
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATA IN DECISION PROCEDURES AND
FORMAL VERIFICATION
AUTOMATY V ROZHODOVACÍCH PROCEDURÁCH A FORMÁLNÍ VERIFIKACI

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. PETR JANKŮ
AUTOR PRÁCE

SUPERVISOR doc. Mgr. LUKÁŠ HOLÍK, Ph.D.
ŠKOLITEL

CO-SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL SPECIALISTA

BRNO 2023

Abstract
In this thesis, we propose a fast reduction of the satisfiability of formulae in the straight-
line and acyclic fragments to the emptiness problem of alternating finite-state automata
(AFA), which is polynomial in most cases. This reduction, in combination with advanced
model checking algorithms such as IC3, provides the first practical algorithm for solving
string constraints involving concatenation, finite-state transducers and regular constraints.
Furthermore, we introduce a new fragment of string constraints called chain-free and its
relaxation called weakly chaninng, along with decision procedures for these fragments. It is
important to mention that these new fragments generalize both the straight-line fragment
and the acyclic form. Additionally, we presented a method for checking the satisfiability
of string constraints, in particular with string-to-number conversion, using parametric flat
automata (PFA). This procedure is complemented by an algorithm for converting string
constraints to linear formulas in polynomial time with a search space bounded by PFA. In
conclusion, we propose and integrate an improved Parikh abstraction into the string solver
Sloth for solving length constraints.

Abstrakt
V této práci navrhneme rychlou redukci splnitelnosti formulí v straight-line a acyklickém
fragmentu na problém prázdnosti alternujících konečných automatů (AFA), která je ve
většině případů polynomiální. Tato redukce v kombinaci s pokročilými algoritmy pro kon-
trolu modelů, jako je IC3, poskytuje první praktický algoritmus pro řešení omezení nad
řetězci zahrnujících konkatenaci, převodníky a regulární omezení. Dále zavedeme nový
fragment řetězcových omezení zvaný chain-free a jeho relaxaci zvanou weakly chaninng
spolu s rozhodovacími procedurami pro tyto fragmenty. Je důležité zmínit, že tyto nové
fragmenty zobecňují jak straight-line fragment, tak acyklickou formu. Navíc představíme
metodu pro ověření splnitelnosti omezení nad řetězci, zejména s převodem mezi řetězci a
čísly, pomocí parametrických plochých automatů (PFA). Tento postup je doplněn o algorit-
mus pro převod omezení nad řetězci na lineární formule v polynomiálním čase s prohledá-
vacím prostorem ohraničeným PFA. Na závěr navrhneme vylepšenou Parikhovu abstrakci
pro řešení délkových omezení pro straight-line fragment.

Keywords
String solving, alternating finite automata, decision procedure, IC3, satisfiability modulo
theories, program verification, string constraints, automata, Parikh image.

Klíčová slova
Řešení řetězců, střídavé konečné automaty, rozhodovací procedura, IC3, splnitelnost modulo
teorie (SMT), verifikace programů, omezení nad řetězci, automaty, Parikhův obraz.

Reference
JANKŮ, Petr. Automata in Decision Procedures and Formal Verification. Brno, 2023.
PhD thesis. Brno University of Technology, Faculty of Information Technology. Supervisors
doc. Mgr. Lukáš Holík, Ph.D., prof. Ing. Tomáš Vojnar, Ph.D.

Rozšířený abstrakt
Řetězce, jejž jsou základem moderních programovacích jazyků, hrají klíčovou roli při repre-
zentaci a manipulaci s textovými daty, zejména ve webových aplikacích. Jejich přizpů-
sobivost umožňuje interakci v mateřských jazycích uživatelů a usnadňuje komunikaci mezi
systémy, což ilustrují formáty XML a JSON. Nicméně, manipulace s těmito řetězci, zejména
při zpracování nedůvěryhodných uživatelských dat, může vést k vážným bezpečnostním
zranitelnostem, jako je Cross-Site Scripting (XSS) a SQL injection. Navzdory zvyšující se
informovanosti jsou tyto zranitelnosti stále rozšířené. Základní obranou vůči těmto zranitel-
nostem je sanitizace nedůvěryhodných dat pomocí specifických metod. Ukázalo se však, že
tyto metody nemusí být vždy správně použity. Pro zajištění odolnosti proti těmto rizikům
je proto nezbytná verifikace programu, ať už dynamická, nebo statická analýza. Dynamická
analýza sice poskytuje posouzení v reálném čase, ale často trpí problémem "nízkého pokrytí
kódu". Proto se standardně používá statická analýza. Mezi oblíbené techniky statické
analýzy pro analyzování řetězců patří symbolická exekuce, které ve svém jádru používají
řešiče omezení nad doménou řetězců, tzv. string solvery. Tyto řešiče obvykle analyzují
řetězcová omezení, která kombinují relační omezení reprezentovaná převodníky, slovními
rovnice, omezeními délky řetězce a konverzi mezi řetězci a čísly. Ačkoli je teorie nad řetěz-
cových omezení obecně nerozhodnutelná, byly nalezeny smysluplné a expresivní podtřídy
řetězcových logik, pro které je problém splnitelnosti rozhodnutelný. Mezi takové významné
třídy patří acyklický fragment a straight-line fragment.

V této práci poskytujeme první praktický řešič řetězcových omezení, který dokáže an-
alyzovat omezení zahrnujících konkatenaci, konečnou transdukci a náležitost v regulárním
jazyku. Navíc je pro tento řešič garantována úplnost a terminace pro formule v straight-line
a acyklickém fragmentu. Hlavní výzvou je omezující složitost teorie řetězců v nejhorším pří-
padě (dvojnásobný exponenciální čas), která je exponenciálně těžší než teorie bez konečněs-
tavových transdukcí. Navrhujeme proto metodu, která využívá kompaktní alternující koneč-
né automaty jako kompaktní symbolické reprezentace řetězcových omezení. Na rozdíl od
předchozích přístupů využívajících nedeterministické automaty nabízí alternace nejen ex-
ponenciální úsporu místa při reprezentaci booleovských kombinací převodníků, ale také
možnost stručné reprezentace jinak nákladných kombinací převodníků a konkatenace. Odů-
vodnění prázdnosti jazyka AFA vyžaduje průzkum stavového prostoru v grafu exponenciální
velikosti, k čemuž se používají algoritmy pro kontrolu modelu (např. IC3). Náš algoritmus
prokázal efektivnost na benchmarcích, které jsou odvozeny z analýzy webových aplikací
a dalších příkladů v literatuře.

Následně jsme navrhli nový rozhodnutelný fragment řetězcových omezení, tzv. slabě
řetězcová omezení, pro který ukazujeme, že problém splnitelnosti je rozhodnutelný. Tento
fragment posouvá hranice rozhodnutelnosti řetězcových omezení tím, že zobecňuje stáva-
jící straight-line i acyklický fragment řetězcové logiky. Vyvinuli jsme prototypovou imple-
mentaci naší nové rozhodovací procedury a začlenili ji do existujícího frameworku, který
používá CEGAR s podaproximací řetězcových omezení na základě zploštění. Naše experi-
mentální výsledky ukazují konkurenceschopnost a přesnost nového frameworku.

Dále pak jsme navrhli přístup, který dokáže efektivně podporovat jak konverzi mezi
řetězci a čísly, tak další běžné typy řetězcových omezení. Zejména řešení řetězcových
omezení s převodem řetězců na čísla je pro nejmodernější řešiče velmi náročné. Náš přístup
využívá konceptu parametrických plochých automatů (PFA), které se ukázali být klíčovým
nástrojem pro efektivní zpracování těchto řetězcových omezení. Experimentální výsledky
ukazují, že náš přístup výrazně překonává nejmodernější řetězcové řešiče na benchmarcích,
které zahrnují i konverzi mezi řetězci a čísly.

Na závěr navrhujeme vylepšenou verzi Parikhovy obrazové abstrakce konečných au-
tomatů pro řešení omezení nad délkami řetězců. Tuto abstrakci integrujeme do řetězcového
řešiče Sloth, kde kromě řešení délkových omezení využíváme naši abstrakci také ke zrych-
lení řešení dalších typů omezení. Experimentální výsledky ukazují, že naše rozšíření Sloth
má dobré výsledky jak na jednoduchých tak i na složitých benchmarcích.

Automata in Decision Procedures and Formal
Verification

Declaration
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením
doc. Mgr. Lukáše Holíka, Ph.D. a prof. Ing. Tomáše Vojnara, Ph.D. Uvedl jsem všechny
literární prameny a publikace, ze kterých jsem čerpal.

. .
Petr Janků

September 30, 2023

Acknowledgements
First of all, I would like to express my gratitude to my supervisor Lukáš Holík for his incred-
ible efforts and patience. I know it has not always been easy with me, but his unwavering
faith in me and his encouragement has been a tremendous source of support. Without
him, this thesis would never have come to be, and for that I owe him my greatest thanks.
I would also like to thank my co-supervisor, Tomáš Vojnar, for his valuable time and all the
support he gave me during my studies. I cannot forget to thank my co-authors, especially
Lenka Turoňová, Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Anthony
W. Lin, Philipp Rümmer, Yu-Fang Chen, Julian Dolby, Hsin-Hung Lin, and Wei-Cheng
Wu. Thanks also to all the people in the VeriFIT group, especially Martin Hruška, Tomáš
Fiedor, Ondřej Lengál and Lenka Turoňová. It was great to be part of this group. Finally,
I would like to express my gratitude to my family and friends for their endless support and
especially to my beloved wife Helena, who has been my greatest source of strength and
encouragement.

Contents

1 Introduction 2
1.1 Contribution of This Thesis . 5

2 Preliminaries 8

3 String Constraints 9
3.1 String Language . 9
3.2 Decidability and Complexity of Existing

Decision Procedures . 10
3.2.1 Acyclic Form . 11
3.2.2 Straight-Line Fragment . 12

4 Contributions 14
4.1 String Constraints with Concatenation and Transducers Solved Efficiently . 14
4.2 Chain-Free String Constraints . 15
4.3 Efficient Handling of String-Number Conversion 18
4.4 Solving String Constraints with Approximate

Parikh Image . 20

5 Conclusions and Future Directions 21
5.1 Summary of the Contributions . 21
5.2 Further Directions . 21

Bibliography 24

A Papers 34
A.1 String constraints with concatenation and transducers solved efficiently . . 35
A.2 Chain-Free String Constraints . 67
A.3 Efficient handling of string-number conversion 84
A.4 Solving String Constraints with Approximate Parikh Image 99

1

Chapter 1

Introduction

Strings are a fundamental data type in many, if not all, modern programming languages.
They are uniquely important because of their versatility and unique ability to effectively
represent, process and manipulate textual data. This is particularly crucial in the realm of
web applications where they facilitate communication with users in their native language.
Modern programming languages, such as JavaScript, Python, Java, and PHP, reflect this
essential status of strings by offering an extensive collection of built-in functions designed
specifically for working with strings. These functions provide convenient and efficient string
manipulation, ranging from basic operations such as concatenation, length and substring, to
more complex functions such as match, replace, split and parseInt. In addition, strings have
become indispensable in inter-systemand program communication, where they represent
values of data types other than strings. This is particularly important when processing or
creating textbased XML and JSON file formats, which are heavily utilized in data exchange
between servers and web applications, further highlighting the continued and increasing
importance of strings in modern software development.

However, string manipulation also comes with significant risk of errors. The extensive
use of string operations, particularly for processing untrusted user data, combined with
potential built-in string functions, often leads to serious vulnerabilities in web applications.
The most prominent of these vulnerabilities are Cross-Site Scripting (XSS) and Injection
Flaws, like SQL Injection. XSS attacks, a prevalent issue in modern web applications,
occur when untrusted data is passed to other users without proper sanitization, allowing
potentially dangerous strings to be interpreted as code by a browser. On the other hand,
SQL Injection vulnerabilities arise from the improper usage of user input when constructing
database statements. If untrusted data is not adequately sanitized, malicious actors can
manipulate queries and gain unauthorized access to the database, for example. Despite
increased awareness of these vulnerabilities and efforts to remove them, these vulnerabilities
persist on OWASP’s list [75, 76, 77] of the most serious web application vulnerabilities over
the years. This illustrates that despite increased understanding, these vulnerabilities are
still widespread and cause significant damage.

Renowned companies like Google, Facebook, Adobe and Mozilla financially reward any-
one who discovers vulnerabilities in their web applications, including security flaws like
cross-site scripting (XSS) or SQL injection. For example, Google is offering up to $10,000
as a reward [53]. A less visible but no less serious consequence of these security flaws is
the amount of time websites are down. For organizations whose business depends on web
technologies, such downtime is a major financial burden. In the event of successful cyber-
attacks, especially when XSS is involved, downtime can last for days or weeks until the site

2

can be made secure again. Simple math shows that if your website generates $150 per hour,
downtime due to XSS can cost you between $5,000 and $30,000 if the website is down for
two to ten days. Research from 2014 by [90] even showed that even minor SQL injection at-
tacks can have a financial impact of up to $200,000. Another article [95] from the same year
published on Ars Technica claims that the US Navy spent more than half a million dollars to
address a single SQL injection attack that caused more than 70 people to be unable to con-
tinue their transactions for several months. These costs also include the time and resources
spent identifying and closing the security gaps that enabled the attack in the first place.

To prevent these vulnerabilities, untrusted data is sanitized using specific functions that
escape, i.e., replace potentially dangerous characters with a different sequence of characters,
or remove potentially dangerous strings. While modern programming languages provide
their own sanitizers, developers may need to create custom sanitizers to meet specific per-
formance or functional constraints. Nonetheless, the correct creation of these sanitizers is
a challenging task, as it is known that custom implementations can often contain bugs [50].
In addition, using the same sanitizer multiple times or in different order can inadvertently
introduce new vulnerabilities, as demonstrated in Example 1.0.1.

Example 1.0.1. Consider the following JavaScript code snippet adapted from [58, 69]:
var x = goog.string.htmlEscape(name);
var y = goog.string.escapeString(x);
nameElem.innerHTML = '<button onclick= "view(\'' + y + '\')">' + x + '</button>';

The code assigns an HTML markup for a button to the DOM element nameElem. Upon click,
the button will invoke the function view on the input name whose value is an untrusted
variable. The code attempts to first sanitise the value of name. This is done via The
Closure Library [35] string functions htmlEscape and escapeString. Here, htmlEscape
converts reserved characters in HTML such as &, <, and ' to their respective HTML entity
names &, < and '. On the other hand, escapeString will escape certain
metacharacters, e.g., the character ' and " are replaced by \' and \". Inputting the value
Tom & Jerry into name gives the desired HTML markup:
<button onclick="view('Tom & Jerry')">Tom & Jerry</button>

On the other hand, inputting value ');script();// to name, results in the markup:
<button onclick="view('');script();//')">');script();//')</button>

Before this string is inserted into the DOM via innerHTML, an implicit browser transduction
will take place [48, 104], i.e., HTML-unescaping the string inside the onclick attribute and
then invoking the attacker’s script script() after view. This subtle DOM-based XSS bug
is due to calling the right escape functions, but in wrong order. □

It is crucial to address another significant yet often overlooked vulnerability related to
string manipulation, known as buffer overflow. These vulnerabilities occur when a pro-
gram attempts to store more data in a buffer than it can hold, resulting in data overflow
into neighboring memory locations and causing data corruption or overwrites. As a con-
sequence, this can lead to crashes, security vulnerabilities, and unpredictable behavior.
Attackers could exploit these vulnerabilities to execute arbitrary code on a system, po-
tentially resulting in a system takeover or theft of sensitive data. This issue is especially
concerning when a string is copied into a buffer without proper length checking.

Given the significance and inherent risks of string manipulation, particularly in the
context of web applications that are especially vulnerable due to their global availability,

3

it is absolutely essential to perform some form of program verification. Fortunately, there
are two main approaches for verifying the security of a program, namely dynamic and
static analysis. Dynamic analysis involves testing the application as a whole unit, using
a set of specific inputs. However, its main drawback lies in its lack of reliability since
certain program paths can only be executed if certain inputs are passed to the program
as parameters. Thus, it is highly unlikely that a dynamic analysis could thoroughly test
the program with all possible inputs due to its inherent limitations. This becomes even
more apparent when we consider web applications. Here, the complexity of the analysis
increases significantly as not only the range of input values (the value space) needs to be
considered, but also the different sequences of user interactions with the interface (the event
space). As a consequence, the number of potential execution paths itself increases, making
systematic exploration impractical. This often leads to what is commonly referred to as
the "low code coverage" issue in dynamic analysis.

