BRNO UNIVERSITY OF TECHNOLOGY
VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

FAKULTA INFORMACNICH TECHNOLOGII
USTAV POCITACOVYCH SYSTEMU

DATA LOADER FOR COMPLEX TESTING OF ON-BOARD SYSTEMS
DATA LOADER PRO KOMPLEXNI TESTOVANI PALUBNICH SYSTEMU

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. DAVID HRBEK
AUTOR PRACE

ADVISOR doc. Ing. RICHARD RUZICKA, Ph.D., MBA
VEDOUCI PRACE

BRNO 2018

Zadanl diplomové préce/21296/2017/xhrbek03
Vysoké uéeni technické v Brné - Fakulta informacnich technologii
Ustav poéitatovych systémi Akademicky rok 2017/2018
Zadani diplomové prace
Regitel: Hrbek David, Bc.
Obor: PocitaCové a vestavéné systémy
Téma: Data loader pro komplexni testovani palubnich systémf

Data Loader for Complex Testing of On-Board Systems
Kategorie: Vestavéné systémy

Pokyny:

1. Prostudujte problematiku sou¢asnych palubnich systém{ letadel, zamétte se na standardy ARINC
souvisejici s "data load", pfedevsim ARINC 615A.

2. Seznamte se s jednotkou pro satelitni komunikaci Aspire 400 od firmy Honeywell. Analyzujte
softwarové konfigurace jednotky Aspire 400 pro testovani i letovy mod. Seznamte se s nastroji pro
prechod mezi softwarovymi konfiguracemi jednotky Aspire 400.

3. Navrhnéte pro jednotku Aspire 400 data loader, ktery umoZzni automatizované nahravani viech
potfebnych softwarovych konfiguraci.

4, Navrzeny data loader implementujte v souladu se standardem ARINC 615A.

5. Ovérte realizované feSeni a demonstrujte funkcnost ve siedovanych aspektech.

Literatura:
» Dle pokynl vedouciho.

PFi obhajobé semestralni ¢asti projektu je pozadovano:
e Splnéni bodd 1 a 2 zadani.

Podrobné zavazné pokyny pro vypracovani diplomové prace naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technickd zprava diplomovoé prace musi obsahovat formulaci cile, charakteristiku sou€asného stavu, teoreticka a odborna

vychodiska fesenych problém(a specifikaci etap, které byly vyfedeny v ramci dFivéjdich projektd (30 az 40% celkového rozsahu
technické zpravy).

Student odevzda v jednom vytisku technickou zpravu a v elektronické podobé zdrojovy text technické zpravy, dplnou
programovou dokumentaci a zdrojové texty programi. Informace v elektronické podobé budou uloZeny na standardnim
neprepisovatelném pamétovém médiu (CD-R, DVD-R, apod.), které bude vloZzeno do pisemné zpravy tak, aby nemohlo dojit k jeho
ztraté pri bézné manipulaci.

Vedouci: Rdzicka Richard, doc. Ing., Ph.D., MBA, UPSY FIT VUT
Datum zadani: 1. listopadu 2017
Datum odevzdani: 23. kvétna 2018 VYSOKE UCENI TECHNICKE V BRNE

,Fakulta informatnich technologif
Ustav pocitatovych systému a sftf
61R.86 Brno, BoZet&chova 2

)y
prof. Ing. Lukéé//éekanina, Ph.D.
vedouci Ustavu

ABSTRACT

This master’s thesis summarizes theory on how to perform data load onto on-board computers
of aircrafts. Specifically, how automated data load of Honeywell's Aspire 400 satellite data
unit is done. First part of the text describes requirements and possible ways of the data load
process, including standards that are applicable to this topic in the aeronautical industry. The
second part describes the implementation of the data load process on the aforementioned unit.

KEYWORDS

data load, Aspire 400 satellite data unit, ARINC standards

ABSTRAKT

Tato diplomovéa prace shrnuje teorii ohledné nahravani dat (data load) do palubnich poéitaci
letadel, konkrétné do satelitni datové jednotky Aspire 400 od firmy Honeywell. Prvni ¢ast
textu popisuje pozadavky kladené na proces nahravani dat a mozné zpiisoby jeho provedeni.
Jsou zde také predstaveny standardy tykajici se tohoto tématu v leteckém primyslu. Druha
Cast se pak zabyva samotnou implementaci procesu nahravani dat na zminéné jednotce.

KLICOVA SLOVA

nahravani dat, satelitni datova jednotka Aspire 400, standardy ARINC

HRBEK, David. Data Loader for Complex Testing of On-Board Systems. Brno, 2018, 71 p.
Master’'s Thesis. Brno University of Technology, Faculty of Information Technology, Depart-
ment of Computer Systems. Advised by doc. Ing. Richard Razi¢ka, Ph.D., MBA

DECLARATION

| declare that | have written the Master’'s Thesis titled “Data Loader for Complex Testing of
On-Board Systems” independently, under the guidance of the advisor and using exclusively
the technical references and other sources of information cited in the thesis and listed in the
comprehensive bibliography at the end of the thesis.

As the author | furthermore declare that, with respect to the creation of this Master's
Thesis, | have not infringed any copyright or violated anyone's personal and/or ownership
rights. In this context, | am fully aware of the consequences of breaking Regulation § 11 of the
Copyright Act No.121/2000 Coll. of the Czech Republic, as amended, and of any breach of
rights related to intellectual property or introduced within amendments to relevant Acts such
as the Intellectual Property Act or the Criminal Code, Act No.40/2009 Coll., Section 2, Head
VI, Part 4.

author's signature

ACKNOWLEDGEMENT

o vy

| would like to thank my supervisor, doc. Ing. Richard Rizicka, Ph.D., MBA, for his guidance.
| would also like to thank my supervisor at Honeywell, Bc. Petr Kartous, for his insights on
the matter, and the company itself for allowing me to use their facility and equipment to work

on this thesis.

author's signature

CONTENTS

1 TIntroduction
2 D Load Definiti

3 ARINC standards

3.3 ARINC 615o o
3.4 ARINC 615A e
3.5 ARINC 664 o o e
3.6 ARINC 665 o o oo e e
3.7 ARINC T8L . . . o oo e e

4 Aspire 400
4.1 SDU structure o o e e e e

4.3.1 FPGA Configuration e
4.3.2 Loader Program
433 FEBOOT e

6 Loading low level software

6.1 Boundary Scan

6.2 In-system Programming
6.3 Flashing MPC e

6.4 Flashing DABC e

7 MPC Data Load Using U-Boot

7.1 Requirements e

7.2 Design

7.2.1

7.2.3

Call Options e

7.2.4

Communication Processing

7.2.5

User Control

7.2.6

Logging and Error Handling

7.3 Implementation

8 DABC Data Load

9 ARINC 615A Compliant Data Load

9.1 Requirements

9.2 Design

9.2.1

10 Conclusions

Bibliography

Li £ abl L

45
45
46
47
47
48
48
49
49
49
ol

54

56
o6
o7
o7
o8
99
61
61
62
63
63

64

66

69

LIST OF FIGURES

3.1 ARINC 600 connector on LRU backplane 14
4.1 Aspire 400 SDU loadable components and their interconnections 23
4.2 MPC processor block diagram Lo 24
4.3 DABC processor block diagram, 27
4.4 DABC application selection 32
5.1 Aspire 400 SDU lifecycle with data loads highlighted 36
6.1 Principle of boundary scan testing and in-system programming 41
7.1 Sequence diagram of HBIT data load onto MPC processor 52
9.1 Sequence diagram of data load process initiated by DataLoader 60

1 INTRODUCTION

This master’s thesis Data Loader for Complex Testing of On-Board Systems was imple-
mented in cooperation with Honeywell company. The goal was to come up with a way
of automated and reliable data load of Aspire 400 satellite data unit (SDU). Aspire 400
is an aircraft on-board unit, currently under development at Honeywell. The unit has to
use various software configurations during its life cycle, therefore there were multiple data
load scenarios that needed to be considered.

In this document, the data load process in general is described (see chapter 2), in-
cluding some of the important applicable standards used in aeronautical industry (see
chapter 3). After this theoretical part, the Aspire 400 product is described, with emphasis
on the key components, their software parts, and the equipment used in the production
process (see chapter 4). Another chapter is devoted to possible data load scenarios (see
chapter 5). The description of the data load process and its implementation is split into
several subprocesses, starting with data load of the low level software parts (see chapter 6),
over the first time data load of the target software (see chapter 7 and chapter 8), to the
final ARINC 615A compliant data load (see chapter 9). In the end, the results of this

thesis are summarized, together with ideas for possible improvements (see chapter 10).

The main scope of the thesis were the data load scenarios used in production on the

unit level. See Figure 5.1 in chapter 5 for clarification. Implementation of these scenarios

is described in chapter 7 and chapter 9.

Due to the commercial nature of the Aspire 400 project, this document is kept at
a higher level of abstraction where possible. Of course, details important to the data load
problematics are described as much as possible with compliance to Honeywell’s policy of
publishing information. Nevertheless, some of the information within this document can
be regarded as Honeywell’s intellectual property and should be treated as such. Any usage

of information about the Aspire 400 project should be consulted with Honeywell.

2 DATA LOAD DEFINITION

Data load is a process of writing specific software onto some device, called the target
hardware. The software is usually low level, e.g. some kind of firmware or lightweight
operating system. In the context of this document, the target hardware is an aeronautical
equipment, but generally, it can be any piece of hardware that needs some software for
operation.

Data load is performed using a data loader. Data loader can be some special hardware,
but it can also be an ordinary PC. The only requirements are the support of the required
interfaces, e.g. Ethernet, and software which is able to communicate with the target
hardware.

Data loader can communicate with the target hardware directly, i.e. be connected
straight to it, or it can be connected to a bus to which multiple devices, including the
target hardware, are connected. In the latter case, data loader also needs to be able to
address the correct device or devices on the bus.

The goal of the data load process is to write the desired data into non-volatile memory
of the target hardware on appropriate addresses, so that the target hardware can boot
up and operate using the loaded software. The non-volatile memory is nowadays usually
electrically erasable programmable read-only memory (EEPROM) or flash memory.

It is data loader’s responsibility to ensure the data load process is carried out properly,
i.e. the data is written onto the target hardware correctly and the target hardware operates
as expected. Therefore the data loader has to support at least error checking and should
preferably support also error handling. If the data load process is unsuccessful, the data
loader needs to clearly report this and should provide more information about the problem
to its operator. The data loader can also try to revert the target hardware’s configuration
to the point it was in before starting the data load process.

The term data load is sometimes used not only for writing, or uploading, data onto
a device. It can also be used to describe the process of getting, or downloading, data from
the device. In the latter context, data loader can be used to get information about the
device it is connected to. For example information about the purpose, type, configuration
of the device, etc. can be obtained.

This is a general description of the data load process. It may seem to be quite vague,
but there is no precise definition. However, there are standards with more specific re-
quirements for the target hardware and the data loader. These are described in the next

chapter.

10

3 ARINC STANDARDS

Aeronautical Radio, Incorporated (ARINC) is a company which was founded in 1929 by
four starting United States airline companies. The goal of the company was to serve the
communication needs of the transportation industry (see [1], page ii). Till 2007, ARINC
was owned by shareholders, most of whom were airline companies, both U.S. and others.
In July 2007, ARINC was bought from its shareholders by a private equity company
called The Carlyle Group (see [2]) and in 2013 The Carlyle Group sold it to Rockwell
Collins Inc. Since Rockwell Collins does business in avionics, it sold ARINC’s Industry
Standards Organization subsidiary to avoid any conflict of interest. It was bought by SAE
International (see [3]). SAE originally stood for Society of Automotive Engineers, but
nowadays it is a global association of engineers and technical experts in the aerospace,
automotive and commercial-vehicle industries. One of their goals is voluntary consensus
standards development (see [4]).

Therefore, the ARINC standards are currently issued by SAE ITC (ITC stands for
Industry Technologies Consortia), more precisely by ARINC Industry Activities, an SAE
ITC program (see [5], page ii). This program organizes aviation industry committees,
one of them being the Airlines Electronic Engineering Committee (AEEC). AEEC is an
international body of airline technical professionals that leads the development of technical
standards for airborne electronic equipment, including avionics and in-flight entertainment
equipment-used in commercial, military, and business aviation. The AEEC establishes
consensus-based, voluntary form, fit, function, and interface standards that are published
and which are known as ARINC standards (cited from [1], page ii). AEEC is the body
that prepared the standards which are important for this thesis.

There are three classes of ARINC standards (cited from [1], page ii):

e ARINC Characteristics, which define the form, fit, function, and interfaces of avion-
ics and other airline electronic equipment. ARINC Characteristics indicate to prospec-
tive manufacturers of airline electronic equipment the considered and coordinated
opinion of the airline technical community concerning the requisites of new equip-
ment including standardized physical and electrical characteristics to foster inter-
changeability and competition.

e ARINC Specifications, which are principally used to define either the physical pack-
aging or mounting of avionics equipment, data communication standards, or a high-
level computer language.

o ARINC Reports, which provide guidelines or general information found by the air-

lines to be good practices, often related to avionics maintenance and support.

Below, mostly standards that are related to data load are briefly described. The
class of each of the standards is specified and there is also a link to the bibliography,
where information about the original documents can be found. In section 3.1, ARINC
429 is described. In section 3.3, ARINC 615 is described. In section 3.4, ARINC 615A is
described. And in section 3.6, ARINC 665 is described.

11

There are other ARINC standards applicable to the data load process. The reason these
are not described in greater detail here is that they are very outdated. For example ARINC
report 603 (see [6]) sets expectations for data loader of airborne computers. However, this
standard was released in 1985 and expects the data loader to transfer data from a tape
cartridge.

Two exceptions can be found in the listed standards, namely ARINC 600, described in
section 3.2, and ARINC 781, described in section 3.7. These standards are not data load
related, but they are important for this thesis. ARINC 600 is important because it contains
specifications and requirements put onto units, such as Aspire 400, in order for them to be
compatible with standard airplane racks. And ARINC 781 sets characteristics of aviation
satellite communication systems operating in L-band. Aspire 400 is such a system and

that is the reason why the standard is described in this document as well.

3.1 ARINC 429

ARINC 429 is a four part ARINC specification (see [7], [8], [9], and [10]) subtitled Digital
Information Transfer System (DITS), or Mark 33 Digital Information Transfer System.
It defines a data bus widely used in avionics.

The standard describes physical and electrical interfaces of the bus, and also a protocol
supporting local area network (LAN) within the aircraft. The term bus may be consid-
ered to be misleading in case of ARINC 429, since bus usually supports multidirectional
transfers of data, while ARINC 429 supports only one way transfers from one source to
up to 20 recipients. If the connected device needs both to transmit and receive, it has to
do so on separate lines. Each line constitutes of one twisted and shielded pair of wires.

Bits are being transmitted using the bipolar return-to-zero modulation. This means
clocking is part of the transmission. When transmitted, logical one has voltage of 10
+ 1V, logical zero has voltage of -10 £+ 1 V. The bus supports two speeds of data transfer.
High speed is 100 kbps a low speed is in range of 12 to 14.5 kbps. Data are transfered
in 32 bit words. Words are separated on the bus by putting a gap of at least four bit
periods between them. New word starts with the first bit transmitted after this gap.
Most messages used on the bus consist of only one word, but packets of up to 512 words
are allowed.

Each 32 bit word has to have 1 parity bit (bit 32, the most significant one) and an 8 bit
label, which is stored in the 8 least significant bits (bits 8 to 1). The word is transmitted
from the least to the most significant bit, i.e. label first, parity bit last. The parity bit
allows simple error check at the receiver.

There are other bits that usually have set function within a word. Bits 10 and 9 can
represent the so called source / destination identifier, which is used when the word needs
to be addressed to a specific device. Bits 31 and 30, and in some cases also bit 29, represent
sign / status matrix, which is used to report the hardware status of the device, but it can

also be used to represent a predefined sign, e.g. plus / minus, north / south, east / west,

12

right / left, etc. More detailed information about the word formats can be found in [7],
attachment 6 on pages 115 to 124.

The label is encoded as a 3 digit octal number, and its bits are actually flipped
significance-wise, so the 2 least significant bits of the word form the most significant digit
of the label, the next 3 least significant bits of the word form label’s second digit, and the
next 3 least significant bits of the word form label’s third digit. This representation allows
label to be in range of 0 to 377.

