
Commits: 5200+ 4000+ - 202 237
Used by: 3500+ 204k - 62 100
Contributors: 80+ 128 - 6 14
Stars: 7k 96k - 509 314
(Community)

The green background color in the table indicates that the mentioned framework pro-
vides such a feature, yellow means it can be done with some workaround, and red means it
is not included in the framework, and it is possibly hard to include them. Note that other
tested frameworks failed to provide at least four working features, so they are not included
in the table. A complete list of all tested frameworks can be found in appendix A.

As the table indicates, the best score has Cytoscape js framework. It was also chosen
for its modular nature and large community.

23

4.2 Cytoscape js
Cytoscape.js is an open-source JavaScript-based graph library [6]. It is most often used
as a visualization software component and to render interactive graphs in a web browser.
Nevertheless, it also contains a graph theory model, and it is used for graph analysis and
visualization of relational data, like biological data or social networks. As analysis is an
integral part of model-based development, this focus of the library fits our needs as well.

In our case, the Cytoscape canvas is responsible for diagram manipulation. Most of
the essential operations are done by a special circle context menu adapted to be used in
touchscreens.

For functionalities like connecting diagrams, grouping, and collapsing are used different
Cytoscape extensions listed in appendix B. The most challenging part of the implementation
was to find a proper way to integrate them together and implement the missing functions.

Missing functionalities

Text editing was the first bottleneck of the framework, although it was finally solved by
adding an Html element (via a library named popper js1) near the canvas node and trans-
ferring text into the internal data structure.

With regards to styling, element Cytoscape provides nearly all CSS-like properties to
style elements inside the canvas. However, when it comes to providing an elliptic style of so-
called ’parent compound nodes,’ it fails to include all child elements inside the boundaries
of the ellipse. It is because the bounding box is always rectangular. The solution to this
problem was to recalculate the ellipse diameter and rewrite it in code directly.

To calculate the proper size of the ellipse, we need to know three points, center, and
two on the circumference. We also need to ellipse to retrace the rectangle. We take two
edge points of the rectangle, set them as circumference points, and set the center 0,0.
Taking an equation of ellipse:

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (4.1)

with folding points taken from rectangle where a1, b1 are coordinates of a right-up border
and -a1, b1 are coordinates of a left-up border:

𝑆[0, 0], 𝐴[𝑎1, 𝑏1], 𝐷[−𝑎1, 𝑏1] (4.2)

we calculate the a and b using the following equations where a and b represent each point
co-ordinates of the ellipse border:

𝑎 =

√︃
−𝑎12 * 2𝑏21
𝑏21 − 2𝑏21

(4.3)

𝑏 =
√
2𝑏1 (4.4)

Another missing functionality was resizing elements. The only way of modifying the
size allowed in the framework is at the parent compound node, which is resized according
to its children. The solution to this problem was to append two control nodes that serve
as a size modifier of the parent element and are shown only with cursor selection. Sizing
non-compound elements was not necessary because its size is calculated according to its
actual label content.

1https://popper.js.org/

24

https://popper.js.org/

4.3 Ionic Framework
All other components are written with typescript and with the use of react and ionic
components. The reason for choosing ionic was that it provides tooling for creating a
hybrid-web application. Ionic framework is an open-source mobile UI toolkit for building
cross-platform interfaces2. Hybrid-web applications blend native and web solutions where
the core of the application is written using web technologies3.

There is starting to be a standard for modern applications to be available across all
platforms, including phones, tablets, desktop applications, and web applications. There
are basically ways to provide applications available at all platforms, either develop a native
app on each platform or use hybrid solutions. Both ways have their advantages. The
main difference is the time and resources needed to develop software per platform. In our
case, going to develop a web application, we decided to have the ability to extend it across
platforms only with web technologies.

In short, the possible ways to develop software are summarized in table 4.2 and also
underlines that the solution with minimal effort to achieve cross-platform compatibility is
via hybrid web-based technologies.