To overcome these limitations, a standard approach is to use static analysis, which aims
for good or complete coverage of the program under analysis. However, static analysis
introduces its own challenges, such as the existence of false-positive results, which arise
due to an over-approximation of the program’s behavior. In order to address this issue,
a technique called symbolic execution [60] can be used. Symbolic execution is a program
analysis technique that operates on symbolic inputs instead of concrete values. It evaluates
program as functions of these symbolic inputs while maintaining path conditions, which
represent the symbolic values along a specific execution path. This concept is further
expanded by dynamic symbolic execution [91, 25, 26, 27, 45, 92], which gathers symbolic
constraints from concrete execution traces and enables the exploration of different execution
paths by dynamically monitoring the executed instructions. If a branch condition in one of
the extracted symbolic traces is selected and negated, alternative paths can be explored.

In order to determine the feasibility of these modified path conditions, the typical ap-
proach involves reducing the problem to the satisfiability of a formula. More precisely,
program statements within the path are translated into equivalent constraints in Static
Single Assignment (SSA) form, which are subsequently solved by a constraint solver. This
solver must be able to solve constraints involving different theories or data domains, such
as strings, integers and Booleans. These specifications are met by the SMT (Satisfiability
Modulo Theories) solver that is commonly used in symbolic executions. By integrating
specialized theory solvers, an SMT extends the capabilities of SAT solvers to handle for-
mulas expressed across different theories. This integration is typically achieved within
the DPLL(T) framework [73], which is employed by advanced SMT solvers. Within this
architecture, an incremental propositional SAT solver initially searches for a truth assign-
ment that satisfies the formula at the propositional level. If successful, this assignment
is forwarded to a theory solver, which applies a specific calculus tailored to that theory.
The theory solver evaluates whether a saturated configuration is achieved and, based on
the results, either confirms the satisfiability of the input formula or provides additional con-
straints to the SAT solver in the form of conflict clauses or lemmas. This iterative process
continues until no conflicts are detected or an irreparable conflict arises.

Driven by the aforementioned importance of strings and their pivotal role in software
verification, especially within the symbolic execution model and the utilization of SMT
solvers, attention has increasingly shifted towards a specialized category of solvers designed
specifically for string manipulation, commonly known as string solvers. Their importance
and interest in academic community has grown significantly over the last twenty years, as
evidenced by numerous studies [11, 14, 66, 68, 67, 74, 82, 83, 39, 20, 94, 109, 108, 18, 19,

4

17, 16, 4, 5, 2, 97, 29, 32, 31, 30, 49, 6, 7, 21, 103, 63, 105, 107, 106, 10, 59, 87, 33, 34, 38,
65, 9, 36, 42, 50, 51, 89, 100, 102]. A practical string solver must be able to handle a wide
range of string constraints, including basic ones such as word equations, regular expres-
sions, and length constraints. Additionally, it must also be capable of managing various
complex constraints, which involve string transformations (e.g., in the form of transducers),
replaceAll, substring, indexOf functions, and conversions between integers and strings.

Solving constraints over strings is still a complex and challenging task compared to
constraints over integer/real arithmetic, which are well-studied and have already powerful
algorithms such as the simplex algorithm. The challenge mainly arises from the diverse
range of string operations that can be incorporated into a string theory. Even when consid-
ering the theory of strings with only the concatenation operation, existing string solvers are
not able to handle this theory in its full generality in a sound and complete manner, despite
the existence of a theoretical decision procedure for this problem [40, 47, 56, 70, 79, 80].
Adding an additional operation such as string length comparison further complicates the
situation, since in that case decidability is a long-standing open problem [44]. The com-
plexity and limitations of solving string constraints reach a peak when dealing with the full
class of string constraints, which includes transducers and string-to-number conversions in
addition to concatenation and length constraints. For this full class, it is well known that
the satisfiability problem is proven to be undecidable in general [72, 32], even for a simple
formula of the form 𝒯 (𝑥, 𝑥), where 𝒯 is a rational transducer and 𝑥 is a string variable.
However, this theoretical barrier has not prevented the development of numerous efficient
solvers such as Z3 [39, 20, 94], Z3Str/2/3/4/3RE [109, 108, 18, 19, 17, 16], cvc4/5
[11, 14, 66, 68, 67, 74, 82, 83], S3P [96, 97] and Trau [4, 5, 1, 2, 8]. These tools implement
semi-decision algorithms to handle a variety of string constraints. Although these tools are
usually sound in the sense that they return the correct answer upon termination, they do
not provide completeness guarantees. Another direction of research is to find meaningful
and expressive subclasses of string logics for which the satisfiability problem is decidable.
Such classes include the acyclic form of Norn [6, 7], the solved form fragment [44], and
also the straight-line fragment [29, 32, 31, 30, 69, 49].

1.1 Contribution of This Thesis
In the context of this thesis, which focuses on addressing the problems described above,
several papers upon which this thesis is based have been published: [49] published at
POPL’18, [8] published at ATVA’19 (Best Paper Award), [2] published at PLDI’20, and
[55] published at EUROCAST’19. My contributions to these papers are as follows:

• In the paper [49], I participated in the creation of the decision procedure, the devel-
opment of the Sloth tool, and the preparation of experiments.

• In the context of paper [8], I focused on developing the chain-free fragment and
its theory, developing an experimental tool Trau+, and creating and conducting
experiments.

• Regarding publication [1], my involvement included collaborative development of the
experimental tool Z3-Trau, creating a validator for checking the results of the used
tools, and contributing to the experimental section of the paper.

• In the case of paper [55], I contributed to the writing of the text, software development,
and was the author of the main idea of the article.

5

All the mentioned papers are included to this thesis and can be found in Appendix A.
Here is a brief overview of the main contributions of this thesis:

• We proposed a fast reduction of the satisfiability of formulae in the straight-line
and acyclic fragment [12] to the emptiness problem of alternating finite-state au-
tomata (AFA). This reduction can be exponential in the worst case depending on the
number of concatenation operations, but otherwise polynomial in the size of the for-
mula. To decide the emptiness of AFA, we combined this reduction with fast model
checking algorithms (namely IC3 [22]), which led to the first practical algorithm for
handling string constraints with concatenation, finite-state transducers (hence, also
replaceAll), and regular constraints. Furthermore, we obtained a simpler proof for
the decidability and PSPACE-membership of the acyclic fragment of the intersection
of rational relations of [12], which was fundamentally used in [69]. Additionally, we
have defined optimized translations from AFA emptiness to reachability over Boolean
transition systems. The implementation of these translations can be found in the
string solver Sloth [49], whose performance we extensively tested, especially in the
context of HTML5 applications. The results show that in many practical cases, the
translation to AFAs can circumvent the worst-case EXPSPACE complexity.

• We introduced a new decidable fragment of string constraints, called chain-free [8].
This fragment strictly generalizes both the existing straight-line and acyclic fragments
[69, 6] and provides a precise characterization of the decidability limitations of general
relational/transducer constraints combined with concatenation. Simultaneously, we
introduced a relaxation of the chain-free fragment, which is called weakly chaining.
This fragment allows special chains with length preserving relational constraints. De-
cision procedures have been developed for these new fragments, focusing on solving the
satisfiability problem for both chain-free and weakly chaining constraints. To validate
these new procedures, a prototype was created, and experimental results demonstrate
the effectiveness and generality of our technique, both based on benchmarks from the
literature and new benchmarks.

• An efficient procedure for checking the satisfiability of string constraints, especially
with string-to-number conversion, has been proposed using the concept of parametric
flat automata (PFA). These automata extend the concept of flat automata [4] and have
proven to be a key tool for efficiently handling these string constraints. Furthermore,
we introduced an algorithm that allows to translates the satisfiability problem of
string constraints to the satisfiability problem of a linear formula in polynomial-time,
assuming that the search space is restricted by the PFA. In order to demonstrate the
efficiency and performance of this approach, an open source tool called Z3-Trau [1]
was developed. Experimental results show that our approach is effective on standard
benchmarks as well as on real-world benchmarks.

• The decision procedure contained in the Sloth string solver for the straight-line
fragment faces challenges in efficiently solving arithmetic constraints over strings.
This problem stems from the fact that the given procedure utilizes AFA, where the
emptiness problem is subsequently solved by model checking. In response to this,
we present an extension of the given decision procedure, which offers the possibility of
better handling arithmetic constraints over strings. The key feature of this extension
is the creation of Parikh images for each AFA and the definition of operations between
them, which effectively addresses arithmetic constraints over strings. Although our

6

extension provides only an approximation of the existing solution, experimental results
have shown that it is sufficiently accurate in real-world benchmarks.

Outline. In Chapter 2, we recall the relevant definitions from logic and automata theory.
In Chapter 3, we define the basic string constraint language and give a brief overview of
decidability and complexity over these constraints. Chapter 4 describes a brief overview of
the contributions of this thesis, and finally Chapter 5 concludes and discusses future work.
Appendix A then contains the papers that form the main part of this thesis.

7

Chapter 2

Preliminaries

Sets and strings. We use N, Z to denote the sets of natural numbers and integers,
respectively. A finite set Σ of letters is an alphabet, a sequence of symbols 𝑎1 · · · 𝑎𝑛 from
Σ is a word or a string over Σ, with its length 𝑛 denoted by |𝑤|, 𝜖 is the empty word with
|𝜖| = 0, it is a neutral element with respect to string concatenation ∘, and Σ* is the set of
all words over Σ including 𝜖.

Logic. Given a predicate formula, an occurrence of a predicate is positive if it is under
an even number of negations. A formula is in disjunctive normal form (DNF) if it is
a disjunction of clauses that are themselves conjunctions of (negated) predicates. We write
Ψ[𝑥/𝑡] to denote the formula obtained by substituting in the formula Ψ each occurrence of
the variable 𝑥 by the term 𝑡.

(Multi-tape)-Automata and transducers. A Finite Automaton (FA) over an alpha-
bet Σ is a tuple 𝒜 = ⟨𝑄,∆, 𝐼, 𝐹 ⟩, where 𝑄 is a finite set of states, ∆ ⊆ 𝑄 × Σ𝜖 × 𝑄 with
Σ𝜖 = Σ ∪ {𝜖} is a set of transitions, and 𝐼 ⊆ 𝑄 (resp. 𝐹 ⊆ 𝑄) are the initial (resp. ac-
cepting) states. 𝒜 accepts a word 𝑤 iff there is a sequence 𝑞0𝑎1𝑞1𝑎2 · · · 𝑎𝑛𝑞𝑛 such that
(𝑞𝑖−1, 𝑎𝑖, 𝑞𝑖) ∈ ∆ for all 1 ≤ 𝑖 ≤ 𝑛, 𝑞0 ∈ 𝐼, 𝑞𝑛 ∈ 𝐹 , and 𝑤 = 𝑎1 ∘ · · · ∘ 𝑎𝑛. The language of 𝒜,
denoted ℒ(𝒜), is the set all accepted words.

Given 𝑛 ∈ N, a 𝑛-tape automaton 𝒯 is an automaton over the alphabet (Σ𝜖)
𝑛. It recog-

nizes the relation ℛ(𝒯) ⊆ (Σ*)𝑛 that contains vectors of words (𝑤1, 𝑤2, . . . , 𝑤𝑛) for which
there is (𝑎(1,1), 𝑎(2,1), . . . , 𝑎(𝑛,1)) · · · (𝑎(1,𝑚), 𝑎(2,𝑚), . . . , 𝑎(𝑛,𝑚)) ∈ ℒ(𝒯) with 𝑤𝑖 = 𝑎(𝑖,1) ∘ · · · ∘
𝑎(𝑖,𝑚) for all 𝑖 ∈ {1, . . . , 𝑛}. A 𝑛-tape automaton 𝒯 is said to be length-preserving if its
transition relation ∆ ⊆ 𝑄× Σ𝑛 ×𝑄. A transducer is a 2-tape automaton.

Let us recall some well-know facts about the class of multi-tape automata. First,
the class of 𝑛-tape automata is closed under union but not under complementation nor
intersection. However, the class of length-preserving multi-tape automata is closed un-
der intersection. Multi-tape automata are closed under composition. Let 𝒯 and 𝒯 ′ be
two multi-tape automata of dimension 𝑛 and 𝑚, respectively, and let 𝑖 ∈ {1, . . . , 𝑛} and
𝑗 ∈ {1, . . . ,𝑚} be two indices. Then, it is possible to construct a (𝑛+𝑚− 1)-tape automa-
ton 𝒯 ∧(𝑖,𝑗) 𝒯 ′ which accepts the set of words (𝑤1, . . . , 𝑤𝑛, 𝑢1, . . . , 𝑢𝑗−1, 𝑢𝑗+1, . . . , 𝑢𝑚) if and
only if (𝑤1, . . . , 𝑤𝑛) ∈ ℛ(𝒯) and (𝑢1, . . . , 𝑢𝑗−1, 𝑤𝑖, 𝑢𝑗+1, . . . , 𝑢𝑚) ∈ ℛ(𝒯 ′). Furthermore, we
can show that multi-tape automata are closed under permutations: Given a permutation
𝜎 : {1, . . . , 𝑛} → {1, . . . , 𝑛} and a 𝑛-tape automaton 𝒯 , it is possible to construct a 𝑛-tape
automaton 𝜎(𝒯) such that ℛ(𝜎(𝒯)) = {(𝑤𝜎(1), . . . , 𝑤𝜎(𝑛)) | (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ ℛ(𝒯)}. Fi-
nally, given a 𝑛-tape automaton 𝒯 and a natural number 𝑘 ≥ 𝑛, we can construct a 𝑘-tape
automaton s. t. (𝑤1, . . . , 𝑤𝑘) ∈ ℛ(𝒯 ′) if and only if (𝑤1, . . . , 𝑤𝑛) ∈ ℛ(𝒯).

8

Chapter 3

String Constraints

We start by recalling a general string constraint language, which includes concatenation,
finite-state transducers, and regular expression matching. We will then extend this language
with additional constraints such as ReplaceAll, IndexOf, and string-number conversion.
Subsequently, we will focus on existing decision procedures and their complexity, where we
discuss in more detail two important fragments of this language: the acyclic form and the
straight-line fragment.

3.1 String Language
The syntax of a string formula Ψ over an alphabet Σ and a set of variables X is as follows:

Ψ ::= 𝜙 | Ψ ∧Ψ | Ψ ∨Ψ | ¬Ψ
𝜙 ::= 𝒜(𝑡str) | 𝑅(𝑡str , 𝑡str) | 𝑡ar ≥ 𝑡ar
𝑅 ::= 𝒯 | =
𝑡str ::= 𝜖 | 𝑥 | 𝑡str ∘ 𝑡str
𝑡ar ::= 𝑘 | |𝑡str | | 𝑡ar + 𝑡ar

It is a Boolean combination of memberships, relational, and arithmetic constraints over
string terms 𝑡str (i.e., concatenations of variables in X). Membership constraints denote
membership in the language of a finite-state automaton 𝒜 over Σ. Relational constraints
denote either an equality of string terms, which we normally write as 𝑡 = 𝑡′ instead of =(𝑡, 𝑡′),
or that the terms are related by a relation recognised by a transducer 𝒯 . (Observe that
the equality relations can be also expressed using length preserving transducers.) Finally,
arithmetic terms 𝑡ar are linear functions over term lengths and integers, and arithmetic
constraints are inequalities of arithmetic terms. We refer to all previous constraints as
Basic constraints.

Furthermore, we introduce so-called Extended constraints, which, in addition to basic
constraints, also include constraints like ReplaceAll, IndexOf, and string-number conver-
sion. The relational constraint ReplaceAll is defined by the function replaceAll(𝑥, 𝑝, 𝑦),
where 𝑥 and 𝑦 are string terms, while 𝑝 can be either a string term or a regular expression.
This function replaces all occurrences of 𝑝 in 𝑥 with the expression 𝑦. Additionally, the
arithmetic constraint IndexOf is described by the function IndexOf(𝑥, 𝑦), where 𝑥 and 𝑦
are string terms. This function returns the position of the occurrence of 𝑥 in 𝑦 or returns 0
if 𝑥 is not found in 𝑦. Finally, the string-number conversion constraint is defined by the
function toNum(𝑥), where 𝑥 is a string term. If 𝑥 ∈ [0, 9]+, this function returns the number
represented by the string 𝑥. However, if 𝑥 /∈ [0, 9]+, it returns the value −1.

9

String formulae allow using negation with one restriction, namely, constraints that are
not invertible must have only positive occurrences. General transducers are not invert-
ible, it is not possible to negate them. Regular membership, length preserving relations
(including equality), and length constraints are invertible.