The label identifies the data type of the word, i.e. whether it is binary encoded,
binary coded decimal encoded, or represents discrete values, and it also identifies what
kind of information the data represent. For example, label with octal code 015 represents
information about wind speed in binary coded decimal.

Since the amount of equipment that needs to communicate data within an aircraft
increased a lot compared to the time the standard was first released, some labels are used
in different contexts. To determine the context, the transmitting device is identified by
the equipment ID. Equipment ID is encoded within a word as 3 hexadecimal digits, i.e.
on 12 bits. The combination of label and equipment ID should always identify a unique
type of message. The full list of these types can be found in [7], attachment 1 on pages 21
to 54.

Description of the binary encoded decimal labels and equipment IDs can be found in
[7], attachment 2A on pages 55 to 60. The description states value ranges and resolution
of the data, how many significant bits there are, in what units is the encoded number, etc.
The same description for the binary encoded data can be found in [7], attachment 2B on
pages 61 to 81. Definition of the words representing discrete values can be found in [§]
(the whole document).

The data carried by a word can represent either numeric value, alphanumeric data
encoded using ISO alphabet number 5, or graphic data. The last one is used to transfer
data which are rendered on a display, e.g. a map in an aircraft.

ARINC 429 standard also defines techniques for file data transfer. File data can be
transfered using either character oriented protocol, or bit oriented protocol, which is also
called Williamsburg protocol. Two versions of bit oriented protocol are used.

Version 1 is described in [9], section 2.5 on pages 5 to 24. The description explains the
concept of link data units (LDUs), which is used to split the data file into pieces that are
sent using the data words, and then reassembled again. By definition, 3 to 255 words make
up 1 LDU, and the size of the transmitted file should not exceed 255 LDUs. The protocol
also contains details about system address labels, word timing, types of words used to
manage the data transfer, e.g. request to send, start of transmission, end of transmission,
etc.

Version 2 is not used anymore. It has been superseded by version 3, which is derived
from version 1. Version 3 is IEEE 802 compliant MAC protocol using ISO/OSI data link
layer. Details about architecture of this version can be found in [9], chapter 3 on pages 26
to 51.

13

3.2 ARINC 600

ARINC 600 is an ARINC specification called Air Transport Avionics Equipment Interfaces
(see [11]). It defines mechanical, electrical, and environmental interfaces between the so
called line replaceable units (LRUs) and the racks or cabinets in which they are installed.

LRU is a term used in avionics for a piece of modular on-board equipment, which, in
case of its failure, can be quickly replaced. The malfunctioning module is simply replaced
with a working one, and the service time, during which the aircraft has to be grounded,
is reduced. This is beneficial, since it is very expensive for the aircraft’s operator to
have it grounded. The malfunctioning unit can be then
inspected and eventually repaired someplace else, e.g.
its manufacturer’s facility, and time is not so critical
anymore.

Besides the definition of aforementioned interfaces,
ARINC 600 also gives guidance for the design process
and acceptance process of these interfaces. And inter-
faces between the racks or cabinets and the aircraft POOGUTIIY

) 0000000

itself are covered in the same way, including control] 000000000

) O 0000000
and regulation of power applied to on-board equipment. 0000000600
i D & ;A (o] r) (o v} ll O (o]

Interchangeability of LRUs and racks made by different ©0000000Q
suppliers is also discussed. Following ARINC 600 guide-

000000

200000

lines provides (taken from [11], page 3): Ottt
¢ a system of modularized equipment ' '
e a system of modularized installation in racks and
/ or cabinets
e a family of low or zero insertion force electrical
connectors to provide the electrical interface
between the equipment and the aircraft wiring
e a system of effective environmental control of the
equipment
The standard defines a so called modular concept
unit (MCU), which is the basic unit for the packaging
and installation concept of LRUs. MCU defines a fixed
height, length, and width. All LRUs following ARINC
600 specification should have this height and length,
and their width should be a multiple of width defined
by MCU, i.e. the smallest LRU should have width of
1 MCU and bigger ones can have width of 2 MCUs,
3 MCUs, etc. Maximum weight of LRUs is defined as
well.
Furthermore, ARINC 600 sets forth parameters for

Fig. 3.1: ARINC 600 connector
on LRU backplane

14

maximum LRU thermal dissipation, cooling of on-board equipment within the racks, and
requirements for attachment of LRUs to these racks, i.e. ways of physical mounting, forces
the attachment has to withstand (vibration, shock, acceleration), etc.

However, the most important thing from ARINC 600 for the topic of this thesis is the
definition of LRU’s connector properties. It also covers the largest part of the ARINC 600
document itself ([11], attachments 17 to 21 and appendices 3 to 5). In these parts, the
types of connectors that make up the whole ARINC 600 LRU connector are described, for
example properties of pins for discrete signals, connectors for Ethernet, etc. An example

of ARINC 600 connector can be found in Figure 3.1.

3.3 ARINC 615

ARINC 615 is an ARINC report called Airborne Computer High Speed Data Loader (see
[12]). The last release of this standard was made in 2002. Today, it is quite outdated
and it is described here mostly for legacy reasons and the description is not very detailed.
Nevertheless, some devices still try to be compliant with this standard. Some parts of
the standard are very similar to ARINC 615A standard, which is described in the next
subsection. Since ARINC 615A standard is more important for this thesis, the similar
parts are described there.

The standard sets guidelines for development of two types of data loaders. Portable
data loader (PDL), and airborne data loader (ADL). Physical requirements for these
devices are defined in the standard, same way they are defined for these devices in ARINC
615A.

The data loader is using ARINC 429 interface and should have at least two outputs
and four inputs. It should be able to operate at both high speed (100 kbps) and low speed
(12.5 to 14 kbps). The on-board computers should address it in the sent words using label
with octal code 226 for high speed and label with octal code 300 for low speed.

The media for storing the loadable data are 3.5 inch floppy discs. The exact properties
and format of a disc are described in [12], sections 3.2.1 and 3.2.2 on pages 7 and 8.

The standard describes two configurations files for the data loader. First is called
CONFIG.LDR, and second is called EXCONFIG.LDR. At least one of them has to be
present on the disc, and if there are both, CONFIG.LDR is processed first. The config-
uration file contains the physical parameters used for the communication with the target
device, settings for the initial action taken after the initialization of the bus, total number
of data discs required for the data load, sequence number of the current disc, etc. The
full description of both types of configuration files can be found in [12], section 3.2.3.1 on
pages 8 to 11, and section 3.2.3.2 on pages 11 and 12, respectively. If some of the required
configurations are not set properly, default values are used.

File transfers are compliant with the file data transfer defined in ARINC 429. They use
the so called command / response protocol. Three types of words are used in this protocol.

Initial words, which are used to start and maintain the communication, intermediate

15

words, which carry the actual file data, and final words, which contain checksum used for
an error check and close the transmission. The whole scheme of the protocol is described

in detail in [12], section 3.5 on pages 21 to 29.

3.4 ARINC 615A

ARINC 615A is an ARINC report called Software Data Loader Using Ethernet Interface
(see [1]). It describes a data load protocol implemented using Trivial File Transfer Protocol
(TFTP) and Ethernet interface for the physical connection. It is the most important
standard regarding this thesis.

ARINC 615A sets expectations for and gives guidance on development of software data
loading equipment. As already mentioned, primary goal of data load is to upload software
onto the target hardware. Secondary goal can be to download information from the target
hardware.

Even though the standard is focusing on data load over Ethernet, other avionics buses
using elements of Ethernet protocol are also mentioned as possible physical connection for
implementation of ARINC 615A data load protocol. Namely ARINC 615A over AFDX
(see section 3.5) and ARINC 615A over CAN bus are mentioned.

The standard defines three categories of data load functionality:

o Portable Data Loader (PDL), which is a mobile device that can be used to perform
data load on the ground or brought on-board of an aircraft to perform data load
o Airborne Data Loader (ADL), which is a device installed on an aircraft

o Data Load Function (DLF), which is a software performing the data load itself
The standard describes physical requirements for PDL and ADL, e.g. their size, weight,

controls and indicators, power supply and circuitry, non-operating and operating temper-
ature spans, etc.

Some recommendations regarding the removable transport media for the loadable soft-
ware are also made. The media include for example USB sticks, CDs and DVDs, and legacy
carriers like 3.5 inch floppy disks.

The most important part of the standard is the definition of the load protocol. It
defines functions that are necessary to be implemented both on data loader side and the
target hardware side for them to be ARINC 615A compliant.

The load protocol defines means to (cited from [1], page 22):

« upload ARINC 665 software parts (see section 3.6) to target hardware

e download data from target hardware

e get configuration information from target hardware

o interrupt at any time any of the three previous operations (interruption request can
be made by the operator or by the target hardware)

e obtain subscriber information, such as MAC address, IP address, and target hard-

ware identifier

16

To the last point, the subscriber information can be obtained using the Find Identifi-
cation of Network Devices (FIND) protocol. FIND protocol allows its initiator (operator
using the data loader) to identify all available FIND hosts (ARINC 615A compliant tar-
get hardware) on the network. The operator can then select the desired target hardware
device or devices from a list.

The implementation of the FIND protocol is done using UDP datagrams on port 1001.
The initiator of the operation broadcasts or multicasts a request for a response from all
available FIND hosts on the network. Then it registers all valid responses that come
within 3 seconds.

FIND hosts respond with a unicast message to the data loader. Information about
host’s MAC address and IP address are part of the UDP/IP datagram and other infor-
mation about the host are part of the UDP payload. FIND protocol does not implement
any error handling. If the request or the response are not valid, they are ignored.

Two types of FIND packets are defined. Information request (IRQ) and information
answer (IAN). Each has a two byte header defining whether it is an IRQ packet (value
1) or TAN packet (value 2) and a variable length data. IRQ carries only one byte ASCII
string terminator (value 0x00) and one byte packet terminator (value 0x10).

TAN carries information identifying the host. It contains five strings separated by the

one byte ASCII string terminator. These strings are:

1. Target Hardware Identifier
Target Hardware Type Name
Target Hardware Position

Literal Name

CUk W

Manufacturer Code

All the other operations defined by ARINC 615A, excluding FIND, are implemented
using TFTP protocol, i.e. they are based on downloading from or uploading files to the
TFTP server, which is part of the data loader. There are two types of files that are
exchanged between the data loader and the target hardware. First being protocol files
that are generated during the load process, and second being the files with the loaded
software itself. While standard TFTP port is 69, TFTP services for ARINC 615A are
expected to run on port 59.

There are three types of operations defined in the standard, which are implemented
using TFTP:

e Information Operation, during which the data loader acquires information about the
configuration of the target hardware

e Uploading Operation, during which the data loader uploads files to the target hard-
ware

e Downloading Operation, during which the data loader downloads file from the target

hardware

According to the standard, data loader has to implement all of the above operations,

plus the FIND operation defined earlier, whereas target hardware does not necessarily

17

need to implement the download operation. Furthermore, the operations cannot run in
parallel, and active operation can be aborted upon a request from the operator.

TFTP options may be implemented to gain higher efficiency of the file transfer. In
such case, the negotiation of these options has to be supported as well, though. If one side
does not support any of the options, standard settings have to be used for this option or
these options. Transfer should never fail due to non-implemented option.

Standard TFTP protocol is extended for the purpose of the load protocol. Wait and
abort messages are defined by the load protocol. They are implemented using the TFTP
error message. This message is part of an error packet and contains an error code number,
and an ASCII error message. Defined error codes are integers from 0 to 8. Error code
0 definition is Not defined, see error message. Load protocol uses this error code and
utilizes its error message to define its own string encoded messages.

Wait message contains error string WAIT:z, where z is the wait time in seconds. The
maximum wait time is 65535 seconds. This message can be generated in response to
a TFTP transfer request by either the data loader or the target hardware. The device
receiving this message should abort the TFTP transfer and initiate it again after the
specified delay.

Abort message contains error string ABORT:zzzr, where zzzz is string of four hex-
adecimal digits containing a status code. The status code can for example mean that the
operation was aborted by the data loader, or by the operator.

Any target hardware instance in an aircraft is defined by an identifier called
THW_ID_POS. THW_ID (target hardware identifier) is defined in ARINC 665 stan-
dard and POS (target hardware position) is represented by 0 to 8 alphanumeric characters.
Both these strings are part of the TAN packet payload received upon a FIND request.

The THW __ID_POS identifier is used as a name for the generated protocol files, using
different suffixes. The full list of the protocol files can be found in the original ARINC
615A document (see [1], table 6.4-1 on page 66). These files contain all the protocol
overhead information like the protocol version supported by the target hardware, status of
an ongoing operation, including a heartbeat signal of the target hardware, result indicators

of the finished operations, etc.

3.5 ARINC 664

ARINC 664 is a seven part ARINC specification (see [13], [14], [15], [16], [17], [18], and
[19]). It defines an Ethernet data network suitable for an aircraft installation. Each of the
aforementioned documents describes some area, e.g. system concepts, Ethernet physical
and data link layer, Internet-based protocols and services, etc.

Basically, the main goal of this standard is to set requirements and restrictions that
have to be met in order for the standard commercial Ethernet networks and Internet

protocols to be eligible for the use in aircrafts.

18

ARINC 664 standard is not a key standard for this thesis, therefore it is not described
in greater detail here. However, AFDX network was mentioned in section 3.4 as a possible
layer, upon which ARINC 615A standard can be implemented, hence at least a short
description of AFDX follows.

Avionics Full-Duplex Switched Ethernet (AFDX) is a trademark of Airbus company.
Airbus has it patented for safety-critical applications. AFDX network is able to provide
deterministic quality of service (QoS) on a dedicated bandwidth.

There are two types of devices connected to an AFDX network. End systems and
switches. AFDX implements the so called virtual links, which make an abstract layer and
simulate a bus similar to the one defined by ARINC 429. Using virtual links, one source
end system can create a unidirectional logical link to one or more destination end systems.
Redundancy is used in the background, which means end systems actually communicate
over multiple independent networks. In case of switch or link failure in one network, the

connection shall not be interrupted.

3.6 ARINC 665

ARINC 665 is an ARINC report called Loadable Software Standards (see [5]). It defines
the format of the loaded software. This definition includes the rules for part number-
ing, content, labeling, and formatting of loadable software parts (LSPs) and media set
parts (MSPs). Subset of LSPs are loadable software airplane / aircraft parts (LSAPs).
Compliance with the ARINC 665 standard assures, that software can be processed by
standardized data loaders.

Each LSP should have exactly one part number (PN), which should be agreed upon
by the aircraft manufacturer and the software supplier. Whenever a change is made to an
LSP, PN should be changed as well. The PN format is defined as MMMCC-5555-555S,
where (cited from [5], page 6):

e MMM is a unique, upper-case alphanumeric identifier called manufacturer’s code,
that is assigned to each software supplier

e (C are two check characters generated from the other characters in the PN

e S5555-555S is a software supplier defined unique product identifier consisting of

upper-case alphanumeric characters, except for alpha characters I, O, @), and Z.

However, ARINC 615A compliant data loaders should not check the PN format in
order to achieve higher backward compatibility and flexibility.

ARINC Industry Activities assigns manufacturer’s code upon application. It also ad-
ministers the already existing codes and a list of them can be found on ARINC Industry
Activities website.

CC denotes 8 bit cyclic redundancy code (CRC) written as two hexadecimal digits.
CRC is computed from the ASCII values of the rest of the PN characters.

An LSP consists of a header file and one or more data files. Furthermore, it can contain

support files. Each file within an LSP should have a unique name with maximum length

19

of 255 characters including an extension. The filename of the header file should start with
the three character manufacturer’s code and the rest should be unique for each LSP from
this manufacturer. Characters that can cause problems on some platforms, like spaces, *,
/, etc., are restricted. Also, the only difference between two filenames cannot be in the
use of uppercase and lowercase characters.

Each type of LSP file should have an extension. For example, header filename should
end with .LUH, data filename should end with .LUP, etc. The full list of extensions for
all file types can be found in [5], table 3.2.2-1 on page 28. Support files can have any user
defined extension, as long as it does not conflict with the reserved ones.

The content of LSP header file is thoroughly described in [5], section 2.2.3.1 and its
subsections on pages 9 to 20. For the data files and support files there are no expectations
regarding their content or format. These types of files can optionally be compressed to
save space and speed up the loading process, or they can be encrypted.

The standard also defines batch file part (BFP), which can be utilized to predefine
a set of LSPs that should be loaded into one or more target hardware devices (positions).