2https://ionicframework.com/
3https://ionic.io/resources/articles/what-is-hybrid-app-development

25

https://ionicframework.com/
https://ionic.io/resources/articles/what-is-hybrid-app-development

Table 4.2: cross-platform framework options [9]
Native Hybrid-Native Hybrid-Web

Examples iOS and Android
SDKs

React Native, Xamarin,
NativeScript, Flutter Ionic

Languages Obj-C, Swift, Java JS + Custom UI
Language / Interpreter HTML + CSS + JS

Code Reuse
Totally Separate
Code Bases
per Platform

Shared Business Logic
with Different UI
Codebases

One codebase, UI
codebase stays
the same

Target Platforms
iOS & Android
Native Mobile
Apps

iOS & Android
Native Mobile Apps

iOS, Android,
Electron, Mobil
and Desktop
Browsers as
a Progressive
Web App, and
anywhere
else the web runs

Investment Largest investment
in staff and time

Medium investment
in staff and time

Lowest investment
in staff and time

UI Elements
Native UI
independent
to each platform

A selection of Native
UI elements for iOS
and Android UI elements
are specific to the target
platform and not shared
Custom UI elements
begin to require split
UI code bases

Web UI elements
that are shared
across any platform,
conforming to
the native look
& feel of wherever
they are deployed

API Access /
Native Features

Separate Native
API & Codebases
for each App

Abstracted Single-
Codebase Native
Access through Plugins
(with ability to write
custom Plugins)

Abstracted Single-
Codebase Native
Access through Plugins
(with ability to write
custom Plugins)

Offline Access Available Available Available

Performance
Native Performance
with well written
code.

Indistinguishable
difference on
modern devices
with well written
code.

Indistinguishable
difference on
modern devices
with well written
code.

26

Currently, the application is now available only on a web platform. Making the app
available on other platforms is planned as future work.

27

Chapter 5

Usability, limitations, and use cases

5.1 Application usage
In these sections, we will discuss editor controls and the features they provide. The final
look of the application is presented in 5.1. figure. The design of the application is focusing
on simplicity and a clean white look.

Figure 5.1: VisualFlow application design

5.1.1 Application frame

The application frame presents all components outside of the canvas - which is in the
application center. This section describes only features present in the frame.

28

The editor supports folding and unfolding of nodes done by selecting the parent and
clicking at two buttons in the left corner of the upper bar. The editor also supports
importing and exporting the project in JSON format, exporting SVG pictures, and handling
the generation of OPL. Generated text appears dynamically at the bottom text field and is
triggered by a creating link connection. The OPL section also highlights elements when we
hover over the text. At the bottom bar, there are controls used to style elements properties
like color, shadow, and dotted borders.

The editor also has in/out zooming inside the left menu. The menu contains a repre-
sentation of nested structures as a simple folding list. After a new level of the hierarchy is
created, a new element in the list is dynamically created and removed when the element is
deleted.

5.1.2 Control elements in the canvas

As we mention, the canvas is directly in the application center, and its primary is controlled
by the left click of a mouse or tapping with two fingers on the touchpad to show the context
menu. There are three main control elements in the application at the canvas.

The first control element is the context menu, with the ability to create and delete nodes
and update text. There is support for nesting from upside-down via inserting an element
into an object or process and composing from the bottom up via creating groups. There
is also copy-paste functionality inside a context menu that copies and pasted all previously
selected nodes.

The second control is the edge handle in the form of a little dot created on hover when
the cursor passes over the element that can connect nodes with a selected link.

Third, there are two small squares shown when the parent element is selected. Their
function is to control parent element size.

5.2 Limitations and known issues
The first jet unsolved issue is that the arrow selection closes the sidebar and disables
expansion of the list. It is due to the bug in the ionic menu component. The workaround
to this is to repeat the selection of link type, and the list should function normally.

The next known issue is that export is not working when nodes are collapsed. It is
due to the now solved bug in one of the Cytoscape extensions, and the bug will be fixed
when the solution is propagated to a stable branch of extension. A temporary solution is
to expand all nodes by clicking on the ”:root“ element on the second list, which will expand
all nodes before exporting.

5.3 Comparison of a model in OPM and SysML
This section compares two modeling languages (SysML and OPM) by modeling a real-life
system - a distiller.

Distiller problem

A commonly used example of the modeled system is to model the water distiller process [8].
A distiller is a system for purifying dirty water. It consists of three fundamental components
Counter Flow Heat Exchanger, Boiler, and Drain.