To simplify presentation, we do not consider mixed string terms 𝑡str that contain, besides
variables of X, also symbols of Σ. This is without loss of generality because a mixed term
can be encoded as a conjunction of the pure term over X obtained by replacing every
occurrence of a letter 𝑎 ∈ Σ by a fresh variable 𝑥 and the regular membership constraints
𝒜𝑎(𝑥) with ℒ(𝒜𝑎) = {𝑎}. Observe also that membership and equality constraints may be
expressed using transducers.
Semantics. We describe the semantics of our logic using a mapping 𝜂, called interpretation,
that assigns to each string variable in X a word in Σ*. Extended to string terms by
𝜂(𝑡𝑠1 ∘ 𝑡𝑠2) = 𝜂(𝑡𝑠1)∘𝜂(𝑡𝑠2). Extended to arithmetic terms by 𝜂(|𝑡𝑠|) = |𝜂(𝑡𝑠)|, 𝜂(𝑘) = 𝑘 and
𝜂(𝑡𝑖 + 𝑡′𝑖) = 𝜂(𝑡𝑖) + 𝜂(𝑡′𝑖). Extended to atomic constraints, 𝜂 returns a truth value:

𝜂(𝒜(𝑡str)) = ⊤ iff 𝜂(𝑡str) ∈ ℒ(𝒜)
𝜂(𝑅(𝑡str , 𝑡

′
str)) = ⊤ iff (𝜂(𝑡str), 𝜂(𝑡

′
str)) ∈ ℛ(𝑅)

𝜂(𝑡𝑖1 ≤ 𝑡𝑖2) = ⊤ iff 𝜂(𝑡𝑖1) ≤ 𝜂(𝑡𝑖2)

Given two interpretations 𝜂1 and 𝜂2 over two disjoint sets of string variables X1 and X2,
respectively. We use 𝜂1∪𝜂2 to denote the interpretation over X1∪X2 such that (𝜂1∪𝜂2)(𝑥) =
𝜂1(𝑥) if 𝑥 ∈ X1 and (𝜂1 ∪ 𝜂2)(𝑥) = 𝜂2(𝑥) if 𝑥 ∈ X2.

The truth value of a Boolean combination of formulae under 𝜂 is defined as usual. If
𝜂(Ψ) = ⊤ then 𝜂 is a solution of Ψ, written 𝜂 |= Ψ. The formula Ψ is satisfiable iff it has
a solution, otherwise it is unsatisfiable.

A relational constraint is said to be left-sided if and only if it is on the form 𝑅(𝑥, 𝑡str)
where 𝑥 ∈ X is a string variable and 𝑡str is a string term. Any string formula can be
transformed into a formula where all the relational constraints are left-sided by replacing
any relational constraint of the form 𝑅(𝑡str , 𝑡

′
str) by 𝑅(𝑥, 𝑡′str) ∧ 𝑥 = 𝑡 where 𝑥 is fresh.

A formula Ψ is said to be concatenation free if and only if for every relational constraint
𝑅(𝑡str , 𝑡

′
str), the string terms 𝑡str and 𝑡′str appearing in the parameters of any relational

constraints in Ψ are variables (i.e., 𝑡str , 𝑡′str ∈ X).

3.2 Decidability and Complexity of Existing
Decision Procedures

In 1946, Quine [81] presented a proof that the first-order theory of word equations (specif-
ically, word equations with Boolean connectives and quantification over variables) is un-
decidable. This proof is based on an equivalence with the first-order theory of arithmetic,
which was already known to be undecidable. Subsequent efforts were then dedicated to
identifying specific subclasses of word equations where decidability would be achievable.
A major breakthrough came in 1977 when Makanin [70] in his pioneering work introduced
a decision procedure for word equations without quantifiers, i.e., Boolean combinations of
equalities and inequalities, where string variables can be assigned words of arbitrary length.
Makanin not only proved the decidability of this problem, but also laid the foundation for
further advances in the field. Subsequent research has gradually reduced the complexity
of Makanin’s algorithm to EXPSPACE [54, 88, 62, 46]. Subsequently, in 1999, Plandowski
made a breakthrough when he was the first to show that word equations can be solved in

10

PSPACE due to the word compression technique [78]. Jez, in a series of papers [56, 57],
applied a new technique called recompression to word equations. His approach not only
simplified the existing proof of decidability in PSPACE, but also showed that the satisfi-
ability of word equations can be decided in a non-deterministic linear space. At present,
NP-hard [41] is the only known lower bound, which means that the question of whether the
solution of word equations is NP-complete remains open.

In the context of word equations, we must mention quadratic word equations [84]. This
specific fragment of word equations is characterized by the fact that each variable can occur
at most twice. Most SMT solvers utilize a decision procedure based on Levi’s lemma [64] to
solve these equations, which has PSPACE complexity. However, it has been proven in [84]
that solving quadratic word equations is NP-hard in general, even in the case where only
one equation is involved, which was proved by a reduction from 3-SAT.

There are several significant extensions to the standard word equations that restrict
the set of words that can be assigned to string variables. These important restrictions
include memberships, relational constraints, arithmetic constraints over string lengths, and
string-to-number conversion. In 1990, Schulz [88] showed that decidability of the prob-
lem is preserved if the string variables are additionally constrained by a regular language.
However, the resulting complexity of such a problem is PSPACE-complete [24]. As for
extensions with arithmetic constraints over string variables of the form |𝑥| = |𝑦|, it is still
a long-standing open problem whether word equations with such constraints are decidable
or not. Nevertheless, it is known that counting letters (e.g., counting the number of occur-
rences of 0 and 1 separately) leads to undecidability [24]. If the conversion between number
and string is added to these arithmetic constraints, the satisfiability of such an extension
of word equations is undecidable [43, 44]. Although relational constraints play a key role
in expressing many functions in string-manipulating programs (e.g., escaping functions,
replace-all, etc.), their satisfiability in the context of string theory, which involves only rela-
tional constraints, is undecidable [69]. Even checking a simple formula of the form 𝒯 (𝑥, 𝑥),
for a given rational transducer 𝒯 , can easily be encoded into Post’s correspondence prob-
lem [72]. Decidability is not obtained even if we use synchronized relational constraints,
since the satisfiability of string constraints of the form 𝑥 = 𝑦 ∘𝑧∧𝒯 (𝑥, 𝑧); where 𝒯 is a syn-
chronized transducer, is undecidable [12]. Thus, extending word equations with relational
constraints, without any restriction of such constraints, also leads to undecidability.

In the following sections we describe in detail two important fragments whose decision
procedures are decidable, namely the straight-line fragment and the acyclic form.

3.2.1 Acyclic Form

In the paper [6] from 2014, a fragment of string logic named Acyclic Form was introduced.
This fragment contains three types of constraints: word equations, arithmetic constraints
over string variables, and membership constraints. Even though the decidability problem
of such logic remains open [24], the Acyclic Form becomes decidable due to the specific con-
straints applied to the occurrence of string variables in word equations. The authors argue
that this fragment is robust enough to cover all practical examples known at the time of this
paper. Using the Acyclic Form, it was possible to verify the properties of implementations
of common string-manipulating functions such as Hamming and Levenshtein distance.

The paper [6] also presents a decision procedure, which is both correct and complete;
however, this is only valid for formulas that are in Acyclic Form. The foundation of this
procedure lies in a set of inference rules. These rules replace literals of the input formula

11

with a set of new literals that simplify the original literal. It has been proven that the
Acyclic Form is preserved after the application of any inference rule. The paper [6] further
defines four groups of inference rules that must be applied in a precisely determined order
to ensure the termination of the procedure. It is worth noting that paper [6] also introduces
an innovative technique referred to as splitting automata. This method allows to deal with
membership constraints of type 𝒜(𝑡str ∘ 𝑡′str). Furthermore, this approach was used in other
string solvers such as OSTRICH [32, 31, 30], Z3str3RE [19, 17], Sloth [49] and to some
extent Trau [4, 5, 8, 1, 2]. It should be noted that this method was also adapted for
transducers [69]. The decision procedure was integrated into the string solver named Norn
[6, 7], which is based on the DPLL(T) architecture.
Dependency graph [6]. Given a conjunction 𝜑 involving 𝑚 (dis)equalities, we can
build a dependency graph 𝐺𝜑 = (𝑁,𝐸, label, map) in the following way. We order the
(dis)equalities from 𝑒1 to 𝑒𝑚, where each 𝑒𝑗 is of the form lhs(𝑗) ≈ rhs(𝑗) for 𝑗 : 1 ≤ 𝑗 ≤ 𝑚
and [≈] ∈ {=, ̸=}. For each 𝑗 : 1 ≤ 𝑗 ≤ 𝑚, a node 𝑛2𝑗−1 is used to refer to the left-hand
side of the 𝑗𝑡ℎ (dis)equality, and 𝑛2𝑗 to its right-hand side. For example, two different
nodes are used even in the case of the simple equality 𝑢 = 𝑢, one to refer to the left-
hand side, and the other to refer the right-hand side. 𝑁 is then the set of 2 × 𝑚 nodes
{𝑛𝑖 | 𝑖 : 1 ≤ 𝑖 ≤ 2 × 𝑚}. The mapping label associates the term lhs(𝑗) (resp. rhs(𝑗))
to each node 𝑛2𝑗−1 (resp. 𝑛2𝑗) for 𝑗 : 1 ≤ 𝑗 ≤ 𝑚. label is not necessarily a one to one
mapping. The mapping map : 𝐸 → {𝑟𝑒𝑙, 𝑣𝑎𝑟} labels edges as follows: map(𝑛, 𝑛′) = rel for
each (𝑛, 𝑛′) = (𝑛2𝑗−1, 𝑛2𝑗) for each 𝑗 : 1 ≤ 𝑗 ≤ 𝑚, and map(𝑛, 𝑛′) = var iff 𝑛 ̸= 𝑛′, and
label(𝑛) and label(𝑛′) have some common variables. By construction, map is defined to
be total, i.e., 𝐸 contains only edges that are labeled by map.
Dependency cycle. Given a graph 𝐺𝜑 = (𝑁,𝐸, label, map), a dependency cycle is defined
as a sequence of distinct nodes 𝑛0, 𝑛1, . . . , 𝑛𝑘 in 𝑁 where 𝑘 ≥ 1. For this sequence, it must
hold that ∀𝑖 : 0 ≤ 𝑖 ≤ 𝑘, the mapping map(𝑛𝑖, 𝑛𝑖+1%(𝑘+1)) must be defined and ∀𝑖 : 0 ≤ 𝑖 <
𝑘,𝑚𝑎𝑝(𝑛𝑖, 𝑛𝑖+1) ̸= map(𝑛𝑖+1, 𝑛𝑖+2%(𝑘+1)).
Acyclic form. A formula 𝜑 is said to be in acyclic form if and only if, no variable appears
more than once in any equality or disequality in 𝜑, and its dependency graph does not
contain any dependency cycle.

3.2.2 Straight-Line Fragment

The straight-line fragment represents a decidable subclass of string logic, as initially in-
troduced in [69]. This fragment includes word equations, relational constraints and mem-
bership constraints. Due to the properties of this fragment, it can be effectively utilized
in modelling the logic of programs working with strings, especially those consisting of
a sequence of simple steps executed sequentially (so-called straight-line programs). Such
programs are often found during bounded model checking or dynamic symbolic execution,
which unrolls loops in programs (up to a certain depth) and converts the resulting pro-
grams into SSA form, where each variable is defined only once. In [69], it is shown that
the decidability of this fragment is preserved even when it is further extended to include
arithmetic constraints over string variables, inequalities, letter counting, and IndexOf con-
straint. The authors further argue that the class known as solved forms [44] is essentially
a subset of this extended fragment.
Dependency graph. Given a relational constraint 𝜑, the dependency graph 𝐺(𝜑) of 𝜑 is
the directed graph whose nodes are the string variables appearing in 𝜑 and there is an edge

12

from variable 𝑥 to 𝑦 iff (a) 𝜑 contains a conjunct of the form 𝑅(𝑥, 𝑦) for a rational relation 𝑅,
or (b) an equation of the form 𝑦 = 𝑥1 . . . 𝑥𝑛 for some string variables 𝑥1 . . . 𝑥𝑛 that include 𝑥.

Straight-line conjunction. A conjunction of string constraints is then defined to be
straight-line if it can be written as 𝜓 ∧ ⋀︀𝑚

𝑖=1 𝑥𝑖 = 𝑃𝑖 where 𝜓 is a conjunction of regular
and negated regular constraints and each 𝑃𝑖 is either of the form 𝑦1 ∘ · · · ∘ 𝑦𝑛, or 𝑅(𝑦) and,
importantly, 𝑃𝑖 cannot contain variables 𝑥𝑖, . . . , 𝑥𝑚.

Example 3.2.1. The program snippet in Example 1.0.1 would be expressed as 𝑥 =
ℛ1(name)∧𝑦 = ℛ2(𝑥)∧𝑧 = 𝑤1 ∘𝑦 ∘𝑤2 ∘𝑥∘𝑤3∧𝑢 = ℛ3(𝑧). The transducers ℛ𝑖 correspond
to the string operations at the respective lines: ℛ1 is the htmlEscape, ℛ2 is the escapeString,
and ℛ3 is the implicit transduction within innerHTML. Line 3 is translated into a conjunc-
tion of the concatenation and the third rational constraint encoding the implicit string
operation at the assignment to innerHTML. In the concatenation, 𝑤1, 𝑤2, 𝑤3 are words that
correspond to the three constant strings concatenated with 𝑥 and 𝑦 on line 3. To test vulner-
ability, a regular constraint 𝒜(𝑢) encoding an attack pattern e1 is added as a conjunct. □

In the paper [69], a decision procedure for this fragment was proposed, where it was
proven to be both sound and complete. It was also determined that the upper bound com-
plexity of this procedure is EXPSPACE-complete. However, the authors mention that this
complexity can be reduced to PSPACE under a certain reasonable assumption (see theo-
rem 10 in [69]). Although the paper [69] provides a theoretical proof of decidability and
an upper bound on the complexity, it unfortunately does not offer a concrete implementable
solution to this procedure. This deficiency is addressed with the advent of a string solver
called Sloth [49], which reduces the satisfiability of formulas in a straight-line fragment to
the emptiness problem of alternating finite-state automata (AFAs). It should be noted that
the reduction is at worst exponential with respect to the number of concatenation opera-
tions, which is consistent with the previously identified computational limitation imposed
by the EXPSPACE-hardness of the problem [69]. Yet, it is important to emphasize that,
except in extreme cases, the reduction is polynomial with respect to the size of the given
formula. Subsequently, a new efficient decision procedure for this fragment was introduced
and implemented in the new fast string solver OSTRICH [32, 31, 30].

In the context of straight-line fragment, the paper [29] focused on the decidability
boundaries of this fragment that includes the replaceAll function along with regular con-
straints. The authors proved that if string variables are used as pattern parameters in the
replaceAll function, then this string theory becomes undecidable (a reduction from Post’s
correspondence problem). However, if the pattern parameters of the replaceAll function
are regular expressions, the satisfiability of the given chain theory is decidable with com-
plexity determined as EXPSPACE. Moreover, the authors showed that the satisfiability
problem is PSPACE-complete for several practical scenarios (Corollary 4.7 in [29]). If we
extend the string theory with a constant letter as the pattern parameter for the replaceAll
function and include arithmetic constraints over string variables, the satisfiability again be-
comes undecidable. Undecidability can also be achieved using integer constraints, character
constraints, or constraints involving the IndexOf function.

13

Chapter 4

Contributions

In this chapter, we provide a brief summary of the individual papers that form the main
part of this thesis. The individual articles mentioned here can be found in Appendix A.

4.1 String Constraints with Concatenation and Transducers
Solved Efficiently

In this section, we summarize our work [49], which is attached in Appendix A. The main
technical contribution is a new method for exploiting alternating automata (AFA) as a suc-
cinct symbolic representation for representing formulae in a complex string logic admitting
concatenation and finite-state transductions. In particular, the satisfiability problem for
the string logic is reduced to AFA language emptiness, for which we exploit fast model
checking algorithms. Compared to previous methods [69, 6] that are based on nondeter-
ministic automata (NFA) and transducers, we show that AFA can incur at most a linear
blowup for each string operation permitted in the logic (i.e. concatenation, transducers,
and regular constraints). While the product NFA representing the intersection of the lan-
guages of two automata 𝒜1 and 𝒜2 would be of size 𝑂(|𝒜1| × |𝒜2|), the language can be
represented using an AFA of size |𝒜1|+ |𝒜2| (e.g. see [99]). The difficult cases are how to
deal with concatenation and replace-all, which are our contributions to the paper. More
precisely, a constraint of the form 𝑥 := 𝑦.𝑧 ∧ 𝑥 ∈ 𝐿 (where 𝐿 is the language accepted by
an automaton 𝒜) was reduced in [69, 6] to regular constraints on 𝑦 and 𝑧 by means of
splitting 𝒜, which causes a cubic blow-up (since an “intermediate state” in 𝒜 has to be
guessed, and for each state a product of two automata has to be constructed). Similarly,
taking the post-image 𝑅(𝐿) of 𝐿 under a relation 𝑅 represented by a finite-state transducer
𝒯 gives us an automaton of size 𝑂(|𝒯 | × |𝒜|). A naïve application of AFAs is not helpful
for those cases, since also projections on AFAs are computationally hard.