MSPs in the context of ARINC 665 standard are the physical media, that are used to
transport LSPs, and eventually BFPs. They also have PNs. PN should be agreed upon
by the aircraft manufacturer and the software supplier. It should not be longer than 15
characters. The PN should uniquely identify the particular combination of physical media
and the software content.

Each member of an MSP is identifiable by MSP’s PN and the member sequence num-
ber, which should be from range of 1 to 255. Members of one MSP should use the same
physical media, e.g. USB sticks, CDs, etc. LSP files can be distributed over more MSP
members. However, individual files should never be split.

Each member of an MSP has a list of all contained LSPs stored in LOADS.LUM
file, a list of all contained files stored in FILES.LUM file, and a list of all BFPs stored
in BATCHES.LUM file. These files should be stored in the root directory of the MSP
member. The full definition of the content and format of these files can be found in [5],
section 3.2.3.1 and its subsections on pages 28 to 32, section 3.2.3.2 and its subsections on
pages 32 to 37, and section 3.2.3.3 and its subsections on pages 37 to 40, respectively.

The standard also describes in detail the way MSPs should be labeled. Label should
for example contain the MSP’s PN, sequence number, content description, supplier iden-
tification, etc. The full description can be found in [5], section 3.3 and its subsections on
pages 42 to 44.

3.7 ARINC 781

ARINC 781 is an ARINC characteristic called Mark 3 Aviation Satellite Communication
Systems (see [20]). It sets forth the desired characteristics of satellite communication

systems which are using Inmarsat satellites and operate in L-band (band from 1518 MHz

20

to 1559 MHz for reception and 1626.5 MHz to 1660.5 MHz and 1668 MHz to 1675 MHz
for transmission).

The communication system consists of multiple parts, which are individually described
in the standard. To simplify it, the system can be viewed as a satellite data unit (SDU), an
antenna system, and an SDU configuration module (SCM). The standard broadly discusses
the radio frequency (RF) parameters put onto the whole system and its individual parts
(e.g. frequency ranges, limits for RF output power, power of intermodulation products,
error vector magnitude, spurious emissions, etc.). Interfaces, both those provided by the
SDU for cockpit and cabin services, and those for interconnection of the system parts, are
also described, as well as the physical parameters, power supply, cooling, and many other
parameters.

The standard also explains Inmarsat services, their types (Classic Aero, Swift 64, Swift-
Broadband), parameters, etc. Services that should be provided by the SDU, for example
aircraft communications addressing and reporting system (ACARS), are discussed, too.

There is also a brief mention about the data load. ARINC 781 states, that the SDU
should be designed so that all embedded software components can be loaded through
industry standards ARINC 615 and ARINC 615A data loaders. It should also be possible
to download the owner requirements table (ORTs) from the SDU to a data loader. SDU
software files should be compliant with ARINC 665 (taken from [20], pages 70 and 71).

21

4 ASPIRE 400

Aspire 400 is a satellite data unit (SDU) developed by Honeywell company. The target
market for this unit consists of small and medium aircrafts. The purpose of this unit is
to provide an aircraft with air-to-ground and ground-to-air connectivity. Basically, Aspire
400 can be viewed as a modem. Aspire 400 SDU is also a line replaceable unit (LRU,
defined in section 3.2).

In this chapter, the internal structure of the SDU is described in section 4.1. This
description is concerned with the structure that is important for the data load process.

In section 4.2 and section 4.3, software configurations used on the two keys components

of the unit are described. Possible data load scenarios tied with these configurations are
described in chapter 5. The testing environment used in production of Aspire 400 SDUs
is described in section 4.4.

4.1 SDU structure

Since Aspire 400 is currently an ongoing commercial project, the description of the SDU
below goes only into detail necessary for the matter of this thesis. The full hardware
structure of the components and their connections cannot be revealed, since these details
could be used by Honeywell’s competitors.

From the data load point of view, there are two important components in an SDU.
Multiprocessor Card (MPC) and Dual Aeronautical BGAN Card (DABC, BGAN stands
for Broadband Global Area Network). There is also an SDU Configuration Module (SCM),
a separate component outside of the SDU box, which contains some customer specific data.
These components are described below.

SDU provides multiple ways of connectivity, including ARINC 429 interface, RS-232
and RS-422 COM port serial interfaces, and Ethernet interface. These can be utilized in
the data load process. Most connectors of an SDU are physically placed on its backplane
in the ARINC 600 connector. Some of them are also accessible on the front panel.

Both MPC and DABC are connected to a so called backplane, which is another card
within the SDU. Its main purpose is simply to provide interconnections between MPC and
DABC and SDU’s ARINC 600 connector.

MPC, DABC, and backplane card are also sometimes called shop replaceable units
(SRUs). Like LRU, SRU is a term used in avionics. It denotes hardware on a lower level
than LRU. While LRU can be quite easily replaced in the field, piece for piece, SRU usually
has to be replaced in the LRU manufacturer’s facility, where the LRU is disassembled in
order to replace the SRU. Hence the name shop replaceable unit.

A simple visualization of the loadable components of an Aspire 400 SDU and their
interconnections can be found in Figure 4.1. It shows a simplified structure of the unit,

with emphasis on the information important for the data load.

22

SCM

UsIm || USIM | | EEPROM
SDU
M PC A UART (UCC3) AN
v ¥
<—>| EEPROM ~—>|“S’" EEPROM
. EEPROM ! Iy Secondary SDRAM
Primary <—>| SDRAM Processor NOR flash
Processor FPGA
PP PRI NOR flash NAND flash
8 Y Y A A
g |« > NAND flash
o 3
w
= |e I N
E e
-— < I W -
« v l
Ethernet Ethernet vy
e e
le— Switch 1 Switch 2
- A S—
[e
= |z | bABC £
L Bk
HIE HE
ar Channel 1 R Channel 2
é é \ 4 l* Vﬁ Vﬁ ¢ A,
g [4—>| NOR flash 4—>| NOR flash
= FPGA >
Protocol l—‘NVR .~ Protocol Y
Processor . 1, Processor
<—»| SDRAM <—»| SDRAM
TL»{ DSP > SDRAM | L»{ DSP [« SDRAM |
— DSP | sram |
|DSP|—{ sram |
A
|
Fig. 4.1: Aspire 400 SDU loadable components and their interconnections
4.1.1 MPC

Main processor card (MPC) is the brain of Aspire 400 SDU. It has two processors that
require data load. These processors are identical from the hardware point of view. They

are both a system on chip with two 64 bit processor cores using Power Architecture

23

instruction set architecture. They provide high-performance data path acceleration and
network and peripheral bus interfaces useful for aerospace applications. A block diagram
of the system can be found in Figure 4.2. The diagram is taken from the processor’s data

sheet, but it cannot be cited in order to keep the processor model undisclosed.

Power Architecture®
256 KB e5500

backside
L2 cache 32/64-bit
32 KB 32 KB 256 KB DDR3L/4
D-Cache I-Cache platform cache memory controller

Security fuse processor CoreNet™ Coherency Fabric

Security monitor

16b IFC FALGIE
Power management S Frame Manager] QuicC _—
ecuri r i eal-time
SD/eSDHC/eMMC a4 © Queus 2x DMA Engine debug
: distribute
2x DUART (XoR, Manager Watchpoint
atchpoin
CRC) SIS 5 9l 9 crogsI
4x 12C 2l lal|g = =l trigger
ol |o| | < Il
eSPI, 4x GPIO sllgl gl |© S| S [per
Buffer SHIEE 818 |vonitorl Trce
2 x USB2.0 w/PHY Manager S EERE F | F [Monitor
DIU i il I I [Aurora |

4-lane, 10 GHz SerDes

Fig. 4.2: MPC processor block diagram

From the functional point of view, the processors have different tasks in the SDU.
However, their individual domains are not important for this thesis and therefore they
remain undisclosed. For the data load problematic, it is important to state that one of
the processors, hereafter referred to as primary processor, is booted first during the boot
up of the SDU and controls the other components, namely the other processor, hereafter
referred to as secondary processor, and the DABC.

FEach of MPC’s processors has four external memories. Three non-volatile and one
volatile. The non-volatile memories are one Micron 128 MB NOR flash, one Micron 1 GB
NAND flash, and one Microchip Technology 64 KB EEPROM. The first two memories are
connected to the processor via the Integrated Flash Controller (IFC) bus. This bus is 16
bit wide and clocked at 100 MHz. It provides a NOR flash controller, a NAND controller,
and a General Purpose Chip Select Machine (GPCM) controller (see [21], slide 4). The
EEPROM is connected via Enhanced Serial Peripheral Interface (eSPI) bus.

The volatile memory is a 1 GB DRAM error-correcting code (ECC) protected DDR3L
SDRAM, namely two 512 MB Micron chips are used. The L in DDR3L stands for low-
voltage (memory is operating at 1.35 V instead of standard 1.5 V). ECC protection detects
and corrects all single-bit errors and detects all double-bit errors. The ECC is a 256 MB
Micron chip, which is not user accessible. All memories are organized in a virtual address
space addressed with 32 bits for each processor.

In a typical boot up scenario, when the power is turned on, the system starts execution
from a non-volatile memory (e.g. EEPROM or NOR or NAND flash). After that, the

24

code is copied from a persistent storage into RAM and execution continues from there
(see [21], slide 3). Therefore the processor needs to be able to communicate with the
non-volatile memory before any software configurations are made. In case of MPC, the
boot up process is started from the EEPROM and NOR flash and the program data are
copied to RAM from the NOR flash.

There is one more Microchip Technology 64 KB EEPROM, which is a part of the
Standalone Identification System (SIS) interface. It is used to store the unit level configu-
ration information. It is accessible both from the primary processor via an Inter-Integrated
Circuit (I2C) bus, and externally using the SIS interface. This interface allows user to check
the configuration stored in its EEPROM without the necessity to have the SDU powered
on. The SIS interface is made up by 8 pins. The connector is a 9 pin D-Sub connector
placed on the SDU’s front panel. The SIS interface can only read out of the EEPROM.
The primary processor has to be used in order to write data into it.

The primary processor provides an RS-232 port called MPC maintenance port and both
processor are reachable via Ethernet interfaces, either directly or via Ethernet switches
which are part of MPC as well. All these connectors are accessible on SDU’s backplane
(they are part of the ARINC 600 connector).

The primary processor and the secondary processor are interconnected via a serial link
which is realized by universal asynchronous receiver / transmitter (UART) using UCC3
(Unified Communications Controllers) through the QUICC Engine (see subsection 4.2.4).

The Ethernet switches on MPC are made by Atheros. The direct Ethernet connections
to MPC’s processors are realized using PHY chips (circuitry implementing physical layer of
the OSI model), namely serial gigabit media-independent interface (SGMII). The Ethernet
connections via switches are either SGMII or reduced gigabit media-independent interface
(RGMII). Both switches and both PHYs are controlled by the primary processor over
MDC/MDIO serial bus. The active device is selected by a 1:4 multiplexer.

MPC also contains a Microsemi FPGA, which is controlled by the primary processor
via the IFC bus. This FPGA, among other things, implements the ARINC A429 interface,
and it also controls reset signals to other components in the SDU (the secondary processor
and DABC).

Other important parts of MPC are three pin header JTAG connectors, one for each

processor (16 pins) and one for the FPGA (10 pins). There are also another two 10
pin header connectors, one for each processor’s EEPROM. These connectors are used for

testing and data load, as described in more detail in chapter 5 and chapter 6.

4.1.2 DABC

Dual Aeronautical Broadband Global Area Network Card (DABC) is the modem part
of Aspire 400 SDU. This component is connected to an antenna mounted on an aircraft
and using this antenna serves as the transmitter and receiver of the radio frequency (RF)
signals. Based on the type of antenna, an amplifier might be also used, or it can be part

of the antenna itself.

25

DABC also provides processing of RF signals, which includes modulation and demo-
dulation, encoding and decoding, implementation of protocol stacks for Inmarsat
services, etc. Inmarsat’s SwiftBroadband (SBB) network is used for communication. SBB
is a global IP-based packet-switched network providing aircraft connectivity with speed
up to 432 kbps per channel (see [22]). It uses Inmarsat satellites to operate.

DABC, as the word Dual in its name suggests, has two independent channels. Each
one has its hardware and is loaded separately. More information about the data load of
DABC can be found in chapter 8. DABC is sometimes also called channel card (CC),
since its purpose is to provide RF communication channels.

From the hardware point of view, which is again kept at a level necessary for the
data load process, DABC has one FPGA common for both channels, each channel has
one general purpose processor, one channel has one DSP and the other channel has three
DSPs.

The FPGA is made by Xilinx. Apart from other things, the so called control processor
is implemented for each DABC’s channel within this FPGA. Its main purpose is to select
the application that is supposed to be started during DABC’s boot up process. The
control processor is commanded via an RS-232 control port. It is also connected to the
other components, which can be commanded via the control port as well.

The general purpose processor is a high performance low power system on chip based on
MIPS32 instruction set. In DABC, it is called a protocol processor, since its main purpose
is to run applications processing Inmarsat protocols. A block diagram of the system can
be found in Figure 4.3. Same as with the MPC processor, the diagram was taken from the
processor’s data sheet, but the document cannot be cited because it naturally contains
the model name of the processor.

There are three memory chips connected to this processor. One non-volatile 32 MB
Micron NOR flash connected via the SRAM controller, one volatile 32 MB Micron SDRAM
connected via the SDRAM controller, and one 256 KB Cypress Semiconductor SRAM
connected via the SRAM controller. The last memory is volatile by nature, but in DABC,
a condenser is used to make the data in it persistent. The condenser should last at least
one minute, but in reality, it can hold the data much longer. Anyway, the data are
persistent through a restart of the card, therefore this memory can be viewed as a sort of
NVRAM. The protocol processor is also connected to the RS-232 maintenance port and
to the Ethernet port.

The DSPs are made by Texas Instruments. The one used on both channels has a 128
MB Micron DDR2 SDRAM. It is connected to the protocol processor via Host Port In-
terface (HPI) bus and to the FPGA via GPIO lines. HPI is a parallel port through
which the protocol processor can directly access the memory space of the DSP, including
memory-mapped peripherals (see [23]). Protocol processor acts as a master on the bus.

The other DSPs used only on the first channel are identical and both have a 256 KB
Cypress Semiconductor SRAM, which is organized as 128K 16 bit words. These DSPs are
connected only to the FPGA via GPIO lines.

26

=

SDRAM Controller Fast IrDA <+—>
16KB —>
Enhanced Instruction) SHAG
MIPS32© Cache @
CPU Core Bus Units g DMA Controller
4
PCMCIA 316 @ Ethernet MAC | nummg
MAC Cache
LCD Controller —>
SRAM Controller
USB Host <+—>
RTC (2) USB Device —
]
=3 ‘ ’
Power Management g Interrupt Control
1™
Q
Dmmg AC97 Controller s GPIO (48) «—
]
o
<+—> 12S Controller UART (3) +—>
+——> Ss1(2) Secure Digital (2) <+—>

Fig. 4.3: DABC processor block diagram

A 40 bit virtual address space is used to map all DABC components into it to simplify
the access to them.

Like MPC, DABC also has JTAG lines which can be utilized for testing and data load.
Unlike MPC, on DABC there is only one dedicated JTAG connector (for the RF part)
and other lines (for the channel 1 and channel 2 protocol processors and for the FPGA)
are part of DABC’s backplane connector, i.e. defined pins of this connector are dedicated

for this functionality.

4.1.3 SCM

SDU configuration module (SCM) is a separate module containing an EEPROM memory
in which some important unit-specific configuration data used by flight code are stored.
It contains for example serial number of the unit, information about both hardware and
software configuration and customer data. Customer data are stored in the so called owner
requirements table (ORT).

SCM also contains slots for Universal Mobile Telecommunications Service (UMTS)
Subscriber Identity Modules (USIM) cards, which are used by Inmarsat to connect to its
Swift Broadband network. USIM cards are necessary for the DABC to be able to operate.

SCM is connected to an SDU via RS-422 serial interface and power is also provided by
the SDU. The advantage of having SCM as a separate module is that it can stay in the
aircraft while SDUs are swapped. When a new SDU is used, ORT does not need to be

loaded again since it is part of the SCM, and USIMs can also remain untouched.

27

4.2 MPC Software Parts

In this section, software used on MPC is described. There are multiple possible software
configurations of MPC consisting of a combination of the software parts described below.