29

The whole process starts with heating the dirty water in the Heat Exchanger, and then
the dirty water boils in the Boiler, and the steam is condensed. Lastly, the residue is drained
by the Drain.

Figure 5.2: Distiller behavior diagram

Figure 5.2 displays a simplified behavior diagram of this distiller. The rectangles present
system processes, while the ellipses present process inputs and outputs.

Creating the distiller model with SysML

SysML modeling is a three-step process. The first step is to identify and organize the
required libraries, resulting in a list of requirements and assumptions. The second step is
to define the behavior and structure of the model and the list of constraints. Last, in the
third step, the model is verified against the requirements and constraints.

The second and third stages are repeated until the model fits all the requirements and
constraints.

So to account for the first step Package Diagram and a Requirement Diagram are built.
The Package Diagram includes six packages: Distiller requirements, Distiller use case,
Distiller structure, Distiller behavior, Value types, and Item types [7].

For simplicity, we include only two diagrams, requirements and behavior.
The Requirement Diagram carries two parts: one for the distiller specifications and one

for assumptions. The requirements diagram is exposed in Figure 5.3.

30

Figure 5.3: Distiller Requirement diagram in SysML

In the second step, the structure and behavior of the system are modeled using two
diagrams: Activity Diagram (behavior) and Block Definition Diagram (structure).

Figure 5.6: Distiller Activity diagram in SysML [8]

The distiller block diagram contains three main blocks: Heat Exchanger, Boiler, and
Valve. The connection between the block diagram and the activity diagram is made by
allocations. Allocations are used to allocate behavior onto the structure and flow onto I/O.

Additional diagrams such as sequence diagram and state-machine diagram could be
created in order to complete the model. The second step ends when a complete model is
obtained.

31

In the third step, the model is examined against the requirements and assumptions of
the system. Stages two and three are performed repeatedly until the system meets all the
requirements and constraints.

Creating the distiller model with OPM

Similar to the SysML model approach, the process begins with the definition of the distiller
requirements. The OPM does not define the precise structure of requirements, and this can
be done as a form of another Object Process Diagram or by defining requirements in the
table. The author of OPM proposes inserting requirements directly into the modeling tool
model, making requirements definition a little bit tool dependent.

The next step included defining the system boundaries is defining its primary process
and the system’s principal function and, in this case, purifying being modeled as the primary
process. Around this process, the associated objects are represented: affected object (Water
in this case), inputs and outputs, main agents (actors) if there are some, and possible
environmental (external) objects and processes involved. Figure 5.4 describes the System
Diagram (the root of the OPD hierarchy tree) of the distiller system. It is the top-level
diagram that highlights Purifying as the system’s function as its central goal.

Figure 5.4: The System Diagram of the Distiller System in OPM

Next, the hierarchical refinement of the system processes and objects occurs, using the
refinement mechanisms of in-zooming for processes and unfolding for objects. Figure 5.5
shows the in-zoomed Purifying process. A detailed sequence of subprocesses involved in the
purifying process, shown inside the Purifying ellipse. They also change the states of other
entities and require specific parameters to do that. In our case, they require subparts of
the distiller to change the state of the water from dirty to boiling and pure.

32

Figure 5.5: In-zoomed Purifying process in OPM

The Y-axis inside an in-zoomed process serves as a timeline. It specifies the sequencing
of the operations, the first operation situated at the top. In the diagram, Heating is followed
by Boiling and Condensing, and lastly, Draining.

The structure of the distiller is specified in The diagram by showing its parts, including
Heat Exchanger, Boiler, and Valve.

OPM also distinguishes physical elements by the shading effect and environmental ele-
ments that are not part of the system by dashed contour.

The textual representation is then additionally generated from the graphical description.
The Object Process Language text for the diagram in Figure 5.5 is listed in Figure 5.6.

33

Figure 5.6: Distiller OPL [8]

5.4 Comparison of the project and existing OPM application
In recent months there has been an effort from the creator of OPM language and older
desktop tool OPCAT to create an OPM web editor. Now, we can compare these two and
highlight differences.