The key idea to overcome these difficulties is to avoid applying projections altogether,
and instead use the AFA to represent general 𝑘-ary rational relations (a.k.a. 𝑘-track finite-
state transductions [15, 86, 12]). This is possible because we focus on formulae without
negation, so that the (implicit) existential quantifications for applications of transducers can
be placed outside the constraint. This means that our AFAs operate on alphabets that are
exponential in size (for 𝑘-ary relations, the alphabet is {𝜖, 0, 1}𝑘). To address this problem,
we introduce a succinct flavour of AFA with symbolically represented transitions. Our defi-
nition is similar to the concept of alternating symbolic automata in [37] with one difference.
While symbolic AFA take a transition 𝑞 →𝜓 𝜙 from a state 𝑞 to a set of states satisfying

14

a formula 𝜙 if the input symbol satisfies a formula 𝜓, our succinct AFA can mix constraints
on successor states with those on input symbols within a single transition formula (similarly
to the symbolic transition representation of deterministic automata in MONA [61], where
sets of transitions are represented as multi-terminal BDDs with states as terminal nodes).
We show how automata splitting can be achieved with at most linear blow-up.

The succinctness of our AFA representation of string formulae is not for free since AFA
language emptiness is a PSPACE-complete problem (in contrast to polynomial-time for
NFA). However, modern model checking algorithms and heuristics can be harnessed to
solve the emptiness problem. In particular, we use a linear-time reduction to reachability
in Boolean transition systems similar to [103, 36], which can be solved by state of the art
model checking algorithms, such as IC3 [22], 𝑘-induction [93], or Craig interpolation-based
methods [71], and tools like nuXmv [28] or ABC [23].

An interesting by-product of our approach is an efficient decision procedure for the
acyclic fragment. The acyclic logic does not a priori allow concatenation, but is more liberal
in the use of transducer constraints (which can encode complex relations like string-length
comparisons, and the subsequence relation). In addition, such a logic is of interest in the
investigation of complex path-queries for graph databases [12, 13], which has been pursued
independently of strings for verification. Our algorithm also yields an alternative and sub-
stantially simpler proof of PSPACE upper bound of the satisfiability problem of the logic.

We have implemented our AFA-based string solver as the tool Sloth, using the in-
frastructure provided by the SMT solver Princess [85], and applying the nuXmv [28] and
ABC [23] model checkers to analyse succinct AFAs. Sloth is a decision procedure for the
discussed fragments of straight-line and acyclic string formulae, and is able to process SMT-
LIB input with cvc4-style string operations, augmented with operations str.replace,
str.replaceall1, and arbitrary transducers defined using sets of mutually recursive func-
tions. Sloth is therefore extremely flexible at supporting intricate string operations, includ-
ing escape operations such as the ones discussed in Example 1.0.1. Experiments with string
benchmarks drawn from the literature, including problems with replace, replaceAll, and
general transducers, show that Sloth can solve problems that are beyond the scope of
existing solvers, while it is competitive with other solvers on problems with a simpler set
of operations.

4.2 Chain-Free String Constraints
In this section, we provide an overview of our work [8] attached in Appendix A. In the
presented text, we propose an approach that combines two research directions: finding
decidable fragments and utilizing them to develop efficient semi-algorithms. To that aim,
we define the class of chain-free formulas which strictly subsumes the acyclic fragment of
Norn [7] as well as the straight-line fragment of [69, 49, 29], and thus extends the known
border of decidability for string constraints. The extension is of a practical relevance.
A straight-line constraint models a path through a string program in the single static
assignment form, but as soon as the program compares two initialised string variables, the
string constraint falls out of the fragment. The acyclic restriction of Norn on the other hand
does not include transducer constraints (although it might be extended to them) and does
not allow multiple occurrences of a variable in a single string constraint (e.g. an equation

1str.replaceall is the SMT-LIB syntax for the replace-all operation. On the other hand, str.replace
represents the operation of replacing the first occurrence of the given pattern. In case there is no such
occurrence, the string stays intact.

15

of the form 𝑥 ∘ 𝑦 = 𝑧 ∘ 𝑧). Our chain-free fragment is liberal enough to accommodate
constraints that share both these forbidden features (including 𝑥 ∘ 𝑦 = 𝑧 ∘ 𝑧).

The main idea behind the chain-free fragment is to associate to the set of relational con-
straints a splitting graph where each node corresponds to an occurrence of a variable in the
relational constraints of the formula (as shown in Figure 4.1). An edge from an occurrence
of 𝑥 to an occurrence of 𝑦 means that the source occurrence of 𝑥 appears in a relational
constraint which has in the opposite side an occurrence of 𝑦 different from the target oc-
currence of 𝑦. The chain-free fragment prohibits loops in the graph, that we call chains,
such as those shown in red in Figure 4.1.

Then, we identify the so called weakly chaining fragment which strictly extends the
chain-free fragment by allowing benign chains. Benign chains relate relational constraints
where each left side contains only one variable, the constraints are all length preserving, and
all the nodes of the cycles appear exclusively on the left or exclusively on the right sides of
the involved relational constraints (as is the case in Figure 4.1). Weakly chaining constraints
may in practice arise from the checking that an encoding followed a decoding function is
indeed the identity, i.e., satisfiability of constraints of the form 𝒯enc(𝒯dec(𝑥)) = 𝑥, discussed
e.g. in [52]. For instance, in situations similar to the example 4.2.1, one might like to verify
that the sanitization of a password followed by the application of a function supposed to
invert the sanitization gives the original password. The weakly chaining fragment is then
formally defined as follows:

Splitting graph. Let Ψ ::=
⋀︀𝑚
𝑗=1 𝜙𝑗 be a conjunction of relational string constraints with

𝜙𝑗 ::= 𝑅𝑗(𝑡2𝑗−1, 𝑡2𝑗), 1 ≤ 𝑗 ≤ 𝑚 where for each 𝑖 : 1 ≤ 𝑖 ≤ 2𝑚, 𝑡𝑖 is a concatenation
of variables 𝑥1𝑖 ∘ · · · ∘ 𝑥𝑛𝑖

𝑖 . We define the set of positions of Ψ as 𝑃 = {(𝑖, 𝑗) | 1 ≤ 𝑗 ≤
2𝑚 ∧ 1 ≤ 𝑖 ≤ 𝑛𝑗}. The splitting graph of Ψ is then the graph 𝐺Ψ = (𝑃,𝐸, var, con) where
the positions in 𝑃 are its nodes, and the mapping var : 𝑃 → X labels each position (𝑖, 𝑗)
with the variable 𝑥𝑖𝑗 appearing at that position. We say that (𝑖, 2𝑗 − 1) (resp. (𝑖, 2𝑗)) is
the 𝑖th left (resp. right) positions of the 𝑗th constraint, and that 𝑅𝑗 is the predicate of
these positions. Any pair of a left and a right position of the same constraint are called
opposing. The set of edges 𝐸 then consists of edges (𝑝, 𝑝′) between positions for which there
is an intermediate position 𝑝′′ (different from 𝑝′) that is opposing to 𝑝 and is labeled by
the same variable as 𝑝′ (var(𝑝′′) = var(𝑝′)). Finally, the labelling con of edges assigns to
(𝑝, 𝑝′) the constraint of 𝑝, that is, con(𝑝, 𝑝′) = 𝑅𝑗 where 𝑝 is a position of the 𝑗th constraint.
An example of a splitting graph is on Fig. 4.1.

x z y

y x u v
Figure 4.1: The splitting graph of 𝑥 = 𝑧 · 𝑦 ∧ 𝑦 = 𝑥 · 𝑢 · 𝑣.

Chains. A chain2 is a sequence of the form (𝑝0, 𝑝1), (𝑝1, 𝑝2), . . . , (𝑝𝑛, 𝑝0) of edges in 𝐸.
A chain is benign if (1) all the relational constraints corresponding to the edges con(𝑝0, 𝑝1),
con(𝑝1, 𝑝2), . . . , con(𝑝𝑛, 𝑝0) are left sided and and all the string relations involved in these
constraints are length preserving, and (2) the sequence of positions 𝑝0, 𝑝1, . . . , 𝑝𝑛 consists of

2We use chains instead of cycles in order to avoid confusion between our decidable fragment and the ones
that exist in literatures.

16

left positions only, or from right positions only. Observe that if there is a benign chain that
uses only right positions then there exists also a benign chain that uses only left positions.
The graph is chain-free if it has no chains, and it is weakly chaining if all its chains are
benign. A formula is chain-free (resp. weakly chaining) if the splitting graph of every clause
in its DNF is chain-free (resp. weakly chaining). Benign chains are on Fig. 4.1 shown in
red.

Example 4.2.1. The following pseudo-PHP code (a variation of a code at [98]) that
prompts a user to change his password is an example of a program that generates a chain-free
constraint that is neither straight-line nor acyclic form according to [69, 6].
$old=$database->real_escape_string($oldIn);
$new=$database->real_escape_string($newIn);
$pass=$database->query("SELECT password FROM users WHERE userID=".$user);
if($pass == $old)

if($new != $old)
$query = "UPDATE users SET password=".$new." WHERE userID=".$user;
$database->query($query);

The user inputs the old password oldIn and the new password newIn, both are sanitized
and assigned to old and new, respectively. The old sanitized password is compared with
the value pass from the database, to authenticate the user, and then also with the new
sanitized password, to ensure that a different password was chosen, and finally saved in
the database. The sanitization is present to prevent SQL injection. To ensure that the
sanitization works, we wish to verify that the SQL query query is safe, that is, it does not
belong to a regular language Bad of dangerous inputs. This safety condition is expressed
by the constraint

new = 𝒯 (newIn) ∧ old = 𝒯 (oldIn) ∧ pass = old ∧ new ̸= old

∧ query = 𝑢.new.𝑣.user ∧ query ∈ Bad

The sanitization on lines 1 and 2 is modeled by the transducer 𝒯 , and 𝑢 and 𝑣 are the
constant strings from line 7. The constraints fall out from the straight-line due to the test
new ̸= old. □

Our decision procedure for the weakly chaining formulas proceeds in several steps. The
formula is transformed to an equisatisfiable chain-free formula, and then to an equisatisfiable
concatenation free formula in which the relational constraints are of the form 𝒯 (𝑥, 𝑦) where
𝑥 and 𝑦 are two string variables and 𝒯 is a transducer/relational constraint. Finally, we
provide a decision procedure of a chain and concatenation-free formulae. The algorithm
is based on two techniques. First, we show that the chain-free conjunction over relational
constraints can be turned into a single equivalent transducer constraint (in a similar manner
as in [12]). Second, consistency of the resulting transducer constraint with the input length
constraints is checked via the computation of the Parikh image of the transducer.

To demonstrate the usefulness of our approach, we have implemented our decision in
Sloth [49], and then integrated it in the open-source solver Trau [4, 5]. Trau is a string
solver which is based on a Counter-Example Guided Abstraction Refinement (CEGAR)
framework which contains both an under- and an over-approximation module. These two
modules interact together in order to automatically make these approximations more pre-
cise. We have implemented our decision procedure inside the over-approximation module
which takes as an input a constraint and checks if it belongs to the weakly chaining frag-
ment. If it is the case, then we use our decision procedure outlined above. Otherwise, we
start by choosing a minimal set of occurrences of variables 𝑥 that needs to be replaced by

17

fresh ones such that the resulting constraint falls in our decidable fragment. We compare
our prototype implementation against four other state-of-the-art string solvers, namely OS-
TRICH [32], Z3str3 [18], cvc4 [66], and Trau [3]. For our comparison with Z3str3, we
use the version that is part of Z3 4.8.4. Our experimental results show the competitiveness
as as well as accuracy of the framework compared to the solver Trau [4, 5]. Furthermore,
the experimental results show the competitiveness and generality of our method compared
to the existing techniques.

4.3 Efficient Handling of String-Number Conversion
This section summarizes the paper presented in [1], which is attached in Appendix A. In the
given paper, we propose a framework that efficiently handles string constraints with string-
number conversion. Since the problem is provably unsolvable, our framework combines
over and under-approximation techniques. The over-approximation is for proving UNSAT
when possible, while the under-approximation is for proving SAT when possible. Both
over- and under-approximation fall in a decidable fragment of string constraints that we
can efficiently solve.

For ease of presentation, we use the following toy example

Φ={“0"𝑥=𝑥“0”, toNum(𝑥)= toNum(𝑦), |𝑦|>|𝑥|>1, 1000<|𝑦|}

to explain the main ideas behind our decision procedure. To make our terminology explicit:
Φ states that “0” concatenated with 𝑥 is the same as 𝑥 with “0”, the numeric value of the
string 𝑥 is equivalent to that of 𝑦, 𝑦 is longer than 𝑥, 𝑦 is longer than 1000 characters, and 𝑥
is longer than 1. Notice that Φ is satisfiable. E.g., it has a model 𝑥 = “00” and 𝑦 = “01002".
Although this toy example is seemingly trivial, all the state-of-the-art string constraint
solvers we tried (including Z3, cvc4, and Z3str3) cannot solve it within 10 minutes.

Our new decision procedure solves the example in few seconds. It proceeds in two
steps: the first step consists in over-approximating the set of input constraints into a set
that falls in the chain-free fragment [8], which is decidable. Observe that we could over-
approximate the input constraint into any decidable fragment, e.g. the acyclic form [6] or
the straight-line fragment [32]. Our choice of the chain-free fragment [8] is only motivated
by the fact that the chain-free fragment is the largest known decidable fragment for that
class of string constraints. In our example, we over-approximate the formula Φ by con-
verting “0”𝑥 = 𝑥“0” to two formulae {𝑥1 = “0"𝑥, 𝑥2 = 𝑥“0”} and replacing the constraint
toNum(𝑥) = toNum(𝑦) with 𝑛𝑥 = 𝑛𝑦 ∧ (𝑛𝑥 = −1 ∨ (𝑛𝑥 ̸= −1 ∧ 𝑥 ∈ [0 − 9]*)) ∧ (𝑛𝑦 =
−1 ∨ (𝑛𝑦 ̸= −1 ∧ 𝑦 ∈ [0 − 9]*))). Observe that if the over-approximation is UNSAT
then our decision procedure declares that the original formula is also UNSAT and termi-
nates. Surprisingly, despite its simplicity, our over-approximation procedure works very
well in practice as shown by our experimental results. Coming back to the formula Φ,
the over-approximation module will return SAT in this case.

The second step of our decision procedure is only enabled if the over-approximation step
returns SAT. In this case, our decision procedure uses an under-approximation technique
(which is our main contribution) to restrict the search domain of each string variable to
strings that obey some predefined and parameterized pattern. We propose to use patterns
defined by parametric flat automata (PFA). A PFA is a flat finite state automaton con-
sisting of a predefined sequence of loops, each of fixed length (see Figure 4.2). The size
of the PFA is parameterized by the length of the sequence of loops and the size of each

18

𝑞00 𝑞01 𝑞0𝑚

𝑞10

𝑞20

𝑞30
𝑞11 𝑞21 𝑞1𝑚

𝑞2𝑚

𝑞3𝑚

𝑣00

𝑣10 𝑣20

𝑣30
𝑣0 𝑣1 𝑣𝑚−1

𝑣0𝑚

𝑣1𝑚 𝑣2𝑚

𝑣3𝑚𝑣01

𝑣11

𝑣21

Figure 4.2: An example of a parametric flat automaton

loop. Adjusting these parameters enlarges or prunes the potential solution space. This
approach based on PFA is very flexible yet allows very efficient manipulation. In fact, our
procedure restricts the search space for each variable to the set of words accepted by the
corresponding given PFA.

Then, we show that given such restriction, one can reduce the string constraint solving
problem to a linear formula satisfiability problem in polynomial-time. To gain in efficiency,
we label each transition of a PFA with a unique character variable (whose domain is the set
of natural numbers) instead of having a transition between every two states for each symbol
in the alphabet. This is done by associating to each character in our alphabet a unique
natural number. This allows us to avoid the alphabet explosion problem from which the
approach in [4] suffers and it is the key for handling string-number conversion efficiently.