More information about these configurations can be found in chapter 5.

4.2.1 FPGA Configuration

A file with data for the MPC’s FPGA is necessary to program it. Microsemi flash pro-
grammer allows usage of either PDB or STP file formats. The file contains data for the

boundary scan test a the FPGA configuration.

4.2.2 RCW

MPC’s processors use a mechanism called pre-boot loader (PBL). PBL is automatically
executed when the processor is powered on and its main task is to load the reset configu-
ration word (RCW), which is stored in processor’s EEPROM. RCW is 512 bits long and
contains encoded information used to initialize the RCW status registers. The information
encoded within RCW sets for example clock speed, RAM attributes, etc.

4.2.3 Miniboot

Miniboot is a simple executable code that verifies the checksum of U-Boot (see subsec-
tion 4.2.4). It is stored in processor’s NOR flash and run after the processor is powered
on and RCW is loaded.

Miniboot first tries to verify checksum of the primary U-Boot image and if it is correct,
Miniboot hands execution over to this U-Boot image. If this checksum is not correct,
Miniboot tries to verify checksum of the secondary U-Boot image. If this image is correct,
Miniboot starts its execution. If not, the SDU halts.

4.2.4 U-Boot

U-Boot, or Universal Boot Loader, is an open source project, which provides firmware
for embedded systems. The core development is done by DENX Software Engineering
company from Germany. The versions used in Aspire 400 project are customized at Hon-
eywell. The purpose of U-Boot is to perform hardware specific initialization and testing
(e.g. RAM test).

There are two main advantages of U-Boot. First is that it can boot up a system
already loaded into the device’s memory, and, unlike in most bootloaders, user can specify
the addresses in memory used by the boot commands.

The second is it provides a command line interface via RS-232 port. This interface
can be accessed when U-Boot startup process is interrupted by a keystroke during the
prompted time period. The interface supports commands for writing to, or reading from

the memory, modification of the environment variables, transferring files over the RS-232

28

serial interface (using for example YMODEM file transfer protocol), or Ethernet interface
(using for example trivial file transfer protocol, i.e. TFTP), etc.
On MPC, there are two identical U-Boot images for each processor stored in its NOR

flash. As already described in subsection 4.2.3, one image is primary and the other one is

secondary. Integrity of an image is checked before it is started by computing its checksum.
Normally, only primary image is used (unless it is corrupted).

However, one exception to this duplicity exists. The environment variables are stored
in the so called U-Boot environment memory space in the NOR flash, and this space is
unique. The environment variables are loaded upon U-Boot’s startup and they contain
values which determine the behavior of U-Boot. In case the U-Boot environment is found
to be corrupted (again checked by a checksum), U-Boot sets all environment variables to
default values. And in case the U-Boot image is found to be corrupted, this information
is stored in the environment variables.

U-Boot also loads two microcodes (sometimes also spelled as pcodes). Each controls
behavior of a certain hardware block within the processor. First is FMan, or Frame
Manager, which processes Ethernet frames to provide classification and intelligent distri-
bution and queuing for incoming traffic. Second is QUICC Engine, which serves for high-
performance multiprotocol processing, e.g. Unified Communications Controllers (UCC).
Both microcodes are provided by NXP, both are stored twice in the processor’s NOR flash
and their checksums are checked by U-Boot.

4.2.5 HBIT

Hardware built-in test (HBIT) is a software specifically designed to allow testing of all the
components of an Aspire 400 SDU. The target of this testing is to make sure the hardware
of the tested SDU is functioning correctly, i.e. all the components of the printed circuit
boards and their interconnections are in place and are working as expected.

Basically, the purpose of HBIT is to provide an interface that allows setting or reading
out variables. A typical test scenario is when a set of variables is set in a predefined
way, and another set of variables is read out to see if the hardware reacts to the setup
as expected. There are many different variables to cover all the test scenarios. There are
discrete signals, analog signals, data sent over various buses, RF setups, etc.

HBIT is loaded onto MPC, but it also has the ability to control DABC in order to set
it up for the RF test scenarios.

For some tests, the environment outside of the tested unit also needs to be set up.
Most typically, voltages and currents are measured, so probes have to be set up correctly.
Or some inputs and outputs need to be looped, temperature has to changed for the test,
etc. This is not done by HBIT itself, but by the testing platform (see section 4.4).

HBIT also provides functionality called Continuous built-in test (CBIT). As the name
suggests, CBIT is a version in which testing is continuous, i.e. the tested variables are read

out with a defined frequency until the process is stopped. Compared to that, in HBIT, the

29

variables are read out on demand. The tested values that are read out can be compared

programmatically, they can be logged, they can be visualized, etc.

4.2.6 Flight Code

Flight code is the full feature version of the software that is used on board of an aircraft.
Prior to any regular in-flight usage, this software has acquire proper certification. It
undergoes the so called qualification process, during which it is inspected and tested by
all the interested aviation authorities, and, if it complies with all the requirements and
passes the tests, it is certified.

In case of Aspire 400 SDU, more precisely the MPC, flight code is a Linux-based
module system. Each module takes care of some specific functionality. It is basically
a process. The so called message event service (MES) is implemented to provide an inter-
process communication between the modules. MES also provides means for securing the
communication, i.e. encoding and decoding the messages.

Flight code modules are distributed on MPC’s processors. Each processor takes care
of different parts of the SDU’s functionality. But the functional domains of flight code are
not important for the topic of this thesis, therefore they are not described further. Only
the modules important for this thesis, e.g. data load controller (DLC), are described in
greater detail in chapter 9.

Flight code is released in a form of flattened image tree (FIT). It is an image of
the whole system, including all configurations. This image is part of the loadable package
compliant with ARINC 665 standard. The standard in general was described in section 3.6
and for its application on Aspire 400 project see chapter 9.

4.3 DABC Software Parts

DABC is commanded by the MPC. Nevertheless, different configurations for DABC exist
and the code is loaded separately. Moreover, as mentioned earlier, DABC has two separate
channels, and each of them is loaded separately as well.

The DABC software is released in a form of image files (.img suffix). Based on the
type of application, the file contains data for one or more of DABC’s components. The
application is usually loaded onto all DABC components it uses during one instance of the
data load process. This ensures the software for individual components is compatible. But
it is also possible to load individual components with a specific combination of software
versions. This is especially useful for some extensive debugging, when user can create
a customized software version for the component of interest and load just that one.

Multiple applications can coexist in DABC’s non-volatile memory (protocol processor’s
NOR flash) at the same time. The active one is picked during the boot up using the so
called loader program, which is described in the next subsection. Records about available

applications are kept in a special table stored in the NOR flash as well. This so called

30

PDB table contains names and versions of applications, together with their checksums
and addresses in the NOR flash.

Some environment variables can also be stored in protocol processor’s NVRAM.
Factory values are stored in the NOR flash and they are loaded from there to the NVRAM,
where they can be modified. The reason for this approach is that the NOR flash always
holds the factory data as a form of a backup and when modified, the change is done in
the NVRAM, so no writes to NOR flash are necessary. This reduces the number of writes
to this memory, which reduces its wear-off speed.

The list of DABC applications in this section is not exhaustive. Other types of DABC
images, mainly for different testing purposes, also exist. However, these are not used
during production testing and therefore they are not listed here.

A proprietary language called Binary Command Language (BCL) is used to command
DABCs. It is used to communicate with DABC from any external device or component.
A library for translation of BCL commands into binary and vice versa has to be available
in order to use it. All of DABC’s functionality is accessible using BCL commands. The
commands can be sent either via control port or maintenance port (RS-232) or via Ethernet
(TCP/IP stack).

Each BCL message has mandatory header and optional data payload based on the
message type. The header contains information about sender (BCL address of the sending
component) and recipient (BCL address of the target component). It has also information

about the type of the message, its length, CRC, and other properties.

4.3.1 FPGA Configuration

Like on MPC, a file with data for the DABC’s FPGA is necessary to program it. On DABC,
Serial Vector Format (SVF) file is used. This file contains instructions that perform the
boundary scan test a configure the FPGA into the desired state. SVF files are ASCII

encoded.

4.3.2 Loader Program

After power is applied to DABC and the reset signal is turned off, loader program is
initiated. This program reads the PDB table with information about all available appli-
cations mentioned above from the NOR flash and presents a list of available applications
via the control processor interface (control port RS-232). Selection is done using ASCII
encoding, i.e. application is selected by typing its name over the control port, terminated
with a carriage return character. When a correct application name is supplied, the loader
program copies the application from the NOR flash into RAM and hands over the control
to the application.

All applications can actually be twice in the NOR flash. This is for security reasons.
When application is loaded to DABC (written to its NOR flash) a copy of it can be made.
It is used in case the primary image gets corrupted. Before the loader program copies

the application into RAM, it computes CRC of the image it is about to copy to check

31

the image is correct. If the CRC does not check out with the one stored in the PDB
table, user is informed about the error, but if the secondary image is available, the loader
program tries to copy the application from there (it performs the CRC check again for
the secondary image). Secondary image is only used if the primary is either not present

or its CRC is not correct. A flow chart of the loader program functionality is shown in

Figure 4.4.

Power applied to DABC,
reset discrete turned off

DABC reads PDB table to get
a list of available applications

'

| DABC sends “DABC SELECT: <list_of_apps>"
| prompt via the control port RS-232

'

DABC waits for response
over the control port RS-232

'

Response received

A

A

DABC sends “APPLICATION
NAME NOT VALID”

A

A4

DABC sends “FAILED”

No ~Application name

Secondary image

DABC sends “LOADING” and DABC sends “LOADINGSEC” and
checks primary image CRC checks secondary image CRC

Yes

Primary image No Secondary image

corrupted?

A

DABC sends “RUNNING”

‘

<DABC starts image execution>

Fig. 4.4: DABC application selection

DABC sends “FAILEDSEC”

32

4.3.3 EBOOT

Emergency boot (EBOOT) is an application which allows overwriting DABC’s NOR flash
using BCL. Hence data load can be performed when this application is running on the
channel that is about to be loaded. EBOQOT is using only the protocol processor to run.

EBOOT also supports duplication of the other applications’ images in the channel’s
NOR flash, which was mentioned in the previous subsection. When the BCL command
to perform the duplication is received by the protocol processor, EBOOT tries to copy
the other images present in the NOR flash from their primary position to their backup
position. It first checks to see if the duplicates are already present and are exactly the same
as the primary images. If so, no duplication is performed, both to speed up the process,
and to omit unnecessary writes to the NOR flash. If not, EBOOT either performs the
duplication or returns an error message when something goes wrong, for example if there
is not enough space for the duplicate in its designated area in the NOR flash. There is
also a BCL command that performs the opposite action, i.e. wipes the duplicates out of
the NOR flash. EBOOT does not duplicate itself and it is the sole application that is able
to perform this duplication and / or wiping.

Also, in contrast with loader program, when an application is running (not only
EBOOT, but any), the channel can be controlled not just via control port RS-232, but
via maintenance port RS-232 and Ethernet port, too. Other than that, EBOOT does not
support any of DABC’s functionality.

4.3.4 IBIT

Initiated built-in test (IBIT) application is used for testing DABC in operational use. This
means that IBIT implements all functionality required to control DABC’s hardware. IBIT
is used during the production testing to command DABC to transmit and / or receive

data via its RF module. BCL commands are used to achieve this.

4.3.5 SwiftBB

SwiftBB, or SwiftBroadband, abbreviated SBB, is the full feature flight code application
used in an aircraft. It is designed to provide means of communication over Inmarsat’s
Broadband Global Area Network (BGAN). It handles the RF signals, implements all the
necessary protocols, etc. In order to be able to use BGAN, the implementation of this

application has to comply with SBB protocols defined by Inmarsat.

4.4 ATE

Automated test equipment (ATE) is an apparatus used for production testing of SDUs.
The testing is as automated as possible to speed up the process. Ideally, an operator
only plugs the unit under test (UUT) into the ATE and starts testing. All tests should

be performed and evaluated automatically, including all necessary configurations of the

33

testing environment. The operator only needs to check the final status of the tested SDU
to see if it has passed or failed, and if it has failed, the ATE should also give reasons of
failure, so the SDU can be possibly fixed.

An ATE for Aspire 400 project should support testing of two SDUs simultaneously.
The testing process is coordinated by a computer that is part of an ATE. This computer
is running Microsoft Windows operating system and a program called TestStand from
National Instruments is used to run and evaluate the test sequences.

TestStand has the ability to call various adapters and interfaces. Its advantage is
that it can unify calls into various libraries, programming languages, etc. This layer is
abstracted from ATE’s operator, and he or she is presented only with quite simple and
clear interface showing which test sequences have passed or failed. TestStand also creates
a test report, can log the measured values into database, and more.

Other necessary tools are also installed on the ATE’s computer. For example a TFTP
server enabling an SDU in U-Boot command line mode to download data from it.

In the production process, ATE also serves as the data loader for the load of HBIT
onto MPC and IBIT onto DABC in the beginning of testing, and for the first-time load of
flight code after the testing is finished. U-Boot has to be already present on MPC, as well
as EBOOT on DABC, when the SDU it tested via ATE, since ATE tests SDUs (i.e. tests
at the box level), while these applications have to be loaded at the card level, as described

in more detail in chapter 6.

34

5 DATA LOAD SCENARIOS

During its lifetime, SDU has to go through multiple software configurations. First, when
an SDU is produced, individual components are manufactured, i.e. printed circuit boards
(PCBs) are made and assembled. Then some initial tests are performed on these com-
ponents, for example automated optical inspection (AOI), automated X-ray inspection
(AXTI), in-circuit test (ICT), boundary scan, etc. At this time, the components are blank,
therefore it is necessary to load some software onto them in order to use them. The soft-
ware has multiple layers, starting with bootloaders at the lowest level. There can be more,
building up on each other and extending the provided functionality. On top of bootloader,
there is usually some operating system and at the top level, there are the final applications.

In production, the low level software is usually loaded by the component manufacturer.
During development, when changes even to the low level software might be required, or
the software might get corrupted by improper work with memory, it can be sometimes
necessary to flash the component at Honeywell, too. But in most cases, the software at
the lowest level is loaded once onto a blank component and does not need to be changed
further.

Once the individual components are loaded with at least the low level software, the
unit could be theoretically assembled and shipped for SDU level production testing. But
in order to make sure the components work correctly prior to the SDU assembly, software
designed specifically for testing of all required features is loaded onto them and functional
testing at the card level is performed. This testing software is HBIT for MPC and IBIT
for DABC (these software parts were described in subsection 4.2.5 and subsection 4.3.4,
respectively). Only after both MPC and DABC pass, SDU is assembled and the testing
process goes further.

The SDU level production testing is performed at Honeywell and uses HBIT and IBIT

as well. It can happen that versions of these software parts used during the card level

testing are the same as versions required for the SDU level testing. In such case, testing
can proceed right ahead. However, it is more likely that the card manufacturer is provided
with a different version of HBIT and / or IBIT by Honeywell, and it is therefore necessary
to load these software parts once again.

If the unit passes the tests at the SDU level, the final software configuration (flight
code) is loaded onto it. This configuration supports the full functionality and contains the
customer specific data, too. At this moment, production is finished and the unit is shipped
to customer, ready for operation. Of course, there are also some possible post production
data load scenarios, namely update of the flight code version and error identification.

A flowchart of one SDU’s lifecycle is visualized in Figure 5.1. It is of course slightly
simplified. Data loads are highlighted in red. The dashed ones on the SDU level are those
that might not be necessary if correct versions of software parts are used for the card
level testing. There is also a blue box highlighting those that were in scope of this thesis
implementation. All the data load scenarios are also listed per component in the following

sections with more detailed description.