34

Figure 5.7: OMP cloud1

The main features of the OPM foundation solution are sophisticated OPL generation
and the correction of possible ways to connect elements. They also provide full styling
of elements, including text size and style. However, the editor’s missing option is the
possibility to save and upload created projects, making the app unusable for now.

On the other hand, our solution has a unique element tree to allow the user to fully
control which elements he wants to see in the project and thus provide the functionality
to see a coss connection between a variety of model components. So it means we have the
ability to see and work with one model as a source of all information.

They use a different approach when it comes to showing in zoom’s view. Each view
in their case is a separate diagram, meaning the objects and processes present in multiple
diagrams are copies, which requires synchronization. They do not have the ”master“ model
that is shared by all views, and thus no sync is needed. We ”hide“ other elements from
canvas, and they load the part of the project, which makes the transitions a bit slow.

They also choose different approaches when it comes to connecting and editing elements.
Every element can change its size in its editor, but elements may not be included in the
parent element. They are sometimes laid out on top of the parent element, which means
the parent element does not always resize according to the parent.

In summary, the OPMCloud solution provides validation of the OPM model but lacks
some of the primal functionality of managing the project. Our solution provides freedom
when it comes to modeling decisions and full functionality to store the project.

1available at https://sandbox.opm.technion.ac.il/

35

https://sandbox.opm.technion.ac.il/

Chapter 6

Conclusion

The aim of the work was to design and evaluate an agile editor of models of a selected
modeling language. First, we examined parameters from conducted research in the field
and found that the most common issue in the model-based approach was the inconsistency of
model and code over time. In the second part, the OPM formalism was chosen as graphical
language because of its simplicity, lack of available tools, and universality in the modeling
domain. In the third part, Cytoscape was chosen for implementation because it provides
most of the features required for manipulation with diagrams and its large community and
well-maintained project. In the fourth part, the implemented editor was evaluated on an
example of the distiller model and compared with existing editors. Along with that, the
editor showed its uniqueness in allowing users to work with the master model and show all
elements of the model or pick up single elements from multiple levels of hierarchies.

The central portion of the practical part was connecting different segments of the Cy-
toscape framework, creating an application user interface, and providing the functionality
needed to work with OPM models. There were also attempts to provide an optimized
backend, written in Rust language, to application for user login and saving projects to the
cloud. However, due to the time demand of such a feature, the editor supports only local
storage of projects. In the future, there is a probability that the backend will be in the
form of a service (BaaS), and multiple providers are discussed.

The aim of the thesis was not to create an editor that could immediately compete with
the existing ones, but mainly to verify the suitability and readiness of new formalisms for
practical application, try new approaches to system modeling and provide a basic imple-
mentation, which can be easily expanded. This work opens up space for several future
works. Among the possible extensions, we can mention integration to open a source code
editors, dynamic simulation of the model, simultaneous editing, and diagrams automatic
generation from code as a form of synchronization with written code. It would also be
appropriate to improve the generation of OPL, enhance responsiveness of the left menu,
and enable users to create their own views1.

1Application as a service can be found at: https://visual-flow-9631a.web.app

36

https://visual-flow-9631a.web.app

Bibliography

[1] INTRODUCTION TO OMG’S UNIFIED MODELING LANGUAGE™ (UML®)
[online]. Object Management Group [cit. 2021-04-01]. Available at:
https://www.uml.org/what-is-uml.htm.

[2] SysML Open Source Project - What is SysML? Who created SysML? [online]. Object
Management Group [cit. 2021-04-01]. Available at: https://sysml.org.

[3] WHAT IS SYSML? [online]. Object Management Group, 2021 [cit. 2021-04-01].
Available at: https://www.omgsysml.org/what-is-sysml.htm.

[4] Dori, D. and Crawley, E. Model-based systems engineering with OPM and SysML.
New York: Springer, 2016. ISBN 978-1-4939-3294-8.

[5] Forward, A. and Lethbridge, T. Problems and opportunities for model-centric
versus code-centric software development: A survey of software professionals.
Proceedings of the 2008 International Workshop on Models in Software Engineering.
january 2008, p. 27–32. DOI: 10.1145/1370731.1370738.