In the following, we explain the construction of the linear formula using Φ as an example.
Assume that we project the domains of 𝑥 and 𝑦 to the PFA in Figure 4.3 (a) and (b),
respectively. The variables 𝑣0, 𝑣1, 𝑣2, 𝑣3 in the figure are character variables. Thus, 𝑣0, 𝑣1,
𝑣2, 𝑣3 are also integer variables.

The linear formula produced after the domain restriction will be over variables 𝑣0, 𝑣1,
𝑣2, 𝑣3, as well as the number of occurrences of each character variable #𝑣0, #𝑣1, #𝑣2, #𝑣3.
Each model of the linear formula encodes a model of the string constraint. For example,
𝑥 = “00" and 𝑦 = “01002” is encoded by the assignment (𝑣0, 𝑣1, 𝑣2, 𝑣3,#𝑣0,#𝑣1,#𝑣2,#𝑣3) →
(0, 0, 0, 0, 1, 1, 501, 501).3 The assignment says, for example, that 𝑥 is the parametric word
obtained by traversing the loop of 𝐴𝑥 once (because #𝑣0 = #𝑣1 = 1), which is 𝑣0𝑣1. Under
the assignment 𝑣0 = 0 and 𝑣1 = 0, we obtain 𝑥 = “00”.

If a model of the produced linear formula is found, then the procedure concludes SAT
with an assignment to the string variables. If not, our procedure changes the PFAs to
a more expressive one (by adding more states and transitions) and repeat the analysis.
We report unknown after failing to prove SAT using a certain number of PFAs.

𝑞0

𝑞1

𝑣0 𝑣1

(a) 𝐴𝑥

𝑞2

𝑞3

𝑣2 𝑣3

(b) 𝐴𝑦

𝑞0 𝑞2

𝑞1

𝑣0 𝑣1

𝑞3

𝑣3 𝑣4

𝑣2

(c) 𝐴′
𝑥

Figure 4.3: Parametric flat automata of 𝑥 and 𝑦

To demonstrate the usefulness of our approach, we have implemented our decision proce-
dure in an open source solver, called Z3-Trau and evaluated it on a large set of benchmarks

3In these examples, we use the shorthand (𝑥1, . . . , 𝑥𝑘) → (𝑛1, . . . , 𝑛𝑘) to denote the function {𝑥1 ↦→
𝑛1, . . . , 𝑥𝑘 ↦→ 𝑛𝑘}.

19

obtained from the literature and from symbolic execution of real world programs. The ex-
perimental results show that Z3-Trau is among the best tools for solving basic string
constraints and significantly outperforms all other tools on benchmarks with string-number
conversion constraints. In this benchmark, the total amount of tests cannot be solved by
Z3-Trau is only a half to the second best tool.

4.4 Solving String Constraints with Approximate
Parikh Image

In the following text, we provide a summary of our paper [55], which can be found in Ap-
pendix A. In the mentioned paper, we introduce an extension to the decision procedure for
the straight-line fragment. This extension is integrated into the string solver Sloth [49],
as the original procedure, described in Section 4.1, struggles with solving arithmetic con-
straints over strings. Unfortunately, the mentioned procedure does not allow the use of
the standard Parikh image-based method for handling arithmetic constraints over strings,
which is typically used in nondeterministic finite automata.

Our extension for solving arithmetic constraints over strings works as follows. First,
for each AFA, we construct its Parikh image. To do this, we use a modified version of
the algorithm described in [101], originally designed for calculating the Parikh image of
a context-free grammar. We then perform the product of these obtained Parikh images.
Since Sloth uses AFAs with symbolically represented transitions (transitions can have
a set of symbols on the edge instead of one symbol), we proposed a new method for dealing
with Parikh images that allows us to perform the product of two different Parikh images.
Since the Parikh image does not support preserving the order of symbols in a word, our
solution is thus an over-approximation. Subsequently, we integrated this extension into
Sloth. The experimental results showed that our extension of Sloth has good results
on both simple benchmarks and complex benchmarks that are real-word combinations of
transducers and concatenation constraints.

20

Chapter 5

Conclusions and Future Directions

In this conclusion, we summarize the main points of this thesis and briefly outline possible
directions for future research.

5.1 Summary of the Contributions
In this thesis, we reviewed our results in the field of string constraints solving. First, we
have discussed in detail the practical motivations driving the research in the field of se-
curity, especially in the context of string manipulation. Such manipulations can be the
source of serious security threats, such as Cross-Site Scripting (XSS) and SQL injection.
Subsequently, we introduced existing decision procedures and their complexities, where we
discussed in detail two important decidable fragments, namely the acyclic form and the
straght-line fragment. We then summarized the main contribution of this work: first, we
proposed a fast reduction of the satisfiability of formulae in the straight-line and acyclic
fragments to the emptiness problem of alternating finite-state automata (AFA), which is
polynomial in most cases. This reduction, in combination with advanced model checking
algorithms such as IC3, provides the first practical algorithm for solving string constraints
involving concatenation, finite-state transducers and regular constraints. Second, we in-
troduced a new fragment of string constraints called chain-free and its relaxation called
weakly chaninng, along with decision procedures for these fragments. It is important to
mention that these new fragments generalize both the straight-line fragment and the acyclic
form. Third, we presented a method for checking the satisfiability of string constraints, in
particular with string-to-number conversion, using parametric flat automata (PFA). This
procedure was complemented by an algorithm for converting string constraints to linear
formulas in polynomial time with a search space bounded by PFA. Lastly, we proposed and
integrated an improved Parikh abstraction into the string solver Sloth for solving length
constraints.

5.2 Further Directions
The results of this thesis have been successfully developed and utilized, especially within the
work [21]. In the mentioned work, the string solver called Noodler was developed, which is
based on the theory behind the chain-free fragment. This solver is one of the most efficient
string solvers, capable of outperforming industrial solvers.

21

In the future, we plan to focus our upcoming research on expanding support for other
practically relevant operations, such as splitting at delimiters and indexOf. Furthermore,
we would like to focus on improving the performance of Sloth through improved al-
gorithms for alternating automata and and through optimising the automata encodings
of string problems. Additionally, we intend to extend our approach to a more general
class of length constraints (e.g. Presburgerexpressible constraints). However, this exten-
sion seems to be rather challenging since it would require extending alternating finite au-
tomata with monotonic counters (see [69]), for which efficiently solving language emptiness
is a difficult open problem.

Regarding the further development of the Z3-Trau, we would like to integrate it with
a symbolic executor for JavaScript. From a technical perspective, we believe that it would
be interesting to consider (symbolic) flattening of an even larger set of string operations,
such as the one containing replaceAll and split.

22

23

Bibliography

[1] Abdulla, P. A., Atig, M. F., Chen, Y., Diep, B. P., Dolby, J., Janku, P., Lin,
H., Holík, L. and Wu, W. Efficient handling of string-number conversion. In:
Donaldson, A. F. and Torlak, E., ed. Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020. Association for Computing Machinery,
2020, p. 943–957. DOI: 10.1145/3385412.3386034. ISBN 9781450376136. Available
at: https://doi.org/10.1145/3385412.3386034.

[2] Abdulla, P. A., Atig, M. F., Chen, Y.-F., Diep, B. P., Holík, L., Hu, D., Tsai,
W.-L., Wu, Z. and Yen, D.-D. Solving Not-Substring Constraint with Flat
Abstraction. In: Oh, H., ed. Programming Languages and Systems: 19th Asian
Symposium, APLAS 2021, Chicago, IL, USA, October 17–18, 2021, Proceedings 19.
2021, p. 305–320. ISBN 978-3-030-89051-3.

[3] Abdulla, P. A., Atig, M. F., Chen, Y., Diep, B. P., Holík, L., Rezine, A.
and Rümmer, P. Trau String Solver [https://github.com/diepbp/FAT]. Available
at: https://github.com/diepbp/FAT.

[4] Abdulla, P. A., Atig, M. F., Chen, Y., Diep, B. P., Holík, L., Rezine, A.
and Rümmer, P. Flatten and conquer: a framework for efficient analysis of string
constraints. In: Cohen, A. and Vechev, M. T., ed. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. ACM, 2017, p. 602–617. ISBN
9781450349888.

[5] Abdulla, P. A., Atig, M. F., Chen, Y.-F., Diep, B. P., Holík, L., Rezine, A.
and Rümmer, P. Trau: SMT solver for string constraints. In: IEEE. 2018 Formal
Methods in Computer Aided Design (FMCAD). 2018, p. 1–5.

[6] Abdulla, P. A., Atig, M. F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P.
and Stenman, J. String constraints for verification. In: Biere, A. and Bloem, R.,
ed. Computer Aided Verification: 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings 26. 2014, p. 150–166. ISBN 978-3-319-08867-9.

[7] Abdulla, P. A., Atig, M. F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P.
and Stenman, J. Norn: An SMT solver for string constraints. In:
Springer. International conference on computer aided verification. 2015, p. 462–469.
ISBN 978-3-319-21690-4.

24

https://doi.org/10.1145/3385412.3386034
https://github.com/diepbp/FAT
https://github.com/diepbp/FAT

[8] Abdulla, P. A., Atig, M. F., Diep, B. P., Holík, L. and Janků, P. Chain-free
string constraints. In: Chen, Y.-F., Cheng, C.-H. and Esparza, J., ed. Automated
Technology for Verification and Analysis: 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28–31, 2019, Proceedings 17. 2019, p. 277–293. ISBN
978-3-030-31784-3.

[9] Amadini, R., Gange, G., Stuckey, P. J. and Tack, G. A Novel Approach to
String Constraint Solving. In: Beck, J. C., ed. Principles and Practice of
Constraint Programming. Cham: Springer International Publishing, 2017, p. 3–20.
ISBN 978-3-319-66158-2.

[10] Aydin, A., Bang, L. and Bultan, T. Automata-based model counting for string
constraints. In: Springer. International Conference on Computer Aided Verification.
2015, p. 255–272.

[11] Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A. et al. Cvc5: A versatile
and industrial-strength SMT solver. In: Springer. International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. 2022, p. 415–442.

[12] Barceló, P., Figueira, D. and Libkin, L. Graph Logics with Rational Relations.
Logical Methods in Computer Science. 2013, vol. 9, no. 3. DOI:
10.2168/LMCS-9(3:1)2013.

[13] Barceló, P., Libkin, L., Lin, A. W. and Wood, P. T. Expressive Languages for
Path Queries over Graph-Structured Data. ACM Trans. Database Syst. 2012,
vol. 37, no. 4, p. 31.

[14] Barrett, C., Tinelli, C., Deters, M., Liang, T., Reynolds, A.
and Tsiskaridze, N. Efficient solving of string constraints for security analysis.
In: Proceedings of the Symposium and Bootcamp on the Science of Security. 2016,
p. 4–6.

[15] Berstel, J. Transductions and Context-Free Languages. Teubner-Verlag, 1979.

[16] Berzish, M. Z3str4: A Solver for Theories over Strings. 2021. Dissertation.
University of Waterloo, Ontario, Canada. Available at:
https://hdl.handle.net/10012/17102.

[17] Berzish, M., Day, J. D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F.
and Nowotka, D. Towards more efficient methods for solving regular-expression
heavy string constraints. Theoretical Computer Science. Elsevier. 2023, vol. 943,
p. 50–72.

[18] Berzish, M., Ganesh, V. and Zheng, Y. Z3str3: A string solver with
theory-aware heuristics. In: IEEE. 2017 Formal Methods in Computer Aided Design
(FMCAD). 2017, p. 55–59.

[19] Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J. D., Nowotka, D.
and Ganesh, V. An SMT solver for regular expressions and linear arithmetic over
string length. In: Springer. International Conference on Computer Aided
Verification. 2021, p. 289–312.

25

https://hdl.handle.net/10012/17102

[20] Bjørner, N., Tillmann, N. and Voronkov, A. Path feasibility analysis for
string-manipulating programs. In: Springer. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. 2009, p. 307–321.

[21] Blahoudek, F., Chen, Y.-F., Chocholatỳ, D., Havlena, V., Holík, L.,
Lengál, O. and Síč, J. Word Equations in Synergy with Regular Constraints. In:
Springer. International Symposium on Formal Methods. 2023, p. 403–423.

[22] Bradley, A. R. Understanding IC3. In: Theory and Applications of Satisfiability
Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings. 2012, p. 1–14. DOI: 10.1007/978-3-642-31612-8_1. Available at:
http://dx.doi.org/10.1007/978-3-642-31612-8_1.

[23] Brayton, R. and Mishchenko, A. ABC: An Academic Industrial-Strength
Verification Tool. In: Touili, T., Cook, B. and Jackson, P., ed. Computer Aided
Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
p. 24–40. DOI: 10.1007/978-3-642-14295-6_5. ISBN 978-3-642-14295-6. Available
at: http://dx.doi.org/10.1007/978-3-642-14295-6_5.

[24] Büchi, J. R. and Senger, S. Definability in the existential theory of concatenation
and undecidable extensions of this theory. In: The Collected Works of J. Richard
Büchi. Springer, 1990, p. 671–683.

[25] Cadar, C., Dunbar, D., Engler, D. R. et al. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In: OSDI. 2008,
vol. 8, p. 209–224.

[26] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L. and Engler, D. R. EXE:
Automatically generating inputs of death. ACM Transactions on Information and
System Security (TISSEC). ACM New York, NY, USA. 2008, vol. 12, no. 2, p. 1–38.

[27] Cadar, C. and Sen, K. Symbolic execution for software testing: three decades
later. Communications of the ACM. ACM New York, NY, USA. 2013, vol. 56,
no. 2, p. 82–90.

[28] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli,
A., Mover, S., Roveri, M. and Tonetta, S. The nuXmv Symbolic Model
Checker. In: CAV’14. Springer, 2014, vol. 8559, p. 334–342. Lecture Notes in
Computer Science.

[29] Chen, T., Chen, Y., Hague, M., Lin, A. W. and Wu, Z. What is Decidable About
String Constraints with the ReplaceAll Function. Proc. ACM Program. Lang. New
York, NY, USA: ACM. december 2018, vol. 2, POPL. DOI: 10.1145/3158091. ISSN
2475-1421. Available at: http://doi.acm.org/10.1145/3158091.

[30] Chen, T., Flores Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A. W.,
Rümmer, P. and Wu, Z. Solving string constraints with regex-dependent functions
through transducers with priorities and variables. Proceedings of the ACM on
Programming Languages. ACM New York, NY, USA. 2022, vol. 6, POPL, p. 1–31.

26

http://dx.doi.org/10.1007/978-3-642-31612-8_1
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://doi.acm.org/10.1145/3158091

[31] Chen, T., Hague, M., He, J., Hu, D., Lin, A. W., Rümmer, P. and Wu, Z. A
decision procedure for path feasibility of string manipulating programs with integer
data type. In: Springer. International Symposium on Automated Technology for
Verification and Analysis. 2020, p. 325–342. ISBN 978-3-030-59152-6.

[32] Chen, T., Hague, M., Lin, A. W., Rümmer, P. and Wu, Z. Decision Procedures
for Path Feasibility of String-manipulating Programs with Complex Operations.
Proc. ACM Program. Lang. New York, NY, USA: ACM. january 2019, vol. 3,
POPL. DOI: 10.1145/3290362. ISSN 2475-1421. Available at:
http://doi.acm.org/10.1145/3290362.

[33] Chen, Y., Havlena, V., Lengál, O. and Turrini, A. A Symbolic Algorithm for
the Case-Split Rule in String Constraint Solving. In: S. Oliveira, B. C. d.,
ed. Programming Languages and Systems - 18th Asian Symposium, APLAS 2020,
Fukuoka, Japan, November 30 - December 2, 2020, Proceedings. Springer, 2020, vol.
12470, p. 343–363. Lecture Notes in Computer Science. DOI:
10.1007/978-3-030-64437-6_18. Available at:
https://doi.org/10.1007/978-3-030-64437-6_18.

[34] Chen, Y.-F., Havlena, V., Lengál, O. and Turrini, A. A symbolic algorithm for
the case-split rule in solving word constraints with extensions. Journal of Systems
and Software. 2023, vol. 201, p. 111673. DOI:
https://doi.org/10.1016/j.jss.2023.111673. ISSN 0164-1212. Available at:
https://www.sciencedirect.com/science/article/pii/S0164121223000687.

[35] co, G. Google Closure Library (referred in Aug 2023).
https: // developers .google .com/ closure/ library/ . 2023.

[36] Cox, A. and Leasure, J. Model Checking Regular Language Constraints. CoRR.
2017, abs/1708.09073. Available at: http://arxiv.org/abs/1708.09073.

[37] D’Antoni, L., Kincaid, Z. and Wang, F. A Symbolic Decision Procedure for
Symbolic Alternating Finite Automata. CoRR. 2016, abs/1610.01722. Available at:
http://arxiv.org/abs/1610.01722.