35

Card (SRU) Level SDU (LRU) Level
Customer /

DABC Manufacturer / Backplane Manufacturer / Honevwell Facilit
Honeywell Facility Honeywell Facility yw v Field Operation

PCB manufacturing PCB manufacturing
and assembly and assembly
AOI H Fix backplane

MPC Manufacturer /
Honeywell Facility

PCB manufacturing
and assembly

Scrap backplane

Loader program, EBOOT, and
FPGA configuration flashing

I
IBIT load onto DABC

RCW, Miniboot, U-Boot, and
FPGA configuration flashing

I
HBIT load onto MPC

thesis implementation

Backplane

FC load using U-Boot

FC load using DLC and
ARINC 615A data loader

Commi

Operate SDU

Decommissioning

Scrap SDU

|| Load FCusing DLC and
ARINC 615A data loader

Fig. 5.1: Aspire 400 SDU lifecycle with data loads highlighted

36

5.1 MPC Data Load Scenarios

The possible and meaningful data load scenarios for MPC are the following:

1. Blank MPC — MPC with RCW, Miniboot, and U-Boot
U-Boot — U-Boot

U-Boot — HBIT

HBIT — HBIT

HBIT — flight code

Flight code — flight code

Flight code — HBIT (and IBIT)

oot N

The first scenario has to be performed at the card level, i.e. before the SDU is
assembled, since the JTAG connectors need to be accessible in order to flash the MPC.
As mentioned earlier, in normal production, this data load scenario is usually covered by
the MPC manufacturer. Once U-Boot is present on MPC, more advanced ways of data
loading can be used. Nevertheless, it might be necessary to go over this scenario again if
the RCW, Miniboot, and / or both U-Boot images get corrupted. In such case, the MPC
needs to be flashed again at the card level to ensure its correct functionality. Details of
how this scenario is carried out can be found in section 6.3.

The second scenario is not very likely to occur, but in case U-Boot version needs to be
changed on an MPC already loaded with working U-Boot, U-Boot offers the capability to
reload itself. The way to do that is very similar to the way the next scenario is done and
it is mentioned in chapter 7.

The third scenario takes place after the unit is assembled and ready for the box level

testing. HBIT (see subsection 4.2.5) is an embedded software designed specifically for

testing the SDU’s hardware functionality at the box level. How is this data load performed
is described in chapter 7. If HBIT gets corrupted, but U-Boot and layers underneath do
not, HBIT can be reloaded in the same manner. Also if HBIT needs to be updated to
a different version, the same approach is taken.

The fourth scenario might be omitted if the HBIT version loaded in the third scenario
is the same as the target version of this scenario. But if it is not, the original HBIT has
to be reloaded with the required one. This is done exactly the same way as if there was
no HBIT present on MPC.

The fifth scenario is done once the box level testing of the SDU is successfully finished.
HBIT is erased and flight code is loaded onto MPC. U-Boot is used to do this yet again,
so details about this scenario are also in chapter 7.

The sixth scenario is necessary after the initial load of the flight code onto the SDU
in production, as well as if an update of flight code is released and the SDU needs to be
updated in the field. U-Boot is only capable to load components based on MPC, but flight
code also needs correct version of software on DABC and correct data in the SCM based
ORT table. U-Boot cannot ensure this, but the data load controller (DLC) implemented
in flight code can. Therefore, flight code is first loaded only onto MPC using U-Boot to

37

put DLC and its supporting components in place. Once available, the DLC functionality,
in cooperation with an external ARINC 615A compliant data loader, is used to load
DABC and SCM with the required data. The external data loader can be for example
the DataLoader application developed as a part of this thesis. The approach using DLC
together with DataLoader is closely described in chapter 9.

The seventh scenario might occur when a hardware error is found on an SDU. In such
case it is necessary to identify the error and whether it is possible to fix it. Combination
of HBIT and IBIT is the software configuration designated to identify hardware errors,
so these software parts are loaded onto the SDU again. The advantage of DLC is that is
is able to write to any memory address on MPC, DABC, and / or SCM. Thus it is able
to reload HBIT onto MPC and IBIT onto DABC (if the correct version of IBIT is not
already present), as well as it would be able to update U-Boot if needed. One setback is
that HBIT and flight code cannot coexist on MPC, so by the reload of HBIT, flight code
ceases to operate and after the error is identified and the SDU repaired, it needs to be

loaded again as described in the fourth and the fifth scenario.

5.2 DABC Data Load Scenarios

The possible and meaningful data load scenarios for DABC are the following;:

1. empty DABC — DABC with loader program and EBOOT
2. EBOOT — EBOOT

3. EBOOT — IBIT

4. EBOOT — SwiftBB

Just like on MPC, the first scenario has to be performed at the card level. Even
though the necessary JTAG lines are available on the backplane connector, they cannot
be accessed at the box level. Again, in normal production, this data load scenario is
usually covered by the DABC manufacturer. Once the loader program and EBOQOT are
present on DABC, more advanced ways of data loading can be used. If the loader program
and / or EBOOT get corrupted for any reason, the DABC needs to be flashed again at
the card level to ensure its correct functionality. Details of how to perform the flashing
can be found in section 6.4.

The second scenario does not happen very often, only when the EBOOT version has
to be changed. Then it reloads itself. The process is the same as if it was any other image
type and it is described in chapter 8.

The third scenario takes place before the card level functional testing and might be
repeated after the SDU is assembled and ready for the box level testing. IBIT (see sub-
section 4.3.4) can be viewed as a counterpart to HBIT on MPC. It is a software allowing
DABC to be commanded to transmit and / or receive as requested. This is used by HBIT
to perform all the RF tests on the SDU level.

The fourth scenario is performed as a part of the flight code data load onto MPC,

namely the second phase using the data load controller. DLC uses the so called chan-

38

nel card interface (CCIF) implemented on MPC, which also provides commands to load
a software image onto DABC. This interface basically utilizes the same BCL commands
used to load any DABC software.

Naturally, any DABC software image including those not mentioned in this text can
be loaded either using directly the approach described in chapter 8, or the DABCupgrade
application described in the same chapter. This application wraps the raw BCL commands

approach.

39

6 LOADING LOW LEVEL SOFTWARE

In this chapter, the processes of loading the low level software parts onto both MPC and
DABC are described. These loads are necessary after the cards are manufactured and
blank, or when the low level software parts get damaged for some reason.

The initial flashing (i.e. writing the low level software code into non-volatile memories)
is normally done as a part of the acceptance test procedure (ATP) for both MPC and
DABC. The approach is quite similar for both cards, with only slight differences.

Apart from the production solutions, some engineering ways to perform the flashing
are also mentioned. However, these are not very suitable for the production process, where
the goal is to have the procedure as simple as possible, so that the operator can simply
follow a checklist step by step and does not need to have any deeper knowledge about the
device. The engineering solutions are usually more complicated than that and there is
a risk they could cause more damage than good if used improperly.

The flashing is done using the so called in-system programming (ISP), which is a pro-
cess utilizing a special JTAG interface, which has to be present on the targeted chip.
Therefore the process has to be supported on the hardware level and this has to be kept
in mind while selecting the hardware parts for the final solution. Luckily, many chips
today provide the JTAG interface, since it is a de facto industry standard for the low level
testing.

There are more types of JTAG interfaces, however, the most known and the one used
both on MPC and DABC is defined by the IEEE 1149.1 standard (see [24]). The hardware
principle of the JTAG interface, boundary scan, and ISP are described in the following

sections.

6.1 Boundary Scan

Boundary scan test is a structural test of the component utilizing special circuitry added
to the chips and the printed circuit board (PCB). It is an alternative to testing using the so
called bed of nails fixture or flying probe. The bad of nails fixture is custom made fixture
for the tested component that has pins pointing exactly in places where test points are
on the tested board. When the component is put into this fixture, contacts are made in
these places and logical values (voltage levels) can be injected or read out by the fixture’s
pins. Using this approach, defined parts of the circuitry can be tested to see if they are
operating as expected.

The bad of nails fixture naturally has its benefits and drawbacks. The benefit is that
the testing is rather fast and can be parallelized quite well. Drawbacks are that the fixture
is expensive to make, it can only serve the one PCB and in case its design is changed, the
fixture needs to be changed as well. And since there are physical contacts between the
fixture and the tested board, they can wear-off. Plus there is a risk of damaging either the
fixture or the tested board with careless manipulation when putting the board in place

or taking it out. In general, making the bed of nails fixture is more beneficial for testing

40

larger amounts of boards, because of the higher speed, and the high price is spread across
more units.

The flying probe improves some of the mentioned drawbacks of the bed of nails. It is
a moving arm equipped with pin points, programmed to get over to the correct position
on the board and make an on-demand connection. It is obvious that this solution is more
flexible in case any changes need to be made. On the other hand, the testing is slower,
and the drawback of the need for having a physical connection stays. This is problematic
with modern day PCBs, where components get smaller and smaller and their density on
the board higher. Especially with multilayer PCBs, it can get extremely hard to design
them to have all the required test points reachable.

An alternative for the structural testing based on connections made via test points is
the boundary scan. Its principle can be found in Figure 6.1. There are three chips, each
having 5 inputs and 5 outputs and some internal logic, and they are connected in a series.

The circuitry providing the boundary scan functionality is highlighted in red.

Chip 1 Chip 2 Chip 3

Internal Internal Internal

logic logic logic

.. _| Support registers and _| Support registers and _| Supportregisters and > 00
TAP controller TAP controller TAP controller
I S S) H
TCK l *—/: l ‘—/:‘ I i
T™MS ™ dh |
TRST==============------- e e !

Fig. 6.1: Principle of boundary scan testing and in-system programming

The basic idea behind the boundary scan is quite simple. In between every input and
output pin of the tested chip, a special logic called boundary scan cell is inserted. There
are two multiplexers and two D flip-flops in every boundary scan cell, providing this cell

with 4 modes of operation:

1. Normal

2. Capture

3. Update

4. Shift

In normal mode, the boundary scan cell only passes the data between the pin and the
internal logic of the chip as if it was not even there. Capture mode samples the normal

input data into the first register. Update mode puts the test input data on the normal

41

output (through the registers). And shift mode sends the bit on the test input to the test
output, which is test input of the next boundary scan cell.

As can be seen in Figure 6.1, the boundary scan cells are connected in a series, making
up a so called Boundary Scan Register. The shift operation allows any bit sequence to
be shifted into this register. This way, the cells on the inputs of the internal logic can be
filled with the desired bits (e.g. an instruction) and then these bits can be sent in. They
can also be captured on the other side of the internal logic circuitry, be shifted out and
compared to the expected outcome.

Not only the internal logic of the chips having boundary scan support can be tested.
When the boundary scan logic is connected in a daisy-chain like it is in the figure, the
wiring between the components can be tested as well, when the test vector is inserted on
the output pins of one chip and captured on input pins of another chip. Even if some
logic is between components supporting boundary scan, it can be tested (at least to some
extent).

There are 4 mandatory signals and 1 optional signal defined by the IEEE 1149.1
standard as the interface for the boundary scan. This interface is called Test Access Port
(TAP) and the signals are:

o Test Data Input (TDI)

o Test Data Output (TDO)
Test Clock (TCK)

o Test Mode Select (TMS)
o Test Reset (TRST)

All of them except TDO are inputs. TRST is optional and is not used neither on MPC
nor DABC. The behavior of the boundary scan cells is synchronized using the TCK signal
and controlled using the TMS signal and a 16 state finite state machine called the TAP

Controller.

The support registers in the red box on each chip in Figure 6.1 are at least the In-
struction Register and Bypass Register, but usually there are more. Based on the TMS
and the TAP Controller state, TDI is directed to one of the registers. The Instruction
Register holds the current instruction for the test. Based on the instruction, data sent to
TDO are selected. For example if BYPASS is the active instruction, bits from TDI are
simply shifted through the Bypass Register to TDO.

TRST is optional, and usually not implemented, because the test can be restarted
synchronously by the TAP Controller in at most 5 cycles of TCK.

The benefits of boundary scan are that circuits having the necessary hardware support
can be tested quite thoroughly, with focus on smaller blocks at a time. Plus there is no
need for physical access to any pins or test points, which can be a great advantage in
dense, multilayer PCBs. Only the TAP interface is necessary.

On the other hand, the boundary scan logic naturally takes some place on the chip
and makes a bit more expensive. But since it is mostly serial the hardware overhead is

not so high. However, the serial nature of boundary scan makes it a bit slow, especially

42

for long test chains, where it takes many clock cycles to prepare the test data, read it
out, etc. Also the maximum TCK rate for the chip is usually much lower than in normal
operation and the lowest one of all the chips in the chain has to be used. Normal TCK

rates are in tens of MHz.

6.2 In-system Programming

The in-system programming (ISP), sometimes also called in-circuit serial programming
(ICSP), is a method of writing data into memory (specifically non-volatile memory) used
usually after the PCB assembly, when the memory is blank. Some code for the processors
or FPGA configurations have to be stored in the memory for the functional components
to be able to operate usefully.

ISP utilizes the boundary scan circuitry described in the previous section to achieve
this. It basically emulates the memory read and write operations on the memory bus the
way they would be performed normally, i.e. it addresses the memory cell, prepares the
data, and enables the write operation. Or it can read out the data to perform a check
that the data are correct.

Both MPC’s and DABC’s low level software parts are programmed using ISP.

6.3 Flashing MPC

On MPC, the following software parts are considered to be low level:

e« FPGA configuration
« RCW

e Miniboot

o U-Boot

FPGA configuration is loaded onto the FPGA and the other parts are loaded onto
both processors, i.e. RCW is stored into the processor’s EEPROM and Miniboot and
U-Boot into its NOR flash. Each processor has 16 pin TAP interface and the FPGA has
a 10 pin one.

External hardware and software that is capable to drive the TAP signals correctly is
required. For example CodeWarrior TAP kit and CodeWarrior IDE can be used for the
processors. But these tools are more suitable for development and debugging, rather than
production. For production, the tools listed in the next section for DABC flashing are
better. FPGA can be programmed for example using a Microsemi FlashPro4 or FlashPro5
JTAG hardware programmer.

Once the software parts named above are present, it is possible to use the data load
methods described in chapter 7. It is of course still possible to load other software parts
the way presented above, too. But it is not usual, nor convenient, since this method is
quite slow, it is necessary to have the JTAG controller, and once the SDU is assembled,

the JTAG connectors are not accessible. This applies for DABC as well.

43

6.4 Flashing DABC

On DABC, the following software parts are considered to be low level:

e« FPGA configuration
e loader program
« EBOOT

Like on MPC, FPGA configuration is loaded onto the FPGA and the other parts are
loaded onto protocol processors on both channels, i.e. stored in their NOR flash. Since
DABC has the TAP interface for all components (except RF) integrated into the backplane
connector, a special test jig board with more standard JTAG pin header connectors is
used. This board is connected to the DABC via the backplane connector and the JTAG
connectors are wired to the defined pins.

For example JTAG’s JT 37x7/TSI hardware controller and JTAG ProVision software
can be used to perform the flashing. Once the software parts named above are present, it

is possible to use the data load methods described in chapter 8 or chapter 9.

44

7 MPC DATA LOAD USING U-BOOT

In this chapter, the process of loading data onto MPC card using the U-Boot console is

described. As was mentioned in subsection 4.2.4, U-Boot provides, among other things,

an interactive console controlled via RS-232 interface. A program called SerialParser was
developed to automate communication with U-Boot over RS-232 as a part of this thesis.

Using appropriate commands, U-Boot can perform writing anywhere in the memory
space of the processor it is running on, including for example NOR flash. This is used when
loading both the primary processor and the secondary processor on MPC. It is implied
that U-Boot is also capable to overwrite itself, which can be used with advantage when
U-Boot update is necessary. The current version of U-Boot is running from RAM, as
was described in subsection 4.2.4, and after the processor is restarted, the new version is
loaded from the NOR flash to RAM and started.

Apart from commanding the processor using U-Boot, some preconditions have to be

met on the initiator side for a successful data load. The initiator has to be able to transfer
the loaded data to the processor’s RAM upon a request from U-Boot. TFTP is used in
most cases, which means the initiator has provide TFTP server that is able to serve the
U-Boot requests. It is also necessary to have the correct Ethernet topology for TFTP to
work. Alternatives to TFTP also exist, for example YMODEM protocol over RS-232 can
be used, in which case initiator has to support it.

In section 7.1, requirements for SerialParser and its implementation are laid down. In
section 7.2, the design of the program is presented. In section 7.3, the implementation
itself is described. And in section 7.4, the procedure for verification and validation of the

program is described.

7.1 Requirements

One of the goals of the SerialParser development was to create a program that is reusable
for automation of any communication over RS-232, not only U-Boot. Another was to
provide not only the features necessary for this scenario, but features that were inspired
by RS-232 communication scenarios on other projects, or features that were considered
nice-to-have, too.