[6] Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O. et al. Cytoscape.js: a
graph theory library for visualisation and analysis. Bioinformatics. september 2015,
vol. 32, no. 2, p. 309–311. DOI: 10.1093/bioinformatics/btv557. ISSN 1367-4803.
Available at: https://doi.org/10.1093/bioinformatics/btv557.

[7] Friedenthal, S., Moore, A. and Steiner, R. OMG Systems Modeling Language
(OMG SysMLTM) Tutorial [online]. INCOSE, september 2009 [cit. 2021-04-01].
Available at: https://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf.

[8] Grobshtein, Y., Perelman, V., Safra, E. and Dori, D. Systems modeling
languages: OPM versus SysML. In:. April 2007, p. 102 – 109. DOI:
10.1109/ICSEM.2007.373339. ISBN 1-4244-0771-0.

[9] Kremer, M. Comparing Cross-Platform Frameworks [online]. Ionic, 2021 [cit.
2021-04-01]. Available at:
https://ionic.io/resources/articles/ionic-vs-react-native-a-comparison-guide.

37

https://www.uml.org/what-is-uml.htm
https://sysml.org
https://www.omgsysml.org/what-is-sysml.htm
https://doi.org/10.1093/bioinformatics/btv557
https://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
https://ionic.io/resources/articles/ionic-vs-react-native-a-comparison-guide

Appendix A

All tested frameworks

There were 16 graphical frameworks reviewed for desirable functionality discussed in chap-
ter 3.

List
Frameworks that have more than four required functionalities:

• Cytoscape

• D3

• jgraph / Drawio

• Sprotty
with less than four:

• jsplumb community edition

• PixiJS

• React-diagrams
Frameworks that have at least interactive elements:

• p5.js

• Raphael

• sigmajs

• visjs
The graphical frameworks were found to have none of the required criteria for diagram
manipulation:

• three.js

• statejs

• treant-js

• graphviz

• paperjs

38

Appendix B

Used Cytoscape extensions

• ”cytoscape“: ”3.17.0“,

• ”cytoscape-automove“: ”1.10.2“,

• ”cytoscape-clipboard“: ”2.2.1“,

• ”cytoscape-cxtmenu“: ”3.3.1“,

• ”cytoscape-edgehandles“: ”3.6.0“,

• ”cytoscape-expand-collapse“: ”4.0.0“,

• ”cytoscape-popper“: ”1.0.7“,

• ”cytoscape-undo-redo“: ”1.3.3“,

• ”cytoscape-view-utilities“: ”5.0.0“,

39

Appendix C

Data model

1 {
2 "elements": {
3 "nodes": [
4 {
5 "data": {
6 "id": "1",
7 "shape": "rectangle",
8 "padding": 5,
9 "name": "Water",

10 "width": "name",
11 "dotted": 1,
12 "backgroundColor": "#ffffff",
13 "borderColor": "#669c35",
14 "shadow": 1,
15 "invisibleParent": 0,
16 "visibility": 1
17 },
18 "position": {
19 "x": 483.98238403498334,
20 "y": 591.3682723961318
21 },
22 "group": "nodes"
23 }
24]
25 }
26 }

40

Appendix D

Content of the attached media

/
code .. Code directory

public...Icons directory
assets... Icons

src..Application source code
pages...Pages directory

Page.tsx Drawing page includes canvas and frame
components...Components directory

Cytoscape.jsx...............................Canvas and diagram logic
Menu.tsx..........................Frame including menu, bars, buttons

theme..Styles for app
App.tsx...App root file

README.md...........................Instructions to build and run application
thesis...Thesis source files

41

	Introduction
	Editor requirements
	Modeling practices survey
	Code-Centric and Model-Centric Approaches
	Problems with the model-centric approach
	Problems with the code-centric approach

	Summary

	Comparison of standard modeling languages
	Unified Modeling Language
	Systems Modeling Language
	Object Process Methodology
	Modeling languages comparison

	Implementation
	Web diagramming frameworks
	Cytoscape js
	Ionic Framework

	Usability, limitations, and use cases
	Application usage
	Application frame
	Control elements in the canvas

	Limitations and known issues
	Comparison of a model in OPM and SysML
	Comparison of the project and existing OPM application

	Conclusion
	Bibliography
	All tested frameworks
	Used Cytoscape extensions
	Data model
	Content of the attached media