[38] Day, J. D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D.
and Poulsen, D. B. On Solving Word Equations Using SAT. In: Filiot, E.,
Jungers, R. M. and Potapov, I., ed. Reachability Problems - 13th International
Conference, RP 2019, Brussels, Belgium, September 11-13, 2019, Proceedings.
Springer, 2019, vol. 11674, p. 93–106. Lecture Notes in Computer Science. DOI:
10.1007/978-3-030-30806-3_8. Available at:
https://doi.org/10.1007/978-3-030-30806-3_8.

[39] De Moura, L. and Bjørner, N. Z3: An efficient SMT solver. In:
Springer. International conference on Tools and Algorithms for the Construction
and Analysis of Systems. 2008, p. 337–340.

[40] Diekert, V. Makanin’s Algorithm. In: Lothaire, M., ed. Algebraic Combinatorics
on Words. Cambridge University Press, 2002, vol. 90, chap. 12, p. 387–442.
Encyclopedia of Mathematics and its Applications.

27

http://doi.acm.org/10.1145/3290362
https://doi.org/10.1007/978-3-030-64437-6_18
https://www.sciencedirect.com/science/article/pii/S0164121223000687
https://developers.google.com/closure/library/
http://arxiv.org/abs/1708.09073
http://arxiv.org/abs/1610.01722
https://doi.org/10.1007/978-3-030-30806-3_8

[41] Ehrenfreucht, A. and Rozenberg, G. Finding a homomorphism between two
words in np-complete. Information Processing Letters. Elsevier. 1979, vol. 9, no. 2,
p. 86–88.

[42] Fu, X. and Li, C. Modeling Regular Replacement for String Constraint Solving.
In: NFM’10. 2010, NASA/CP-2010-216215, p. 67–76. NASA.

[43] Ganesh, V. and Berzish, M. Undecidability of a theory of strings, linear
arithmetic over length, and string-number conversion. ArXiv preprint
arXiv:1605.09442. 2016. Available at: http://arxiv.org/abs/1605.09442.

[44] Ganesh, V., Minnes, M., Solar Lezama, A. and Rinard, M. Word Equations
with Length Constraints: What’s Decidable? In: Biere, A., Nahir, A. and Vos,
T., ed. Hardware and Software: Verification and Testing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, p. 209–226. ISBN 978-3-642-39611-3.

[45] Godefroid, P., Klarlund, N. and Sen, K. DART: Directed automated random
testing. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation. 2005, p. 213–223.

[46] Gutiérrez, C. Satisfiability of word equations with constants is in exponential
space. In: IEEE. Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. No. 98CB36280). 1998, p. 112–119. DOI: 10.1109/SFCS.1998.743434.

[47] Gutiérrez, C. Solving Equations in Strings: On Makanin’s Algorithm. In: LATIN.
1998, p. 358–373.

[48] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J. and Yang, E. Z. Mxss
attacks: Attacking well-secured web-applications by using innerhtml mutations.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. 2013, p. 777–788.

[49] Holík, L., Janků, P., Lin, A. W., Rümmer, P. and Vojnar, T. String constraints
with concatenation and transducers solved efficiently. Proceedings of the ACM on
Programming Languages. ACM New York, NY, USA. 2018, vol. 2, POPL, p. 1–32.

[50] Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P. and Veanes, M. Fast
and Precise Sanitizer Analysis with {BEK}. In: 20th USENIX Security Symposium
(USENIX Security 11). 2011.

[51] Hooimeijer, P. and Weimer, W. StrSolve: Solving string constraints lazily.
Autom. Softw. Eng. 2012, vol. 19, no. 4, p. 531–559.

[52] Hu, Q. and D’Antoni, L. Automatic Program Inversion Using Symbolic
Transducers. SIGPLAN Not. New York, NY, USA: ACM. june 2017, vol. 52, no. 6.
ISSN 0362-1340.

[53] invicti. An XSS Vulnerability is Worth up to $10,000 According to Google
[https://www.invicti.com/blog/web-security/google-increase-reward-
vulnerability-program-xss/]. 2013.

[54] Jaffar, J. Minimal and complete word unification. Journal of the ACM (JACM).
ACM New York, NY, USA. 1990, vol. 37, no. 1, p. 47–85. ISSN 0004-5411.

28

http://arxiv.org/abs/1605.09442
https://www.invicti.com/blog/web-security/google-increase-reward-vulnerability-program-xss/
https://www.invicti.com/blog/web-security/google-increase-reward-vulnerability-program-xss/

[55] Janků, P. and Turoňová, L. Solving string constraints with approximate parikh
image. In: Springer. International Conference on Computer Aided Systems Theory.
2019, p. 491–498.

[56] Jez, A. Recompression: a simple and powerful technique for word equations. In:
Portier, N. and Wilke, T., ed. 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, vol. 20, p. 233–244. Leibniz
International Proceedings in Informatics (LIPIcs). DOI:
10.4230/LIPIcs.STACS.2013.233. ISBN 978-3-939897-50-7. Available at:
http://drops.dagstuhl.de/opus/volltexte/2013/3937.

[57] Jez, A. Word equations in nondeterministic linear space. In: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017). 2017.

[58] Kern, C. Securing the tangled web. Communications of the ACM. ACM New
York, NY, USA. 2014, vol. 57, no. 9, p. 38–47.

[59] Kiezun, A., Ganesh, V., Artzi, S., Guo, P. J., Hooimeijer, P. and Ernst,
M. D. HAMPI: A solver for word equations over strings, regular expressions, and
context-free grammars. ACM Transactions on Software Engineering and
Methodology (TOSEM). ACM New York, NY, USA. 2013, vol. 21, no. 4, p. 1–28.

[60] King, J. C. Symbolic execution and program testing. Communications of the ACM.
ACM New York, NY, USA. 1976, vol. 19, no. 7, p. 385–394.

[61] Klarlund, N., Møller, A. and Schwartzbach, M. I. MONA Implementation
Secrets. International Journal of Foundations of Computer Science. World
Scientific. 2002, vol. 13, no. 4, p. 571–586.

[62] Kościelski, A. and Pacholski, L. Complexity of Makanin’s algorithm. Journal of
the ACM (JACM). ACM New York, NY, USA. 1996, vol. 43, no. 4, p. 670–684.
ISSN 0004-5411.

[63] Le, Q. L. and He, M. A decision procedure for string logic with quadratic
equations, regular expressions and length constraints. In: Springer. Programming
Languages and Systems: 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2–6, 2018, Proceedings 16. 2018, p. 350–372.

[64] Levi, F. W. On semigroups. Bull. Calcutta Math. Soc. 1944, vol. 36, 141-146, p. 82.

[65] Li, G. and Ghosh, I. PASS: String Solving with Parameterized Array and Interval
Automaton. In: Bertacco, V. and Legay, A., ed. Hardware and Software:
Verification and Testing. Cham: Springer International Publishing, 2013, p. 15–31.
ISBN 978-3-319-03077-7.

[66] Liang, T., Reynolds, A., Tinelli, C., Barrett, C. and Deters, M. A DPLL
(T) theory solver for a theory of strings and regular expressions. In:
Springer. Computer Aided Verification: 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings 26. 2014, p. 646–662.

29

http://drops.dagstuhl.de/opus/volltexte/2013/3937

[67] Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C.
and Deters, M. An efficient SMT solver for string constraints. Formal Methods in
System Design. Springer. 2016, vol. 48, no. 3, p. 206–234. ISSN 0925-9856.

[68] Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C. and Barrett, C. A
decision procedure for regular membership and length constraints over unbounded
strings. In: Springer. International Symposium on Frontiers of Combining Systems.
2015, p. 135–150.

[69] Lin, A. W. and Barceló, P. String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Association for Computing Machinery, 2016, p. 123–136. DOI:
10.1145/2837614.2837641. ISBN 9781450335492. Available at:
https://doi.org/10.1145/2837614.2837641.

[70] Makanin, G. THE PROBLEM OF SOLVABILITY OF EQUATIONS IN A FREE
SEMIGROUP. Mathematics of the USSR-Sbornik. 1977, vol. 32, no. 2.

[71] McMillan, K. L. Interpolation and SAT-Based Model Checking. In: Hunt, W. A.
and Somenzi, F., ed. Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. 2003, p. 1–13. DOI:
10.1007/978-3-540-45069-6_1. ISBN 978-3-540-45069-6. Available at:
http://dx.doi.org/10.1007/978-3-540-45069-6_1.

[72] Morvan, C. On Rational Graphs. In: Tiuryn, J., ed. Foundations of Software
Science and Computation Structures. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, p. 252–266. ISBN 978-3-540-46432-7.

[73] Nieuwenhuis, R., Oliveras, A. and Tinelli, C. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL
(T). Journal of the ACM (JACM). ACM New York, NY, USA. 2006, vol. 53, no. 6,
p. 937–977. DOI: 10.1145/1217856.1217859. ISSN 0004-5411. Available at:
https://doi.org/10.1145/1217856.1217859.

[74] Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C. and Tinelli, C. Even
faster conflicts and lazier reductions for string solvers. In: Shoham, S. and Vizel,
Y., ed. International Conference on Computer Aided Verification. 2022, p. 205–226.
ISBN 978-3-031-13188-2.

[75] OWASP. Top 10
[https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf]. 2013.

[76] OWASP. Top 10 [https://owasp.org/www-project-top-ten/2017/]. 2017.

[77] OWASP. Top 10 [https://owasp.org/Top10/]. 2021.

[78] Plandowski, W. Satisfiability of word equations with constants is in PSPACE.
In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). 1999, p. 495–500. DOI: 10.1109/SFFCS.1999.814622.

[79] Plandowski, W. Satisfiability of word equations with constants is in PSPACE. J.
ACM. 2004, vol. 51, no. 3, p. 483–496. ISSN 0004-5411.

30

https://doi.org/10.1145/2837614.2837641
http://dx.doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1145/1217856.1217859
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/

[80] Plandowski, W. An efficient algorithm for solving word equations. In: STOC.
2006, p. 467–476.

[81] Quine, W. V. Concatenation as a basis for arithmetic. J. Symb. Log. 1946, vol. 11,
no. 4.

[82] Reynolds, A., Nötzli, A., Barrett, C. W. and Tinelli, C. Reductions for
Strings and Regular Expressions Revisited. In: FMCAD. 2020, p. 225–235. DOI:
10.34727/2020/isbn.978-3-85448-042-6_30.

[83] Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T. and Tinelli, C.
Scaling up DPLL (T) string solvers using context-dependent simplification. In:
Springer. International Conference on Computer Aided Verification. 2017,
p. 453–474.

[84] Robson, J. M. and Diekert, V. On quadratic word equations. In:
Springer. STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer
Science Trier, Germany, March 4–6, 1999 Proceedings 16. 1999, p. 217–226.

[85] Rümmer, P. A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic. In: Proceedings, 15th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning. Spv, 2008, vol. 5330,
p. 274–289. LNCS. ISBN 978-3-540-89438-4.

[86] Sakarovitch, J. Elements of automata theory. Cambridge University Press, 2009.

[87] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S. and Song, D. A
symbolic execution framework for javascript. In: IEEE. 2010 IEEE Symposium on
Security and Privacy. 2010, p. 513–528.

[88] Schulz, K. U. Makanin’s algorithm for word equations-two improvements and a
generalization. In: Springer. Word Equations and Related Topics. 1992, p. 85–150.
ISBN 978-3-540-46737-3.

[89] Scott, J. D., Flener, P., Pearson, J. and Schulte, C. Design and
Implementation of Bounded-Length Sequence Variables. In: Salvagnin, D.
and Lombardi, M., ed. Integration of AI and OR Techniques in Constraint
Programming. Cham: Springer International Publishing, 2017, p. 51–67. ISBN
978-3-319-59776-8.

[90] Security, H. N. Analysis of three billion attacks reveals SQL injections cost
$196,000 [https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-
billion-attacks-reveals-sql-injections-cost-196000/]. 2014.

[91] Sen, K., Kalasapur, S., Brutch, T. and Gibbs, S. Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript. In: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. 2013, p. 488–498.

[92] Sen, K., Marinov, D. and Agha, G. CUTE: A concolic unit testing engine for C.
ACM SIGSOFT Software Engineering Notes. ACM New York, NY, USA. 2005,
vol. 30, no. 5, p. 263–272.

31

https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-billion-attacks-reveals-sql-injections-cost-196000/
https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-billion-attacks-reveals-sql-injections-cost-196000/

[93] Sheeran, M., Singh, S. and Stålmarck, G. Checking Safety Properties Using
Induction and a SAT-Solver. In: FMCAD. Springer, 2000, vol. 1954, p. 108–125.
LNCS. ISBN 3-540-41219-0.

[94] Stanford, C., Veanes, M. and Bjørner, N. Symbolic Boolean derivatives for
efficiently solving extended regular expression constraints. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. 2021, p. 620–635.

[95] Technica, A. Feds: Sailor hacked Navy network while aboard nuclear aircraft
carrier [https://arstechnica.com/information-technology/2014/05/feds-
sailor-hacked-navy-network-while-aboard-nuclear-aircraft-carrier/].
2014.

[96] Trinh, M.-T., Chu, D.-H. and Jaffar, J. S3: A symbolic string solver for
vulnerability detection in web applications. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. 2014,
p. 1232–1243.

[97] Trinh, M.-T., Chu, D.-H. and Jaffar, J. Progressive reasoning over
recursively-defined strings. In: Springer. Computer Aided Verification: 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part I 28. 2016, p. 218–240.

[98] TwistIt.tech. PHP Tutorials [https://www.makephpsites.com/php-tutorials/
user-management-tools/changing-passwords.php]. 2019. [Online; accessed
2019-04-29]. Available at: https://www.makephpsites.com/php-tutorials/user-
management-tools/changing-passwords.php.

[99] Vardi, M. Y. An Automata-Theoretic Approach to Linear Temporal Logic.
In: Logics for Concurrency - Structure versus Automata (8th Banff Higher Order
Workshop, August 27 - September 3, 1995, Proceedings). 1995, p. 238–266. DOI:
10.1007/3-540-60915-6_6. Available at:
http://dx.doi.org/10.1007/3-540-60915-6_6.

[100] Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D. and Bjørner, N.
Symbolic finite state transducers: Algorithms and applications. In: POPL’12. ACM
Trans. Comput. Log., 2012, p. 137–150.

[101] Verma, K. N., Seidl, H. and Schwentick, T. On the Complexity of Equational
Horn Clauses. In: CADE’05. 2005, p. 337–352.

[102] Wang, H.-E., Chen, S.-Y., Yu, F. and Jiang, J.-H. R. A Symbolic Model
Checking Approach to the Analysis of String and Length Constraints.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: Association for Computing Machinery,
2018, p. 623–633. ASE 2018. DOI: 10.1145/3238147.3238189. ISBN 9781450359375.
Available at: https://doi.org/10.1145/3238147.3238189.

[103] Wang, H., Tsai, T., Lin, C., Yu, F. and Jiang, J. R. String Analysis via
Automata Manipulation with Logic Circuit Representation. In: Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,

32

https://arstechnica.com/information-technology/2014/05/feds-sailor-hacked-navy-network-while-aboard-nuclear-aircraft-carrier/
https://arstechnica.com/information-technology/2014/05/feds-sailor-hacked-navy-network-while-aboard-nuclear-aircraft-carrier/
https://www.makephpsites.com/php-tutorials/user-management-tools/changing-passwords.php
https://www.makephpsites.com/php-tutorials/user-management-tools/changing-passwords.php
https://www.makephpsites.com/php-tutorials/user-management-tools/changing-passwords.php
https://www.makephpsites.com/php-tutorials/user-management-tools/changing-passwords.php
http://dx.doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1145/3238147.3238189

July 17-23, 2016, Proceedings, Part I. Springer, 2016, vol. 9779, p. 241–260. Lecture
Notes in Computer Science. DOI: 10.1007/978-3-319-41528-4. ISBN
978-3-319-41527-7. Available at: http://dx.doi.org/10.1007/978-3-319-41528-4.

[104] Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R. and Song, D.
A systematic analysis of XSS sanitization in web application frameworks. In:
Springer. Computer Security–ESORICS 2011: 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September 12-14, 2011.
Proceedings 16. 2011, p. 150–171.

[105] Yu, F., Alkhalaf, M. and Bultan, T. Stranger: An automata-based string
analysis tool for php. In: Springer. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. 2010, p. 154–157.

[106] Yu, F., Alkhalaf, M., Bultan, T. and Ibarra, O. H. Automata-based symbolic
string analysis for vulnerability detection. Formal Methods in System Design.
Springer. 2014, vol. 44, p. 44–70.