The requirements for the SerialParser were gathered with these goals in mind. Prior

to design and implementation, the following requirements were set:

1. SerialParser shall monitor given COM port for a predefined pattern (RX pattern,
e.g. login prompt) and once detected, reply with a predefined response (TX pattern,
e.g. username)

2. SerialParser shall provide an option to define an empty TX pattern

3. SerialParser shall control a number of replies for each pattern, supporting infinite
processing (e.g. one RX pattern can be processed only once, while another RX

pattern can be processed every time it comes)

45

. SerialParser shall provide an option to define multiple TX patterns assigned to the

same RX pattern (in this case it would be assumed the first pattern pair would only

be processed a finite number of times)

5. SerialParser shall provide an option to exit or continue on each RX pattern
6. SerialParser shall display the communication (both RX and TX patterns) to a GUI

element (window)

7. SerialParser shall provide an option to display or hide the window when started

10.

11.

12.

13.

SerialParser shall provide an option for the user to enter commands (TX patterns)
from the window (it is expected the RX pattern processing will be on hold in this
case)

SerialParser shall provide an option to exit on a command from the user
SerialParser shall implement a command to initiate the user control as a security
precaution (e.g. a predefined key has to be pressed prior to allowing the user to
enter commands)

SerialParser shall store the entire communication history to a log file (including the
user-entered TX patterns)

SerialParser shall provide control over the type of line endings (carriage return and
line feed, or line feed only)

SerialParser shall provide error handling (return appropriate error codes and

messages) and timeouts (to exit in case the exit pattern is not found)

During the design and implementation, these requirements were followed. Some of

them were a bit vague. In such cases, the decision on their final implementation was taken

in the development process. Some of the requirement were covered in a broader way, while

some were found to be unnecessarily demanding and were reconsidered.

7.2 Design

The design of the SerialParser application is described in this section. The description

is split into multiple functional parts. The design covers the requirements defined in the

previous section and the implementation is based on this design.

The basic flow of the SerialParser application is the following:

© 0N S U W

Load settings (if not passed as parameters)

Open log file

Load patterns

Open COM port

Wait for input data

Check for RX patterns in the input data

Reply with TX pattern if RX pattern is found

Stop on exit pattern or timeout, otherwise go to step 5

Perform cleanup (close COM port, close log file, deallocate dynamic memory)

SerialParser runs in a console window. This covers requirement 6.

46

7.2.1 Settings File

SerialParser requires a couple parameters which make up its settings. These parameters
can be passed to it in form of an INI file. INI file should contain predefined sections and
tags with values, based on which SerialParser sets itself up. These parameters cover the
COM port settings (port number, baud rate, data bits, parity, and stop bits), logging
settings (if logging is allowed both to console and a log file, where the log file should
be stored), console window visibility setting (this covers requirement 7), timeout setting

(global timeout for the whole application), and path to XML file with patterns.

7.2.2 Patterns File

XML format was chosen to describe patterns. The patterns XML file has to contain
a patterns root element, which can have any number of pattern child elements. Each

pattern element can have the following attributes:

e repeat

e repeat_every
e skip_first
e exit

e timeout

These attributes are not mandatory and if they are not defined, default values defined
below are used.

First attribute sets the number of times reply is sent when the given RX patten is
found. It can also be set to inf, which means this RX pattern will be replied infinitely
(default value). This covers requirement 3.

Second attribute makes the parser reply only to some occurrences of the given RX
pattern, for example every second, third, or fifth occurrence. By default, every RX pattern
is responded (value is 1).

Third attribute causes the first n occurrences of RX pattern to be ignored, where n is
the number defined by the parameter. By default, no occurrences are ignored (value is 0).

Fourth attribute can be set to true or false. If it is true, SerialParser stops execution
if the given RX pattern is found (it replies first). By default, SerialParser does not exit
on patterns (value is false). This covers requirement 5.

Fifth attribute sets the timespan in which the RX pattern has to be found after its
parent RX pattern was found. This is explained in greater detail further in this subsection.
By default, no timeout is set (value is 0).

Apart from these attributes, pattern element has to contain rx child element and
may contain tx child element. These elements contain the RX and TX pattern strings.
If tx element is not defined or it is empty, no reply is sent by SerialParser when the
corresponding RX pattern is found. This covers requirement 2. In case rx element is

empty, SerialParser gives warning when parsing the patterns and this pattern is ignored.

47

To allow user full control over the pattern strings, they are parsed as if they were
C strings, i.e. escape sequences defined by two characters (e.g. >\’ and ’n’) are replaced
by real escape sequences (’\n’ for the given example). Since user has control over each
and every character in the pattern, requirement 12 is covered.

SerialParser allows for multiple patterns to have the same RX pattern. Replying to
such patterns is compliant with their setup given by the aforementioned attributes. It is
possible for different TX patterns to be replied to one RX pattern immediately after each
other. In such case, the order of replies is not defined. It is upon user to control this
behavior and decide whether it is desired or set the attributes to the patterns so that they
never overlap. This covers requirement 4.

pattern element can also have another pattern element as a child. If it does and its
RX pattern is found, from that moment on, SerialParser starts looking only for the RX
pattern of the child pattern element. This allows for the patterns to be defined recursively
and timeouts can be used. As was mentioned, each pattern element can have timeout
attribute, which sets in how many seconds this RX pattern has to found after its parent
RX pattern. If it is not found within this time, SerialParser exits. Timeouts can be used
for any pattern, which is defined deeper than in the patterns root element. They can
prevent SerialParser from getting stuck if the expected flow of patterns is broken. Together
with the global timeout, which is started when SerialParser starts waiting for the input

data, this partially covers requirement 13.

7.2.3 Call Options

The usage of SerialParser on Aspire 400 project is realized via the TestStand application
from National Instruments, which calls SerialParser as a dynamic link library (DLL).
SerialParser DLL provides two entry point functions with defined interfaces.

First requires only one input parameter, which is the path (absolute or relative) to the
INI file with settings. Second does not require the INI file, but it takes all the settings
as parameters. The latter option makes it easier, if the settings for the SerialParser are
created dynamically.

SerialParser can be also called from console as a standard executable. This case is
basically the same as when calling the first DLL function. One parameter, the path to the
INT file, is expected.

7.2.4 Communication Processing

The incoming input data from the COM port are read character by character and RX
patterns are searched for with prefix matching. This means that if the current input
character matches some RX pattern’s first character, an instance of possible RX pattern
match is created. When the next input character comes, it is checked whether it matches
the second character of RX pattern. If so, next input character is checked again the same
way. If not, the instance of possible match is dropped. This is done for every possible

match instance with every input character.

48

If all characters in the RX pattern are matched, the pattern is processed based on its
attributes. If this occurrence is supposed to be replied to, corresponding TX pattern is
written to the COM port. And if the pattern is an exit pattern, the processing is stopped

and SerialParser exits. This covers requirement 1.

7.2.5 User Control

User can take control over the communication by pressing the F4 key in the SerialParser
console window. This covers requirement 10. Processing of incoming input data is paused
in such case, which could theoretically lead to data loss if the input data buffer overflows.
However, the assumption is that user only wants to take control when the device on the
other side of the COM port is waiting for some input, i.e. it is not transmitting.

When user has control, he can send any message, with one exception, to the COM port
by typing it and pressing Enter. This covers requirement 8. The message is sent including
the newline character. The exception is when user types the predefined word ("exitsp")
to exit the application. In this case, SerialParser stops execution and exits, rather than

sending this string to the COM port. This cover requirement 9.

7.2.6 Logging and Error Handling

Logging can be turned on and off by a setting. When on, info messages about the Serial-
Parser initialization and found RX patterns and sent replies are printed to the console
window, as well as the log file, if it is allowed. Every info message starts with a timestamp.
If logging is turned of, only input data from the COM port are printed. This covers
requirement 11.

As far as error handling goes, there are not many possible ways how to do this for the
communication over COM port itself. Possible problems during SerialParser initialization
are of course checked and reported. However, when waiting for the input data, the only
way to check that input is correct is using the timeouts. If the expected input is not parsed
in the given time, it is derived that an error occurred. This covers requirement 13.

It is definitely better to give enough margin to the timeouts, since there is no control
over the device on the other side of the COM port and therefore the communication is not
exactly precise time-wise.

SerialParser returns error code and if called from DLL also the corresponding error

message. Warnings are only logged.

7.3 Implementation

The SerialParser was primarily designed to be used on ATE during production testing.
Therefore Windows are the targeted operation system, and as was mentioned in section 4.4,
the TestStand application from National Instrument is used at the top level to run the
production tests. Therefore LabWindows/CVI IDE (version 2015) by the same developer

was picked for the implementation of the SerialParser.

49

This IDE contains an ANSI C compiler capable of compiling the source code into either
executable (.eze file) or dynamic-link library (.dll file). It also provides libraries, some
of which were utilized in the SerialParser, namely the RS-232 library, the INI file library,
and the CVI XML library.

The RS-232 library contains functions to open and close COM port, as well as read
data from it or write data to it.

The INT file library provides functions to parse an INI file. It can load the file into an
internal structure and then parse individual sections and their tag, value pairs. It is used
to get the settings values stored in the INI file.

The CVI XML library provides functions to parse a standard XML file. In SerialParser,
it is used to parse the XML file with patterns, which are then stored in an internal structure
in memory.

Otherwise the implementation is very straightforward, based on the described design.
The DLL entry point functions are called StartParser and StartParserIni. First ex-
pects the settings to be passed as parameters, the latter expects path to an INI file, from
which it loads the settings.

When SerialParser is started using the normal executable, main function is the entry
point as in any C program. Since it expects the same input parameter as the second DLL
entry point function, the StartParserIni DLL function is just a wrapper that calls main
the main function.

Custom structures are used to store various data and a few macros were defined to
make logging and error handling easier. After getting the settings from the INI file (if
SerialParser is not called from DLL with parameters given), XML patterns are loaded and
COM port is opened.

Then the program loops in the main loop, where it awaits input data, user action, and
/ or timeout. As was already mentioned, input data are processed character by character.
This is done in another loop which is active until there are data available in the COM port
input buffer or a predefined number of characters was processed. The second condition
is to keep SerialParser interactive, because if data were coming continuously all the time,
SerialParser would be processing them and would not check for user actions and / or
timeouts. Of course it would be possible to resolve this by using multiple threads and
callbacks or signals. But since the application is not time critical, this solution seems
overly complicated and error prone. Actually, SerialParser is suspended in every iteration
of the main loop by putting it to sleep for a short time. This is to prevent it from taking
too much CPU time while waiting for the input data.

In the first version, the input data were not processed character by character, but as
strings read out from the COM port input buffer. However, this solution was found to be
problematic, because when testing with a real SDU, it was discovered that it generates
a lot of null characters (?\0’). Null characters are also string terminators in C, therefore
when the input COM port buffer contained useful data, then some null characters, and

then useful data again, when it was read out as a string, only the first part of the useful

50

data was obtained and the second part was lost. This problem was not discovered when
testing only in simulated environment. When processing the input one character at a time,
null characters are ignored.

The program stops execution of the main loop once an exit pattern is found, user takes
control and sends the exit command, or either the global or pattern timeout runs out.
Timeouts are checked by comparing difference between current timestamp and timestamp
taken when the main loop was started (for global timeout) and timestamp taken when the
last RX pattern was found (for pattern timeout).

When the program is out of the main loop, it deallocates all allocated memory, releases
all other resources (log file, COM port), and returns with appropriate error code (0 for
success). If called from DLL, it also copies the error message to an output parameter.
The cleanup phase is done always, even if an error occurs during the initialization phase

and the program does not even start the main loop.

7.4 Verification and Validation

For development, an environment simulating the communicating device was used. This
environment consisted of a COM port emulator and a simple Python script mimicking the
target device. The open-source Null-modem emulator (comOcom) was used for the COM
port emulation (see [25]). This tool can create a pair of virtual COM ports linked to each
other. SerialParser was then commanded to connect to one of these COM ports and the
Python script to the other.

The Python script generates defined output, which server as an input for the Serial-
Parser. The XML patterns are made up to test all features provided by the SerialParser
(e.g. repeat, repeat_every, skip_first, and exit attributes, timeouts, etc.). The log
from SerialParser is parsed by the Python script to check the SerialParser behaved as
expected.

The functionality was also validated by using the SerialParser to load HBIT onto both
MPC processors. In Figure 7.1, a sequence diagram with expected RX patterns coming
from the MPC processor and the TX pattern replies from the SerialParser is shown. The
sequence is the same for both the primary and the secondary processor. The patterns
are numbered and a short explanation for each of them can be found in the list following
the figure. They are defined recursively, i.e. each RX pattern is looked for after the
previous RX pattern is found. Each pattern also has a defined timeout, therefore when
the communication does not go down as expected, the SerialParser times out and reports
on which pattern it happened, i.e. which RX pattern was not found. This helps user with
debugging of the problem.

o1

SerialParser MPC processor
| |
1

1. “Hit any key to stop autoboot”

2. “g”

—

3, “=>"

P

4. “setenv ethprime <prime_eth>\n"

5. “=>”

P

6. “tftp <HBIT_file_name>\n"
7. “Bytes transferred”

8. “=>"

P

9. “protect off <NOR_flash_address> +S$filesize\n”
10. “Un-Protected”

11, “=>"

FE

12. “erase <NOR_flash_address> +Sfilesize\n”
13. “Erased”

14, “=>"

JE

15. “cp.b <RAM_address> <NOR_flash_address> $filesize\n”

16. “done”

L e

17. “=>”

P

18. “protect on <NOR_flash_address> +Sfilesize\n”

19. “Protected”

20. “=>"

P

21. “setenv bootcmd go <boot_address>\n"
22, “zs”

P

23. “saveenv\n”
24. “Protected”
25, “=>"

26. “boot\n”

27. “HBIT is up and running successfully”

=

1
X |

Fig. 7.1: Sequence diagram of HBIT data load onto MPC processor

52

=W

ot

U-Boot boot sequence is waiting for an interruption

Interrupt U-Boot boot sequence by sending an ’a’ key

U-Boot prompt is waiting for a command

Command to set the primary Ethernet interface is issued (to make sure TFTP works
properly)

U-Boot prompt is waiting for a command

6. TFTP command to download the HBIT binary into MPC processor’s RAM is issued

10.

11.
12.
13.

14.
15.
16.

17.
18.
19.

20.
21.
22.
23.
24.

25.
26.
27.

Check the TFTP download was performed (string "Bytes transferred" appears
as a part of the output upon a successful operation)

U-Boot prompt is waiting for a command

Command to un-protect a block of NOR flash memory where the HBIT binary shall
be copied is issued

Check the memory was un-protected (string "Un-Protected" appears as a part of
the output upon a successful operation)

U-Boot prompt is waiting for a command

Command to erase the block of the NOR flash memory is issued

Check the memory was erased (string "Erased" appears as a part of the output
upon a successful operation)

U-Boot prompt is waiting for a command

Command to copy the HBIT binary from RAM to NOR flash memory is issued
Check the binary was copied (string "done" appears as a part of the output upon
a successful operation)

U-Boot prompt is waiting for a command

Command to protect the block of NOR flash memory is issued

Check the memory protection was turned on (string "Protected" appears as a part
of the output upon a successful operation)

U-Boot prompt is waiting for a command

Command to set the new boot start address is issued

U-Boot prompt is waiting for a command

Command to save the environmental variables is issued

Check the environmental variables were saved, i.e. the NOR flash memory block
where the environmental variables are stored was un-protected, erased, written to,
and protected again (string "Protected" appears as a part of the output upon
a successful operation, but this time the SerialParser has to look for the second
occurrence of this string, since it first occurs in the string "Un-Protected")
U-Boot prompt is waiting for a command

Boot command is issued for U-Boot to run the booting sequence with the new setup
Check that HBIT was booted (string "HBIT is up and running successfully"

appears as a part of the output upon success)

93

8 DABC DATA LOAD

As already mentioned in section 4.3, DABC’s application is selected using the loader
program. The loader program is loaded onto DABC via a JTAG programmer as described
in chapter 6, namely section 6.4.

To load other application images, DABC needs to run the EBOOT application, which
allows the usage of a set of BCL commands that write into the protocol processor’s NOR
flash. Therefore the first step of the data load process is to reboot the DABC’s channel
that is about to be loaded into EBOOT. There are two hardware ways and one software
way to achieve reboot into EBOOT.

First hardware way is to turn off and back on the power supply. This restarts both
channels of DABC and each starts the loader program, in which EBOOT can be selected
over the control port. Second hardware way is to use a restart discrete signal. When the
discrete is turned on, the channel is stopped and when the discrete is turned off again, the
channel starts the loader program. Each channel has its own restart discrete. Inside an
SDU, both the power supply and restart discretes of DABC are controlled by MPC. The
software way to reboot DABC is using BCL command which tells DABC to reboot itself
into the specified application.

Once in EBOOT, writing into the NOR flash can be performed. First, BCL command
asking to unlock the NOR flash for writing is sent. Then BCL commands to program
individual blocks of memory are issued. These commands contain the address of the target
block, length of data, computed CRC for a security check, number of allowed repetitions
in case of an error, and the data itself. BCL responses are generated for these commands.
First when the command is accepted (or declined with a reason) and then once the writing
into memory is finished (or fails, in which case error code is returned). Parallel writing
into multiple memory blocks can be utilized to speed up the process. This is especially
useful when using fast transport link to transfer the data (e.g. Ethernet).

All applications are stored in the protocol processor’s NOR flash, since it is the only
non-volatile memory on DABC. Even code for the DSPs (if the application uses them),
is stored there. This code is copied to the DSP’s RAM (SDRAM or SRAM) during the
application startup.

Like with the data load on MPC using U-Boot, the data can be loaded via COM port
(RS-232), or over Ethernet (TCP or UDP). The same advantages and disadvantages apply
for both these possibilities, as on MPC (i.e. using RS-232 is slower but more reliable in
extreme conditions).

Besides using the BCL commands directly, there is a Honeywell proprietary application
called DABCupgrade, which can be used for the data load as well. This application wraps
the communication described above and provides a simple command line interface. Some

of the possible command line arguments are:

e <path_to_image_file>, which specifies absolute or relative path to the .img file
e -image <name>, where <name> specifies the image name to be used (useful in case

there are multiple images packed within one .imyg file)

54

e -menu <option>, where <option> specifies the menu option to be used (some
applications contain code for multiple components and the menu option picks whether
all the code or only parts of it should be loaded)

e —confirm, which tells DABCupgrade to skip the confirmation prompt and the final
screen (useful for full automation)

e —com<number>, where <number> specifies the COM port number over which data
load should be performed

e —tcpip <ip>:<port>, which tells DABCupgrade to perform data load over Ethernet
(TCP) using the specified <ip> and <port>

e —udp <ip>:<port>, which tells DABCupgrade to perform data load over Ethernet
(UDP) using the specified <ip> and <port>

Using a proper combination of these arguments can simplify the DABC data load
process to one call of DABCupgrade. It also returns code based on the result of the
operation. This code can be checked and it gives more information in case of an error.

A wizard-like window application called DABCwinupgrade also exists. It provides the
same functionality as the command line version, but uses text input fields, select lists,

buttons, etc., so it is not that suitable for automated use.

95

9 ARINC 615A COMPLIANT DATA LOAD

This chapter describes the process of data load compliant with ARINC 615A standard
(see section 3.4) and its implementation that was done as a part of this thesis. As was

mentioned in subsection 4.2.6 and section 5.1, flight code software for Aspire 400 SDUs is

going to implement the functionality for data loading according to ARINC 615A standard.
But to be able to utilize this functionality, a data loader compliant with this standard has
to be used.

There are some ready made commercial data loaders available on the market. However,
these tools are quite expensive. And the testing department at Honeywell needs such
a tool for almost every test station they build. Therefore it was decided that it would
be beneficial to come up with a Honeywell in-house solution, i.e. a data loader, or data
load function (DLF) to be more precise, that is capable of cooperation with the data load
functionality implemented in flight code. This solution should be following ARINC 615A
standard, even though not all the functionality is necessary at the time being, hence it
can be a bit more lightweight than the offered commercial solutions.

The developed application was named simply Datal.oader. Its goal is to provide user
with means to perform data load of ARINC 665 compliant packages onto ARINC 615A
compliant devices. In case of Aspire 400, the data package usually contains the flight code
FIT image and the ORT table with customer specific data.

Using the terminology of the standard, SDU is the target hardware, ATE used in pro-
duction is the data loader (neither portable nor airborne), and the DataLoader application
is DLF.

9.1 Requirements

The DataLoader application has been developed as an engineering solution so far, therefore
no formal requirements for it were made. The scope of the application is loosely defined
by ARINC 615A standard, although not all the properties discussed in this standard
apply nor for the DataLoader, nor the ATE. For example the physical parameters and the
transport media types defined by ARINC 615A for the data loader are not considered.

As in case of the SerialParser application, the primary goal of the Datal.oader applica-
tion is for it to be usable on the Aspire 400 ATE by calls from the TestStand application.
However, possibility of reusing it on other projects with no or only minor modifications
was kept in mind during the design, as this was a requirement. In order to achieve greater
usability, the application provides not only an interface for TestStand, but also a console
interface and a simple GUL

Some of the formal requirements from the Honeywell’s requirements database for the
data load functionality inside of the Aspire 400 flight code were also considered during the

design and implementation of the Datal.oader to make these tools coherent.

o6

9.2 Design

The design of the DatalLoader application is described in this section. The description is
divided into several main areas that were needed to be considered.

The typical flow of the Datal.oader application is the following:

1. Search LAN for available SDUs (if specific IP address is not supplied)

2. Get SDU(s) information

3. Initiate the uploading operation as defined by ARINC 615A with the selected SDU
and software parts for loading

4. Monitor the ongoing uploading operation (abort is supported)

5. Report the result of the uploading operation upon finish

9.2.1 SDU Side

As was already stated, ARINC 615A data loading functionality is implemented in flight
code on SDU side. Unfortunately, due to changes made to the original schedule, version
of Aspire 400 flight code with this functionality is not yet released. Only the design and
partial functionality of some components are currently at hand. The Datal.oader imple-
mentation that was done as a part of this thesis is based on the available documentation,
requirements, the fact that the interface should be standardized, and on other older flight
code implementations for different Honeywell projects that also deal with data loading
according to ARINC 615A. It cannot be ruled out that some changes will need to be made
to the DataLoader to work with Aspire 400 flight code correctly. However, the core design
should stay the same, only minor tweaks are expected.

According to the flight code design, data load shall be implemented by the so called
data load controller (DLC) module. This module implements the external interface of
ARINC 615A defined services and cooperates with other flight code modules to perform
the data load. A very brief description of the SDU internal functionality follows. However,
it cannot go into much detail in order to keep sensitive information undisclosed.

A so called load installer module, which shall actually perform the writing of loaded
data into the component’s non-volatile memory, is going to be implemented for each of the
loadable components. This module will provide an interface utilized by DLC. Since the
data load process is driven by MPC and other components need to be loaded as well, flight
code needs to provide means of communication with these components. For example for
DABC, there is the so called channel card interface (CCIF), which translates all commands
for DABC into BCL and vice versa, including the commands the load installer module
shall use. For SCM, in which primary ORT tables with customer data are stored, its load
installer module shall utilize the so called ORT controller. And DLC is also going to use
the SIS interface on MPC to update the software version numbers in SIS EEPROM after
a successful data load.

Apart from the installer modules, DLC is also going to cooperate with SDU controller,
through which it shall check that data load is allowed (SDU is in a data load mode) and

o7

through which it shall reboot the SDU during the data load process, too. All mentioned
inter-modular communications are going to use the message event service (MES).

For the ARINC 615A interface, DLC shall run a separate thread that shall control
a socket on port 1001, where it is going to wait for FIND protocol requests, which are de-
scribed in the next subsection. If any request comes, this thread shall issue an answer. For
the rest of the data load process, DLC needs to act as both TF'TP server and TFTP client.
Only upload of data onto the SDU is planned to be supported at this time. Download
operation, also defined by ARINC 615A, but only as optional, shall not be implemented.

DLC is also going to be responsible for receiving the ARINC 665 data package,
unpacking it, verifying it, and distributing the data to appropriate load installer modules.
From that moment on, the loading itself shall be performed by load installer modules and
DLC shall only send the periodic upload information status to the external data loader
(e.g. the DataLoader application). Once the load installer modules shall be done, DLC
is going to validate the loaded software parts and inform the external data loader of the

result.

9.2.2 FIND Protocol

Find Identification of Network Devices (FIND) is a protocol defined by ARINC 615A and
serves to discover ARINC 615A compliant devices on a local network. It was already
described in section 3.4, but the key points are summarized here as well. It uses dedicated
port 1001 and UDP datagrams to exchange the protocol packets. There are two types
of packets. Information request (IRQ) broadcasted by the data loader, and information
answer (IAN). IAN contains some information that identifies the device, namely the tar-
get hardware identifier (THW_ID), target type name, target position, literal name, and
manufacturer code. And of course the IP address is known from the packet, too. After
broadcasting IRQ, the data loader gathers all TANs that come within 3 seconds.

DataLoader uses FIND operation to discover SDUs available for data load. It first gets
a list of Ethernet adapters of the computer it is running on. Then it sends the IRQ packet
to the broadcast address of each of the adapters. A callback function processes any TAN
packet that comes within the defined timespan. The packet is parsed and the properties
of the device are stored in an SDU object. This way a list of SDU objects ready for data
load is created.

There is another supported way of initiating FIND operation in the Datal.oader, when
an IP address is passed as a parameter. In such case, the IRQ packets are not broadcasted
onto all local networks, but only one is sent (using unicast) to the given address. This
approach is not defined by the ARINC 615A standard, yet it is quite useful during the
production testing, when IP addresses of the SDUs connected to ATE should be known.
IRQ packet is sent to the IP address where an SDU should reside and IAN response gives
assurance that the SDU is indeed in place, ready for other operations, and the SDU object

with its information is created.

o8

9.2.3 TFTP

Apart from the FIND protocol, all ARINC 615A data load functionality is implemented
using TFTP services. TFTP (at least the core functionality) is specified by RFC 1350
(see [26]). Other RFCs enhancing the original functionality are linked from within this
document.

The data load process is called upload operation by the ARINC 615A standard and it
is based upon exchange of files defined both by the ARINC 615A and ARINC 665. The
TFTP read and write requests (RRQs and WRQs) are issued for the files in defined order,
and they are transferred using data packets after the request is acknowledged by an ACK
packet, or the operation is terminated by an error packet. Both transaction sides (i.e. the
DataLoader and flight code) have to support the role of both TFTP client and TFTP
server. Their current role depends on the state of the data load process.

A minimalistic data load sequence is shown in the sequence diagram in Figure 9.1. It
captures the packets exchanged between the data loader (e.g. the DataLoader application)
and the target hardware (e.g. the DLC implemented in SDU’s flight code). The packets

are numbered and briefly explained in the following list:

1. FIND information request is issued by the DatalLoader to the SDU (either by broad-
cast or unicast)
2. FIND information answer containing SDU parameters is sent by SDU’s DLC
3. TFTP read request for load uploading initialization (.LUI) file is issued by the
DataLoader (TFTP client at this moment)
4. The request is acknowledged by DLC (TFTP server at this moment)
5. TFTP transfer of the load uploading initialization file from DLC to the DataLoader
is done
6. TFTP write request for load uploading status (.LUS) file is issued by DLC (TFTP
client at this moment)
7. The request is acknowledged by the Dataloader (TFTP server at this moment)
8. TFTP transfer of the load uploading status file from DLC to the Datal.oader is done
and the DataLoader checks the status provided within the file
9. TFTP write request for load uploading request (.LUR) file is issued by the
DataLoader (TFTP client at this moment)
10. The request is acknowledged by DLC (TEFTP server at this moment)
11. TFTP transfer of the load uploading request file from the Datal.oader to DLC is
done
12. TFTP write request for load uploading status (.LUS) file is issued by DLC (TFTP
client at this moment)
13. The request is acknowledged by the DataLoader (TFTP server at this moment)
14. TFTP transfer of the load uploading status file from DLC to the DatalLoader is done
and the DataLoader checks the status provided within the file
15. TFTP read request for load upload header (.LUH) file is issued by DLC (TFTP client

at this moment)

99

Dataloader Flight Code DLC
|

|
A A

1. FIND IRQ
2. FIND IAN
3. TFTP RRQ for <THW_ID_POS>. LUI

4. TFTP ACK
5. TFTP transfer of <THW_ID_POS>.LUI
6. TFTP WRQ for <THW_ID_POS>.LUS

7. TFTP ACK

8. TFTP transfer of <THW_ID_POS>.LUS
9. TFTP WRQ for <THW_ID_P0S>.LUR
10. TFTP ACK
11. TFTP transfer of <THW_ID_POS>.LUR
12. TFTP WRQ for <THW_ID_POS>.LUS
13. TFTP ACK
14. TFTP transfer of <THW_ID_POS>.LUS
15. TFTP RRQ for <header_file>.LUH
16. TFTP ACK
17. TFTP transfer of <header_file>.LUH
18. TFTP RRQ for <data_file>.LUP
19. TFTP ACK
20. TFTP transfer of <data_file>.LUP
21. TFTP WRQ for <THW_ID_POS>.LUS
22. TFTP ACK

23. TFTP transfer of <THW_ID_P0S>.LUS

T T
| |

X |

Fig. 9.1: Sequence diagram of data load process initiated by DatalLoader

60

16. The request is acknowledged by the DatalLoader (TFTP server at this moment)

17. TFTP transfer of the load upload header file from the DataLoader to DLC is done

18. TFTP read request for load upload part (.LUP) file is issued by DLC (TFTP client
at this moment)

19. The request is acknowledged by the DataLoader (TFTP server at this moment)

20. TFTP transfer of the load upload part file from the DataLoader to DLC is done

21. TFTP write request for load uploading status (.LUS) file is issued by DLC (TFTP
client at this moment)

22. The request is acknowledged by the DataLoader (TFTP server at this moment)

23. TFTP transfer of the load uploading status file from DLC to the DataLoader is done
and the DataLoader checks the status provided within the file

The sequence is minimalistic, because more information might be exchanged during
the upload operation. Namely the <THW_ID_P0S>.LUS files can be pushed by the target
hardware to the data loader more often, since they serve not only to give status after
an operation is finished, but also as a heart beat signal letting the data loader know the
target hardware is still working on the current operation. These heart beats are made
with a predefined periodicity.

Another thing that could occur during the upload operation is an abort by user,
propagated to the target hardware via the data loader. If an abort request occurs, the
data loader does not reply with an ACK packet upon the next <THW_ID_P0S>.LUS write
request. Instead, it refuses the transfer with a TFTP error packet with error code 0 and
an abort error message, which was described in section 3.4. The target hardware then
tries to send the <THW_ID_POS>.LUS file again, this time to let the data loader know that
the abort request was acknowledged and fulfilled. In the Datal.oader application, user is
allowed to abort an ongoing loading sequence from any application interface.

As was mentioned in section 3.4, the <THW_ID_P0S> variable used in the file names is set
by the ARINC 615A standard and is created by concatenation of the target hardware iden-
tifier, underscore, and the target hardware position. The other filenames (<header_file>
and <data_file>) can be arbitrary, including even the extensions. The .LUH and .LUP
are only recommended by the ARINC 665 standard.

9.2.4 Console Interface

DataLoader supports multiple interfaces. When started as a standard executable (.eze
file) without any parameters, the GUI interface is presented. If parameters are supplied,
DataLoader is started as a console application. It depends on the combination of the pa-
rameters, whether the console is interactive (i.e. requires user inputs), or tries to complete

the whole data load process on its own.

9.2.5 GUI

To make the DataLoader application more user-friendly in case of its manual usage, it also

provides a simple GUI. This GUI consists of the main application window, where there

61

are buttons which allow user to initiate the FIND operation (either standard one, or an
IP address can be supplied via a text box), open a file explorer window where user can
pick the .LUH header file that should be used for the data load, start the upload operation
or abort an ongoing one, and show a new window with log outputs.

Apart from these functional buttons, GUI has a list of upload operation phases with
a small light next to each phase. These light indicate the operation status. There is also
a progress bar with a text box where the overall result of the data load is showed once it
is finished.

9.2.6 TestStand Interface

One of the adapters for calling external programs that TestStand provides is the .NET
adapter. When there is a compiled .NET application, either as an executable (.eze file)
or a dynamic link library (.dll file), this adapter allows TestStand to invoke any public
method within this application.

TestStand can pass parameters to the methods and receive the return values or output
parameters in a standard way. TestStand supports numbers, strings, booleans, and their
arrays as types of variables. On top of that, it allows user to create custom types, most
typically containers holding a combination of the standard types. When the .NET method
uses these standard types as either input or output, TestStand can work with them as with
any other variables.