[107] Yu, F., Bultan, T. and Ibarra, O. H. Relational string verification using
multi-track automata. International Journal of Foundations of Computer Science.
World Scientific. 2011, vol. 22, no. 08, p. 1909–1924.

[108] Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J. and Zhang, X.
Effective search-space pruning for solvers of string equations, regular expressions
and length constraints. In: Springer. Computer Aided Verification: 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I 27. 2015, p. 235–254.

[109] Zheng, Y., Zhang, X. and Ganesh, V. Z3-str: A z3-based string solver for web
application analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. 2013, p. 114–124.

33

http://dx.doi.org/10.1007/978-3-319-41528-4

Appendix A

Papers

The following papers form the main part of this thesis.

34

4

String Constraints with Concatenation and Transducers
Solved Efficiently

LUKÁŠ HOLÍK, Brno University of Technology, Czech Republic
PETR JANKŮ, Brno University of Technology, Czech Republic
ANTHONY W. LIN, University of Oxford, United Kingdom
PHILIPP RÜMMER, Uppsala University, Sweden
TOMÁŠ VOJNAR, Brno University of Technology, Czech Republic

String analysis is the problem of reasoning about how strings are manipulated by a program. It has numerous
applications including automatic detection of cross-site scripting, and automatic test-case generation. A popular
string analysis technique includes symbolic executions, which at their core use constraint solvers over the
string domain, a.k.a. string solvers. Such solvers typically reason about constraints expressed in theories
over strings with the concatenation operator as an atomic constraint. In recent years, researchers started to
recognise the importance of incorporating the replace-all operator (i.e. replace all occurrences of a string by
another string) and, more generally, finite-state transductions in the theories of strings with concatenation.
Such string operations are typically crucial for reasoning about XSS vulnerabilities in web applications,
especially for modelling sanitisation functions and implicit browser transductions (e.g. innerHTML). Although
this results in an undecidable theory in general, it was recently shown that the straight-line fragment of the
theory is decidable, and is sufficiently expressive in practice. In this paper, we provide the first string solver that
can reason about constraints involving both concatenation and finite-state transductions. Moreover, it has a
completeness and termination guarantee for several important fragments (e.g. straight-line fragment). Themain
challenge addressed in the paper is the prohibitive worst-case complexity of the theory (double-exponential
time), which is exponentially harder than the case without finite-state transductions. To this end, we propose
a method that exploits succinct alternating finite-state automata as concise symbolic representations of string
constraints. In contrast to previous approaches using nondeterministic automata, alternation offers not only
exponential savings in space when representing Boolean combinations of transducers, but also a possibility
of succinct representation of otherwise costly combinations of transducers and concatenation. Reasoning
about the emptiness of the AFA language requires a state-space exploration in an exponential-sized graph, for
which we use model checking algorithms (e.g. IC3). We have implemented our algorithm and demonstrated its
efficacy on benchmarks that are derived from cross-site scripting analysis and other examples in the literature.

CCS Concepts: · Theory of computation → Automated reasoning; Verification by model checking;
Program verification; Program analysis; Logic and verification; Complexity classes;

Authors’ addresses: Lukáš Holík, Brno University of Technology, Faculty of Information Technology, IT4Innovations
Centre of Excellence, Božetěchova 2, Brno, CZ-61266, Czech Republic, holik@fit.vutbr.cz; Petr Janků, Brno University of
Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 2, Brno, CZ-61266,
Czech Republic, ijanku@fit.vutbr.cz; Anthony W. Lin, Department of Computer Science, University of Oxford, Wolfson
Building, Parks Road, Oxford, OX1 3QD, United Kingdom, anthony.lin@cs.ox.ac.uk; Philipp Rümmer, Department of
Information Technology, Uppsala University, Box 337, Uppsala, 75105, Sweden, philipp.ruemmer@it.uu.se; Tomáš Vojnar,
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 2,
Brno, CZ-61266, Czech Republic, vojnar@fit.vutbr.cz.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
2475-1421/2018/1-ART4
https://doi.org/10.1145/3158092

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:2 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Additional Key Words and Phrases: String Solving, Alternating Finite Automata, Decision Procedure, IC3

ACM Reference Format:
Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. 2018. String Constraints with
Concatenation and Transducers Solved Efficiently . Proc. ACM Program. Lang. 2, POPL, Article 4 (January 2018),
32 pages. https://doi.org/10.1145/3158092

1 INTRODUCTION
Strings are a fundamental data type in many programming languages. This statement is true
now more than ever, especially owing to the rapidly growing popularity of scripting languages
(e.g. JavaScript, Python, PHP, and Ruby) wherein programmers tend to make heavy use of string
variables. String manipulations are often difficult to reason about automatically, and could easily
lead to unexpected programming errors. In some applications, some of these errors could have
serious security consequences, e.g., cross-site scripting (a.k.a. XSS), which are ranked among the
top three classes of web application security vulnerabilities by OWASP [OWASP 2013].

Popular methods for analysing how strings are being manipulated by a program include symbolic
executions [Bjùrner et al. 2009; Cadar et al. 2008, 2011; Godefroid et al. 2005; Kausler and Sherman
2014; Loring et al. 2017; Redelinghuys et al. 2012; Saxena et al. 2010; Sen et al. 2013] which at their
core use constraint solvers over the string domain (a.k.a. string solvers). String solvers have been
the subject of numerous papers in the past decade, e.g., see [Abdulla et al. 2014; Balzarotti et al.
2008; Barrett et al. 2016; Bjùrner et al. 2009; D’Antoni and Veanes 2013; Fu and Li 2010; Fu et al.
2013; Ganesh et al. 2013; Hooimeijer et al. 2011; Hooimeijer and Weimer 2012; Kiezun et al. 2012;
Liang et al. 2014, 2016, 2015; Lin and Barceló 2016; Saxena et al. 2010; Trinh et al. 2014, 2016; Veanes
et al. 2012; Wassermann et al. 2008; Yu et al. 2010, 2014, 2009, 2011; Zheng et al. 2013] among many
others. As is common in constraint solving, we follow the standard approach of Satisfiability Modulo
Theories (SMT) [De Moura and Bjùrner 2011], which is an extension of the problem of satisfiability
of Boolean formulae wherein each atomic proposition can be interpreted over some logical theories
(typically, quantifier-free).

Unlike the case of constraints over integer/real arithmetic (where many decidability and un-
decidability results are known and powerful algorithms are already available, e.g., the simplex
algorithm), string constraints are much less understood. This is because there are many different
string operations that can be included in a theory of strings, e.g., concatenation, length comparisons,
regular constraints (matching against a regular expression), and replace-all (i.e. replacing every
occurrence of a string by another string). Even for the theory of strings with the concatenation
operation alone, existing string solver cannot handle the theory (in its full generality) in a sound
and complete manner, despite the existence of a theoretical decision procedure for the problem
[Diekert 2002; Gutiérrez 1998; Jez 2016; Makanin 1977; Plandowski 2004, 2006]. This situation is
exacerbated when we add extra operations like string-length comparisons, in which case even
decidability is a long-standing open problem [Ganesh et al. 2013]. In addition, recent works in string
solving have argued in favour of adding the replace-all operator or, more generally finite-state
transducers, to string solvers [Lin and Barceló 2016; Trinh et al. 2016; Yu et al. 2010, 2014] in view
of their importance for modelling relevant sanitisers (e.g. backslash-escape) and implicit browser
transductions (e.g. an application of HTML-unescape by innerHTML), e.g., see [D’Antoni and
Veanes 2013; Hooimeijer et al. 2011; Veanes et al. 2012] and Example 1.1 below. However, naively
combining the replace-all operator and concatenation yields undecidability [Lin and Barceló 2016].

Example 1.1. The following JavaScript snippetÐan adaptation of an example from [Kern 2014;
Lin and Barceló 2016]Ðshows use of both concatenation and finite-state transducers:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:3

var x = goog.string.htmlEscape(name);
var y = goog.string.escapeString(x);
nameElem.innerHTML = '<button onclick= "viewPerson(\'' + y + '\')">' + x + '</button>';

The code assigns an HTML markup for a button to the DOM element nameElem. Upon click, the
button will invoke the function viewPerson on the input namewhose value is an untrusted variable.
The code attempts to first sanitise the value of name. This is done via The Closure Library [co 2015]
string functions htmlEscape and escapeString. Inputting the value Tom & Jerry into name gives
the desired HTML markup:
<button onclick="viewPerson('Tom & Jerry')">Tom & Jerry</button>

On the other hand, inputting value ');attackScript();// to name, results in the markup:
<button onclick="viewPerson('');attackScript();//')">');attackScript();//')</button>

Before this string is inserted into the DOM via innerHTML, an implicit browser transduction will
take place [Heiderich et al. 2013; Weinberger et al. 2011], i.e., HTML-unescaping the string inside
the onclick attribute and then invoking the attacker’s script attackScript() after viewPerson.
This subtle DOM-based XSS bug is due to calling the right escape functions, but in wrong order. □

One theoretically sound approach proposed in [Lin and Barceló 2016] for overcoming the
undecidability of string constraints with both concatenation and finite-state transducers is to
impose a straight-line restriction on the shape of constraints. This straight-line fragment can be
construed as the problem of path feasibility [Bjùrner et al. 2009] in the following simple imperative
language (with only assignment, skip, and assert) for defining non-branching and non-looping
string-manipulating programs that are generated by symbolic execution:

S ::= y := a | assert(b) | skip | S1; S2, a ::= f (x1, . . . ,xn), b ::= д(x1)

where f : (Σ∗)n → Σ∗ is either an application of concatenation x1 ◦ · · · ◦ xn or an application
of a finite-state transduction R (x1), and д tests membership of x1 in a regular language. Here,
some variables are undefined łinput variables”. Path feasibility asks if there exist input strings that
satisfy all assertions and applications of transductions in the program. It was shown in [Lin and
Barceló 2016] that such a path feasibility problem (equivalently, satisfiability for the aforementioned
straight-line fragment) is decidable. As noted in [Lin and Barceló 2016] such a fragment can express
the program logic of many interesting examples of string-manipulating programs with/without
XSS vulnerabilities. For instance, the above example can be modelled as a straight-line formula
where the regular constraint comes from an attack pattern like the one below:
e1 = /<button onclick=

"viewPerson\(' (' | [^']*[^'\\] ') \); [^']*[^'\\]' \)">.*<\/button>/

Unfortunately, the decidability proof given in [Lin and Barceló 2016] provides only a theoretical
argument for decidability and complexity upper bounds (an exponential-time reduction to the
acyclic fragment of intersection of rational relations1 whose decidability proof in turn is a highly
intricate polynomial-space procedure using Savitch’s trick [Barceló et al. 2013]) and does not yield
an implementable solution. Furthermore, despite its decidability, the string logic has a prohibitively
high complexity (EXPSPACE-complete, i.e., exponentially higher than without transducers), which
could severely limit its applicability.

1This fragment consists of constraints that are given as conjunctions of transducers ∧m
i=1 Ri (xi , yi), wherein the graph G

of variables does not contain a cycle. The graphG contains vertices corresponding to variables xi , yi and that two variables
x, y are linked by an edge if x = xi and y = yi for some i ∈ {1, . . . ,m }.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:4 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Contributions. Our paper makes the following contributions to overcome the above challenges:
(1) We propose a fast reduction of satisfiability of formulae in the straight-line fragment and in

the acyclic fragment to the emptiness problem of alternating finite-state automata (AFAs).
The reduction is in the worst case exponential in the number of concatenation operations2,
but otherwise polynomial in the size of a formula. In combination with fast model checking
algorithms (e.g. IC3 [Bradley 2012]) to decide AFA emptiness, this yields the first practical
algorithm for handling string constraints with concatenation, finite-state transducers (hence,
also replace-all), and regular constraints, and a decision procedure for formulae within the
straight-line and acyclic fragments.

(2) We obtain a substantially simpler proof for the decidability and PSPACE-membership of
the acyclic fragment of intersection of rational relations of [Barceló et al. 2013], which was
crucially used in [Lin and Barceló 2016] as a blackbox in their decidability proof of the
straight-line fragment.

(3) We define optimised translations from AFA emptiness to reachability over Boolean transition
systems (i.e. which are succinctly represented by Boolean formulae). We implemented our
algorithm for string constraints in a new string solver called Sloth, and provide an extensive
experimental evaluation. Sloth is the first solver that can handle string constraints that
arise from HTML5 applications with sanitisation and implicit browser transductions. Our
experiments suggest that the translation to AFAs can circumvent the EXPSPACE worst-case
complexity of the straight-line fragment in many practical cases.

An overview of the results. The main technical contribution of our paper is a new method for
exploiting alternating automata (AFA) as a succinct symbolic representation for representing
formulae in a complex string logic admitting concatenation and finite-state transductions. In
particular, the satisfiability problem for the string logic is reduced to AFA language emptiness, for
which we exploit fast model checking algorithms. Compared to previous methods [Abdulla et al.
2014; Lin and Barceló 2016] that are based on nondeterministic automata (NFA) and transducers,
we show that AFA can incur at most a linear blowup for each string operation permitted in the
logic (i.e. concatenation, transducers, and regular constraints). While the product NFA representing
the intersection of the languages of two automata A1 and A2 would be of size O (|A1 | × |A2 |), the
language can be represented using an AFA of size |A1 | + |A2 | (e.g. see [Vardi 1995]). The difficult
cases are how to deal with concatenation and replace-all, which are our contributions to the paper.
More precisely, a constraint of the form x := y.z ∧ x ∈ L (where L is the language accepted by an
automaton A) was reduced in [Abdulla et al. 2014; Lin and Barceló 2016] to regular constraints on
y and z by means of splitting A, which causes a cubic blow-up (since an łintermediate state” in A
has to be guessed, and for each state a product of two automata has to be constructed). Similarly,
taking the post-image R (L) of L under a relation R represented by a finite-state transducer T gives
us an automaton of size O (|T | × |A|). A naïve application of AFAs is not helpful for those cases,
since also projections on AFAs are computationally hard.

The key idea to overcome these difficulties is to avoid applying projections altogether, and instead
use the AFA to represent general k-ary rational relations (a.k.a. k-track finite-state transductions
[Barceló et al. 2013; Berstel 1979; Sakarovitch 2009]). This is possible because we focus on formulae
without negation, so that the (implicit) existential quantifications for applications of transducers
can be placed outside the constraint. This means that our AFAs operate on alphabets that are
exponential in size (for k-ary relations, the alphabet is {ϵ, 0, 1}k). To address this problem, we
introduce a succinct flavour of AFA with symbolically represented transitions. Our definition is

2This is an unavoidable computational limit imposed by EXPSPACE-hardness of the problem [Lin and Barceló 2016].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:5

similar to the concept of alternating symbolic automata in [D’Antoni et al. 2016] with one difference.
While symbolic AFA take a transition q →ψ φ from a state q to a set of states satisfying a formula φ
if the input symbol satisfies a formulaψ , our succinct AFA can mix constraints on successor states
with those on input symbols within a single transition formula (similarly to the symbolic transition
representation of deterministic automata in MONA [Klarlund et al. 2002], where sets of transitions
are represented as multi-terminal BDDs with states as terminal nodes). We show how automata
splitting can be achieved with at most linear blow-up.

The succinctness of our AFA representation of string formulae is not for free since AFA language
emptiness is a PSPACE-complete problem (in contrast to polynomial-time for NFA). However,
modern model checking algorithms and heuristics can be harnessed to solve the emptiness problem.
In particular, we use a linear-time reduction to reachability in Boolean transition systems similar to
[Cox and Leasure 2017; Wang et al. 2016], which can be solved by state of the art model checking
algorithms, such as IC3 [Bradley 2012], k-induction [Sheeran et al. 2000], or Craig interpolation-
based methods [McMillan 2003], and tools like nuXmv [Cavada et al. 2014] or ABC [Brayton and
Mishchenko 2010].
An interesting by-product of our approach is an efficient decision procedure for the acyclic

fragment. The acyclic logic does not a priori allow concatenation, but is more liberal in the use of
transducer constraints (which can encode complex relations like string-length comparisons, and
the subsequence relation). In addition, such a logic is of interest in the investigation of complex
path-queries for graph databases [Barceló et al. 2013; Barceló et al. 2012], which has been pursued
independently of strings for verification. Our algorithm also yields an alternative and substantially
simpler proof of PSPACE upper bound of the satisfiability problem of the logic.
We have implemented our AFA-based string solver as the tool Sloth, using the infrastructure

provided by the SMT solver Princess [Rümmer 2008], and applying the nuXmv [Cavada et al. 2014]
and ABC [Brayton and Mishchenko 2010] model checkers to analyse succinct AFAs. Sloth is
a decision procedure for the discussed fragments of straight-line and acyclic string formulae, and
is able to process SMT-LIB input with CVC4-style string operations, augmented with operations
str.replace, str.replaceall3, and arbitrary transducers defined using sets of mutually recursive
functions. Sloth is therefore extremely flexible at supporting intricate string operations, including
escape operations such as the ones discussed in Example 1.1. Experiments with string benchmarks
drawn from the literature, including problems with replace, replace-all, and general transducers,
show that Sloth can solve problems that are beyond the scope of existing solvers, while it is
competitive with other solvers on problems with a simpler set of operations.