TestStand also has an object reference type, which is basically a pointer to memory.
This type can be used to hold reference to a .NET object, which is created by a call to its
constructor. With this object reference, its methods can be invoked and the instance can
also be passed to any other method that takes object of the given type as a parameter.
TestStand has to use the .NET methods to perform any operation with the object, e.g.
use ToString() method to get the object represented as a string.

Using TestStand to control a .NET application is in its core actually very much like
programming it normally in Visual Studio. Public classes and their public methods are
accessible, methods are called, and objects are created and cleared by the .NET garbage
collector when reference to them ceases to exist.

To make access to the Datal.oader functionality from TestStand as easy as possible,
a special static class serving as an interface was designed. This class uses overloaded

methods to provide the following functionality:

e FIND operation
e Upload operation

o Abort of an ongoing upload operation

The FIND operation can be initiated either with no parameters, in which case FIND
IRQs are broadcasted via all Ethernet adapters of the computer where the DatalLoader is
running, or with a string containing IP address at which SDU should be looked for. As
a result, either an array of SDU objects, or an array of strings containing IP addresses of
available SDUs is returned to TestStand.

62

The second group of methods starts and performs the upload operation itself. It is
more convenient to run this step in the TestStand sequence in a new thread, because the
operation is blocking (i.e. it returns control after the data load is finished). To start an
upload operation, TestStand needs to supply the Datal.oader with either the SDU object
or a string with SDU’s IP address, and a string with location of the .LUH header file. Upon
completion, error code and an error message string are returned to TestStand.

The abort of the upload operation can be initiated from TestStand by calling the
method and supplying either an SDU object or a string with IP address. The Datal.oader
checks whether there is an ongoing upload operation for the given SDU and if there is, it

aborts it and returns error code and error message string back to TestStand.

9.3 Implementation

The DataLoader application was developed in Microsoft Visual Studio IDE (version 2010),
using C# programming language. The implementation follows the design described above,
so there is not much to be discussed in this section.

A ready made implementation of TE'TP service from another project was used. Oth-
erwise, standard .NET libraries were utilized. GUI was created using Microsoft’s Form
Designer tool.

Threading was used where it was necessary, for example for monitoring an abort request
to an ongoing upload operation, or the GUI interface in order to keep it responsive at all

times.

9.4 Verification and Validation

Since appropriate version of flight code software for Aspire 400 was not yet available at
the time this report was written, verification and validation could be done only partially,
using another type of ARINC 615A compliant SDU from a different Honeywell project.
DataLoader was verified and validated on this SDU, nevertheless, the process shall be
repeated with Aspire 400 SDU once it can be done.

In the verification and validation process using the other SDU, the already present
flight code was first deleted and then loaded using U-Boot as if it would be in a standard
production process. After that, flight code was reloaded using the DatalLoader and its
functionality was confirmed by running a set of built-in tests.

Initially, there was a plan to do the early verification and validation in a simulated
environment like with the SerialParser. But in contrast with the SerialParser, where the
COM port emulation and data generated on this virtual connection were fairly easy to
provide, simulating an ARINC 615A compliant SDU has proved to be quite complex and

complicated, hence this idea was dropped.

63

10 CONCLUSIONS

In this chapter, the results of this thesis are summarized, with emphasis on the benefits for
Honeywell company. The implementation that was done is also discussed, including some
problems that occurred during the development, known issues, and possible improvements.

To summarize the outcomes of the thesis, the official assignment was met to the extent
allowed by the circumstances. It was for example not possible to test the implemented
Dataloader application with the Aspire 400 SDU due to replanning of priorities in the
Aspire 400 flight code development, where version fully implementing the data load func-
tionality was not released yet. Therefore the functionality of the DataLoader application
could only be tested on an ARINC 615A compliant SDU from another Honeywell project.
Even though the transition to the Aspire 400 SDU should be easy, there is a slight risk
some issues will rise in the process as they did with the SerialParser.

The timing of the thesis also turned out to be problematic, because the plans for the
Aspire 400 project changed significantly after the assignment was made. Since the data
load functionality is more important in the later phases, more urgent issues, for example
on the production ATE, were prioritized, and work on the data loads was postponed.

As was already mentioned, lacking both hardware and software for the real operational
testing was another problem. Since Aspire 400 is still under development, only a few
engineering SDUs are available and none was available in Brno for a long time. Once
the SerialParser was tested on a real SDU, problem with the way the data are read from
the COM port mentioned in section 7.3 was revealed and the implementation had to be
changed. The problem didn’t occur during the previous testing neither in the simulated
environment, nor using the MPC card in a special test jig.

But these problems aside, this thesis has significant positive impact on the way data
loading is done during the production process. The designed applications are helping to
automate data loads in an easy and reliable way, making the production process faster and
more robust. Both are planned to be integrated in the TestStand sequences for production
testing on Aspire 400. The applications should also be easily reusable, so other projects
can benefit from them as well. And the theoretical part of the thesis can serve as a quick
guide into the data load problematics on all levels.

There is naturally some space for improvement of the applications, too. Additional
functionality could be added. For example for the SerialParser, it would be useful in some
situations to have an ability to branch the flow of recursive patterns based on the incoming
data, i.e. make a sort of conditional patterns. One use case where this could be handy
is when some setup needs to be checked prior to following actions. With the conditional
patterns, the SerialParser could for example check the value of an environmental variable
and if it would not be set as expected, parser could issue a command to set the value
correctly. At this moment, parser needs to do the setting step always in order to make
sure the value is correct.

Another idea to improve the patters for the SerialParser would be to allow their def-

inition using regular expressions. Using such an extension, it would be easily possible to

64

search for RX pattern with variable substrings in it. Such RX pattern has to be currently
split into multiple shorter and static RX patterns.

The plans for the near future of the DatalLoader are to test it throughly with Aspire
400, once all the necessary equipment is available. The full support for the downloading
operation could also be implemented if required. At the time being, its support is not
planned in Aspire 400 flight code, therefore the Datal.oader has no reason to support it
either. But this could of course change in the future.

It is also planned for the DataLoader to serve the data load needs of other projects,
hence it will be necessary to test the application with other types of SDUs and their related

equipment and fix any eventual bugs.

65

BIBLIOGRAPHY

1]

[10]

[11]

[12]

Airlines Electronic Engineering Committee. (2007). ARINC Report 615A-3: Software
Data Loader Using Ethernet Interface. Annapolis, Maryland, USA: Aeronautical Ra-

dio, Inc.

Karp, A. (2007, July 5). Carlyle Group to buy ARINC from airline shareholders.
Air Transport World. Retrieved January 2, 2018, from http://atwonline.com/

operations/carlyle-group-buy-arinc-airline-shareholders

Haber, G. (2013, December 24). Arinc’s new owner to sell off two subsidiaries. Balti-
more Business Journal. Retrieved January 2, 2018, from https://www.bizjournals.

com/baltimore/news/2013/12/24/arincs-new-owner-to-sell-off-two.html

About SAFE International. (n.d.) Retrieved January 2, 2018, from
http://www.sae.org/about/

Airlines Electronic Engineering Committee. (2016). ARINC' Report 665-4: Loadable
Software Standards. Bowie, Maryland, USA: SAE Industry Technologies Consortia.

Airlines Electronic Engineering Committee. (1985). ARINC Report 603-1: Airborne
Computer Data Loader. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2012). ARINC Specification 429P1-18:
Digital Information Transfer System (DITS) — Part 1 — Functional Description, Elec-
trical Interfaces, Label Assignments and Word Formats. Annapolis, Maryland, USA:

Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2004). ARINC' Specification 429P2-16:
Mark 33 Digital Information Transfer System (DITS) — Part 2 — Discrete Word Data
Standards. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2009). ARINC Specification 429P3-19:
Mark 33 Digital Information Transfer System (DITS) — Part 8 — File Data Transfer
Techniques. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2012). ARINC Specification 429P/: Dig-
ital Information Transfer System (DITS) — Part 4 — Archive of ARINC 429 Supple-
ments. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2017). ARINC Specification 600-20: Air
Transport Avionics Equipment Interfaces. Bowie, Maryland, USA: SAE Industry

Technologies Consortia.

Airlines Electronic Engineering Committee. (2002). ARINC Report 615-4: Airborne
Computer High Speed Data Loader. Annapolis, Maryland, USA: Aeronautical Radio,

Inc.

66

http://atwonline.com/operations/carlyle-group-buy-arinc-airline-shareholders
http://atwonline.com/operations/carlyle-group-buy-arinc-airline-shareholders
https://www.bizjournals.com/baltimore/news/2013/12/24/arincs-new-owner-to-sell-off-two.html
https://www.bizjournals.com/baltimore/news/2013/12/24/arincs-new-owner-to-sell-off-two.html
http://www.sae.org/about/

[13]

[14]

[15]

[16]

[17]

[21]

Airlines Electronic Engineering Committee. (2006). ARINC' Specification 664P1: Air-
craft Data Network — Part 1 — Systems Concepts and Overview. Annapolis, Maryland,
USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2009). ARINC Specification 664P2-2:
Aircraft Data Network — Part 2 — Ethernet Physical and Data Link Layer Specifica-
tion. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2009). ARINC Specification 664P3-2:
Aircraft Data Network — Part 8 — Internet-Based Protocols and Services. Annapolis,
Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2007). ARINC Specification 664P4-2:
Aircraft Data Network — Part 4 — Internet-Based Address Structure € Assigned Num-
bers. Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2005). ARINC' Specification 664P5: Air-
craft Data Network — Part 5 — Network Domain Characteristics and Interconnection.

Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2009). ARINC' Specification 664P7-1:
Aireraft Data Network — Part 7 — Avionics Full-Duplex Switched Ethernet Network.
Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2010). ARINC' Specification 664P8-1:
Aircraft Data Network — Part 8 — Interoperation with Non-IP Protocols and Services.
Annapolis, Maryland, USA: Aeronautical Radio, Inc.

Airlines Electronic Engineering Committee. (2017). ARINC Characteristic 781-7:
Mark 3 Awviation Satellite Communication Systems. Bowie, Maryland, USA: SAE

Industry Technologies Consortia.

Zhongcai Z. (2012, June). Introduction to Integrated Flash Controller Freescale Tech-
nology Forum. Available at https://www.nxp.com/files-static/training_pdf/
FTF/2012/americas/WBNR_FTF12_NET_F0109.pdf

SwiftBroadband. (n.d.) Retrieved January 3, 2018, from

https://www.inmarsat.com/service-collection/swiftbroadband/

Texas Instruments. (2006). TMS320C6000 DSP Host Port Interface (HPI) Reference

Guide. Texas Instruments.

IEEE Computer Society. (2013). IEEE Standard for Test Access Port and Boundary-
Scan Architecture. New York, New York, USA: The Institute of Electrical and Elec-

tronics Engineers, Inc.

Null-modem emulator. (n.d.) Retrieved May 6, 2018, from https://sourceforge.

net/projects/comOcom/

67

https://www.nxp.com/files-static/training_pdf/FTF/2012/americas/WBNR_FTF12_NET_F0109.pdf
https://www.nxp.com/files-static/training_pdf/FTF/2012/americas/WBNR_FTF12_NET_F0109.pdf
https://www.inmarsat.com/service-collection/swiftbroadband/
https://sourceforge.net/projects/com0com/
https://sourceforge.net/projects/com0com/

[26] Sollins, K (1992, July). The TFTP Protocol (Revision 2). Retrieved May 20, 2018,
from https://tools.ietf.org/html/rfc1350

68

https://tools.ietf.org/html/rfc1350

LIST OF ABBREVIATIONS

ACARS Aircraft Communications Addressing and Reporting System
ACK Acknowledgment

ADL Airborne Data Loader

AFDX Avionics Full-Duplex Switched Ethernet
AOI Automated Optical Inspection

AXI Automated X-ray Inspection

ARINC Aeronautical Radio, Incorporated
ASCII American Standard Code for Information Interchange
ATE Automated Test Equipment

ATP Acceptance Test Procedure

BCL Binary Command Language

BFP Batch File Part

BGAN Broadband Global Area Network

CAN Controller Area Network

CBIT Continuous Built-In Test

CC Channel Card

CCIF Channel Card Interface

CPU Central Processing Unit

CR Carriage Return

CRC Cyclic Redundancy Code

DABC Dual Aeronautical BGAN card

DDR Double Data Rate

DITS Digital Information Transfer System
DLC Data Load Controller

DLF Data Load Function

DLL Dynamic Link Library

DSP Digital Signal Processor

ECC Error-Correcting Code

EEPROM Electrically Erasable Programmable Read-Only Memory
eSPI Enhanced Serial Peripheral Interface
FC Flight Code

FIND Find Identification of Network Devices
FIT Flattened Image Tree

FPGA Field-Programmable Gate Array
GPCM General Purpose Chip Select Machine
GPIO General-Purpose Input / Output

HBIT Hardware Built-In Test

HPI Host Port Interface

I2C Inter-Integrated Circuit

IAN Information Answer

69

IBIT
ICSP
ICT
IDE
IEEE
IFC
IRQ
ISO
ISP
JTAG
LAN
LDU
LF
LRU
LSAP
LSP
LUH
LUI
LUP
LUR
LUS
MAC
MCU
MDC
MDIO
MES
MPC
MSP
NVRAM
ORT
OSI
PBL
PBL
PCB
PDL
PN
PROM
QoS
RAM
RCW
RF

Initiated Built-In Test

In-Circuit Serial Programming
In-Circuit Test

Integrated Development Environment
Institute of Electrical and Electronics Engineers
Integrated Flash Controller
Information Request

International Standards Organization
In-System Programming

Joint Test Action Group

Local Area Network

Link Data Unit

Line Feed

Line Replaceable Unit

Loadable Software Airplane / Aircraft Part
Loadable Software Part

Load Upload Header

Load Uploading Initialization

Load Upload Part

Load Uploading Request

Load Uploading Status

Media Access Control

Modular Concept Unit

Management Data Clock
Management Data Input / Output
Message Event Service

Main Processor Card

Media Set Part

Non-Volatile Random Access Memory
Owner Requirements Table

Open Systems Interconnection
Pre-Boot Loader

Pre-Boot Loader

Printed Circuit Board

Portable Data Loader

Part Number

Programmable Read-Only Memory
Quality of Service

Random Access Memory

Reset Configuration Word

Radio Frequency

70

RFC
RGMII
RRQ
SBB
SDRAM
SDU
SGMIT
SIS
SPI
SRAM
SRU
SVF
TAP
TCK
TDI
TDO
TFTP
TMS
TRST
UART
UCC
UMTS
UMTS
UUT
WRQ

Request For Comments

Reduced Gigabit Media-Independent Interface
Read Request

Swift Broadband

Synchronous Dynamic Random Access Memory
Satellite Data Unit

Serial Gigabit Media-Independent Interface
Standalone Identification System

Serial Peripheral Interface

Static Random Access Memory

Shop Replaceable Unit

Serial Vector Format

Test Access Port

Test Clock

Test Data Input

Test Data Output

Trivial File Transfer Protocol

Test Mode Select

Test Reset

Universal Asynchronous Receiver / Transmitter
Unified Communications Controllers
Universal Mobile Telecommunications Service
UMTS Subscriber Identity Modules

Unit Under Test

Write Request

71

	Contents
	List of Figures
	Introduction
	Data Load Definition
	ARINC standards
	ARINC 429
	ARINC 600
	ARINC 615
	ARINC 615A
	ARINC 664
	ARINC 665
	ARINC 781

	Aspire 400
	SDU structure
	MPC
	DABC
	SCM

	MPC Software Parts
	FPGA Configuration
	RCW
	Miniboot
	U-Boot
	HBIT
	Flight Code

	DABC Software Parts
	FPGA Configuration
	Loader Program
	EBOOT
	IBIT
	SwiftBB

	ATE

	Data Load Scenarios
	MPC Data Load Scenarios
	DABC Data Load Scenarios

	Loading low level software
	Boundary Scan
	In-system Programming
	Flashing MPC
	Flashing DABC

	MPC Data Load Using U-Boot
	Requirements
	Design
	Settings File
	Patterns File
	Call Options
	Communication Processing
	User Control
	Logging and Error Handling

	Implementation
	Verification and Validation

	DABC Data Load
	ARINC 615A Compliant Data Load
	Requirements
	Design
	SDU Side
	FIND Protocol
	TFTP
	Console Interface
	GUI
	TestStand Interface

	Implementation
	Verification and Validation

	Conclusions
	Bibliography
	List of abbreviations