Organisation. We recall relevant notions from logic and automata theory in Section 2. In Section 3,
we define a general string constraint language and mention several important decidable restrictions.
In Section 4, we recall the notion of alternating finite-state automata and define a succinct variant
that plays a crucial role in our decision procedure. In Section 5, we provide a new algorithm
for solving the acyclic fragment of the intersection of rational relations using AFA. In Section 7,
we provide our efficient reduction from the straight-line fragment to the acyclic fragment that
exploits AFA constructions. To simplify the presentation of this reduction, we first introduce in
Section 6 a syntactic sugar of the acyclic fragment called acyclic constraints with synchronisation
parameters. In Section 8, we provide our reduction from the AFT emptiness to reachability in a
Boolean transition system. Experimental results are presented in Section 9. Our tool Sloth can be
obtained from https://github.com/uuverifiers/sloth/wiki. Finally, we conclude in Section 10. Missing
proofs can be found in the full version.
3str.replaceall is the SMT-LIB syntax for the replace-all operation. On the other hand, str.replace represents the
operation of replacing the first occurrence of the given pattern. In case there is no such occurrence, the string stays intact.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:6 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

2 PRELIMINARIES
Logic. Let B = {0, 1} be the set of Boolean values, and A a set of Boolean variables. We write FA

to denote the set of Boolean formulae over A. In this context, we will sometimes treat subsets A′ of
A as the corresponding truth assignments {s 7→ 1 | s ∈ A′} ∪ {s 7→ 0 | s ∈ A \ A′} and write, for
instance, A′ |= φ for φ ∈ FA if the assignment satisfies φ. An atom is a Boolean variable; a literal is
either a atom or its negation. A formula is in disjunctive normal form (DNF) if it is a disjunction
of conjunctions of literals, and in negation normal form (NNF) if negation only occurs in front
of atoms. We denote the set of variables in a formula φ by var(φ). We use x̄ to denote sequences
x1, . . . ,xn of length |x̄ | = n of propositional variables, and we write φ (x̄) to denote that x̄ are the
variables of φ. If we do not fix the order of the variables, we write φ (X) for a formula with X being
its set of variables. For a variable vector x̄ , we denote by {x̄ } the set of variables in the vector.
We say that φ is positive (negative) on an atom α ∈ A if α appears under an even (odd) number

of negations only. A formula that is positive (negative) on all its atoms is called positive (negative),
respectively. The constant formulae true and false are both positive and negative. We use F+S and
F−S to denote the sets of all positive and negative Boolean formulae over S , respectively.

Given a formula φ, we write φ̃ to denote a formula obtained by replacing (1) every conjunction
by a disjunction and vice versa and (2) every occurrence of true by false and vice versa. Note
that x̃ = x , which means that φ̃ is not the same as the negation of φ.

Strings and languages. Fix a finite alphabet Σ. Elements in Σ∗ are interchangeably called words
or strings, where the empty word is denoted by ϵ . The concatenation of strings u, v is denoted by
u ◦ v , occasionally just by uv to avoid notational clutter. We denote by |w | the lenght of a word
w ∈ Σ∗. For any word w = a1 . . . an , n ≥ 1, and any index 1 ≤ i ≤ n, we denote by w[i] the
letter ai . A language is a subset of Σ∗. The concatenation of two languages L,L′ is the language
L ◦ L′ = {w ◦w ′ | w ∈ L ∧w ′ ∈ L′}, and the iteration L∗ of a language L is the smallest language
closed under ◦ and containing L and ϵ .

Regular languages and rational relations. A regular language over a finite alphabet Σ is a subset of
Σ∗ that can be built by a finite number of applications of the operations of concatenation, iteration,
and union from the languages {ϵ } and {a},a ∈ Σ. An n-ary rational relation R over Σ is a subset of
(Σ∗)n that can be obtained from a regular language L over the alphabet of n-tuples (Σ ∪ {ϵ })n as
follows. Include (w1, . . . ,wn) in R iff for some (a11, . . . ,a1n), . . . , (ak1 , . . . ,akn) ∈ L,wi = a1 ◦ · · · ◦ ak
for all 1 ≤ i ≤ n. Here, ◦ is a concatenation over the alphabet Σ, and k denotes the length of the
wordswi . In practice, regular languages and rational relations can be represented using various
flavours of finite-state automata, which are discussed in detail in Section 4.

3 STRING CONSTRAINTS
We start by recalling a general string constraint language from [Lin and Barceló 2016] that supports
concatenations, finite-state transducers, and regular expression matching. We will subsequently
state decidable fragments of the language for which we design our decision procedure.

3.1 String Language
We assume a vocabulary of countably many string variables x ,y, z, . . . ranging over Σ∗. A string
formula over Σ is a Boolean combination φ of word equations x = t whose right-hand side t might
contain the concatenation operator, regular constraints P (x), and rational constraints R (x̄):

φ ::= x = t | P (x) | R (x̄) | φ ∧ φ | φ ∨ φ | ¬φ, t ::= x | a | t ◦ t .
In the grammar, x ranges over string variables, x̄ over vectors of string variables, and a ∈ Σ over
letters. R ⊆ (Σ∗)n is assumed to be an n-ary rational relation on words of Σ∗, and P ⊆ Σ∗ is a regular

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:7

language. We will represent regular languages and rational relations by succinct automata and
transducers denoted as R and A, respectively. The automata and transducers will be formalized in
Section 4. When the transducer R or automaton A representing a rational relation R or regular
language P is known, we write R (x̄) or A (x̄) instead of R (x̄) or P (x̄) in the formulae, respectively.
A formula φ is interpreted over an assignment ι : var(φ) → Σ∗ of its variables to strings over

Σ∗. It satisfies φ, written ι |= φ, iff the constraint φ becomes true under the substitution of each
variable x by ι (x). We formalise the satisfaction relation for word equations, rational constraints,
and regular constraints, assuming the standard meaning of Boolean connectives:
(1) ι satisfies the equation x = t if ι (x) = ι (t), extending ι to terms by setting ι (a) = a and

ι (t1 ◦ t2) = ι (t1) ◦ ι (t2).
(2) ι satisfies the rational constraint R (x1, . . . ,xn) iff (ι (x1), . . . , ι (xn)) belongs to R.
(3) ι satisfies the regular constraint P (x), for P a regular language, if and only if ι (x) ∈ P .
A satisfying assignment for φ is also called a solution for φ. If φ has a solution, it is satisfiable.
The unrestricted string logic is undecidable, e.g., one can easily encode Post Correspondence

Problem (PCP) as the problem of checking satisfiability of the constraint R (x ,x), for some rational
transducer R [Morvan 2000]. We therefore concentrate on practical decidable fragments.

3.2 Decidable Fragments
Our approach to deciding string formulae is based on two major insights. The first insight is that
alternating automata can be used to efficiently decide positive Boolean combinations of rational
constraints. This yields an algorithm for deciding (an extension of) the acyclic fragment of [Barceló
et al. 2013]. The minimalistic definition of acyclic logic restricts rational constraints and does not
allow word equations (in Section 5.1 a limited form of equations and arithmetic constraints over
lengths will be shown to be encodable in the logic). Our definition of the acyclic logic AC below
generalises that of [Barceló et al. 2013] by allowing k-ary rational constraints instead of binary.

Definition 3.1 (Acyclic formulae). Particularly, we say that a string formula φ is acyclic if it does
not contain word equations, rational constraints R (x1, . . . ,xn) only appear positively and their
variables x1, . . . ,xn are pairwise distinct, and for every sub-formulaψ ∧ψ ′ at a positive position of
φ (and also every ψ ∨ψ ′ at a negative position) it is the case that |free(ψ) ∩ free(ψ ′) | ≤ 1, i.e., ψ
andψ ′ have at most one variable in common. We denote by AC the set of all acyclic formulae.

The second main insight we build on is that alternation allows a very efficient encoding of
concatenation into rational constraints and automata (though only equisatisfiable, not equivalent).
Efficient reasoning about concatenation combined with rational relations is the main selling point
of our work from the practical perspectiveÐthis is what is most needed and was so far missing
in applications like security analysis of web-applications. We follow the approach from [Lin
and Barceló 2016] which defines so called straight-line conjunctions. Straight-line conjunctions
essentially correspond to sequences of program assignments in the single static assignment form,
possibly interleaved with assertions of regular properties. An equation x = y1◦· · ·◦yn is understood
as an assignment to a program variable x . A rational constraint R (x ,y) may be interpreted as an
assignment to x as well, in which case we write it as x = R (y) (though despite the notation, R is
not required to represent a function, it can still mean any rational relation).

Definition 3.2 (Straight-line conjunction). A conjunction of string constraints is then defined to
be straight-line if it can be written as ψ ∧∧m

i=1 xi = Pi where ψ is a conjunction of regular and
negated regular constraints and each Pi is either of the form y1 ◦ · · · ◦ yn , or R (y) and, importantly,
Pi cannot contain variables xi , . . . ,xm . We denote by SL the set of all straight-line conjunctions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:8 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Example 3.3. The program snippet in Example 1.1 would be expressed as x = R1 (name) ∧ y =
R2 (x) ∧ z = w1 ◦ y ◦ w2 ◦ x ◦ w3 ∧ u = R3 (z). The transducers Ri correspond to the string
operations at the respective lines: R1 is the htmlEscape, R2 is the escapeString, and R3 is the
implicit transduction within innerHTML. Line 3 is translated into a conjunction of the concatenation
and the third rational constraint encoding the implicit string operation at the assignment to
innerHTML. In the concatenation, w1,w2,w3 are words that correspond to the three constant
strings concatenated with x and y on line 3. To test vulnerability, a regular constraint A (u)
encoding the pattern e1 is added as a conjunct.
The fragment of straight-line conjunctions can be straightforwardly extended to disjunctive

formulae. We say that a string formula is straight-line if every clause in its DNF is straight-
line. A decision procedure for straight-line conjunctions immediately extends to straight-line
formulae: instantiate the DPLL(T) framework [Nieuwenhuis et al. 2004] with a solver for straight-
line conjunctions.

The straight-line and acyclic fragments are clearly syntactically incomparable: AC does not have
equations, SL restricts more strictly combinations of rational relations and allows only binary
ones. Regarding expressive power, SL can express properties which AC cannot: the straight-line
constraint x = yy cannot be expressed by any acyclic formula. On the other hand, whether or not
AC formulae can be expressed in SL is not clear. Every AC formula can be expressed by a singlen-ary
acyclic rational constraint (c.f. Section 5), hence acyclic formulae and acyclic rational constraints
are of the same power. It is not clear however whether straight-line formulae, which can use only
binary rational constraints, can express arbitrary n-ary acyclic rational constraint.

4 SUCCINCT ALTERNATING AUTOMATA AND TRANSDUCERS
We introduce a succinct form of alternating automata and transducers that operate over bit vectors,
i.e., functions b : V → B where V is a finite, totally ordered set of bit variables. This is a variant of
the recent automata model in [D’Antoni et al. 2016] that is tailored to our problem. Bit vectors can
of course be described by strings over B, conjunctions of literals over V , or sets of those elements
v ∈ V such that b (v) = 1. In what follows, we will use all of these representations interchangeably.
Referring to the last mentioned possibility, we denote the set of all bit vectors over V by P (V).

An obvious advantage of this approach is that encoding symbols of large alphabets, such as UTF,
by bit vectors allows one to succinctly represent sets of such symbols using Boolean formulae. In
particular, symbols of an alphabet of size 2k can be encoded by bit vectors of size k (or, alternatively,
as Boolean formulae over k Boolean variables). We use this fact when encoding transitions of our
alternating automata.

Example 4.1. To illustrate the encoding, assume the alphabet Σ = {a,b, c,d } consisting of symbols
a, b, c , and d . We can deal with this alphabet by using the set V = {v0,v1} and representing, e.g., a
as ¬v1 ∧¬v0, b as ¬v1 ∧v0, c as v1 ∧¬v0, and d as v1 ∧v0. This is, a, b, c , and d are encoded as the
bit vectors 00, 01, 10, and 11 (for the orderingv0 < v1), or the sets ∅, {v0}, {v1}, {v0,v1}, respectively.
The set of symbols {c,d } can then be encoded simply by the formula v1. □

4.1 Succinct Alternating Finite Automata
A succinct alternating finite automaton (AFA) over Boolean variablesV is a tupleA = (V ,Q,∆, I , F)
whereQ is a finite set of states, the transition function ∆ : Q → FV∪Q assigns to every state a Boolean
formula over Boolean variables and states that is positive on states, I ∈ F+Q is a positive initial
formula, and F ∈ F−Q is a negative final formula. Letw = b1 . . .bm ,m ≥ 0, be a word where each bi ,
1 ≤ i ≤ m, is a bit vector encoding the i-th letter ofw . A run of the AFA A overw is a sequence
ρ = ρ0b1ρ1 . . .bmρm where bi ∈ P (V) for every 1 ≤ i ≤ m, ρi ⊆ Q for every 0 ≤ i ≤ m, and

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:9

bi ∪ ρi |= ∧
q∈ρi−1 ∆(q) for every 1 ≤ i ≤ m. The run is accepting if ρ0 |= I and ρm |= F , in which

case the word is accepted. The language of A is the set L(A) of accepted words.
Notice that instead of the more usual definition of ∆, which would assign a positive Boolean

formula over Q to every pair from Q × P (V) or to a pair Q × FV as in [D’Antoni et al. 2016], we
let ∆ assign to states formulae that talk about both target states and Boolean input variables. This
is closer to the encoding of the transition function as used in MONA [Klarlund et al. 2002]. It
allows for additional succinctness and also for a more natural translation of the language emptiness
problem into a model checking problem (cf. Section 8).4 Moreover, compared with the usual AFA
definition, we do not have just a single initial state and a single set of accepting states, but we
use initial and final formulae. As will become clear in Section 5, this approach allows us to easily
translate the considered formulae into AFAs in an inductive way.
Note that standard nondeterministic finite automata (NFAs), working over bit vectors, can be

obtained as a special case of our AFAs as follows. An AFA A = (V ,Q,∆, I , F) is an NFA iff (1) I is
of the form ∨

q∈Q ′ q for some Q ′ ⊆ Q , (2) F is of the form ∧
q∈Q ′′ ¬q for some Q ′′ ⊆ Q , and (3) for

every q ∈ Q , ∆(q) is of the form ∨
1≤i≤m φi (V) ∧ qi wherem ≥ 0 and, for all 1 ≤ i ≤ m, φi (V) is

a formula over the input bit variables and qi ∈ Q .
Example 4.2. To illustrate our notion of AFAs, we give an example of an AFA A over the

alphabet Σ = {a,b, c,d } from Example 4.1 that accepts the language {w ∈ Σ∗ | |w | mod 35 = 0 ∧
∀i∃j : (1 ≤ i ≤ |w | ∧ w[i] ∈ {a,b}) → (i < j ≤ |w | ∧ w[j] ∈ {c,d })}, i.e., the length of
the words is a multiple of 35, and every letter a or b is eventually followed by a letter c or d .
In particular, we let A = ({v0,v1}, {q0, . . . ,q4,p0, . . . ,p6, r1, r2}},∆, I , F) where I = q0 ∧ p0, F =
¬q1 ∧ . . .∧¬q4 ∧¬p1 ∧ . . .∧¬p6 ∧¬r1 (i.e., the accepting states are q0, p0, and r2), and ∆ is defined
as follows:
• ∀0 ≤ i < 5 : ∆(qi) = (¬v1 ∧ q (i+1) mod 5 ∧ r1) ∨ (v1 ∧ q (i+1) mod 5),
• ∀0 ≤ i < 7 : ∆(pi) = p(i+1) mod 7,
• ∆(r1) = (v1 ∧ r2) ∨ (¬v1 ∧ r1) and ∆(r2) = r2.

Intuitively, the q states check divisibility by 5. Moreover, whenever, they encounter an a or b symbol
(encoded succinctly as checking ¬v1 in the AFA), they spawn a run through the r states, which
checks that eventually a c or d symbol appears. The p states then check divisibility by 7. The desired
language is accepted due to the requirement that all these runs must be synchronized. Note that
encoding the language using an NFA would require quadratically more states since an explicit
product of all the branches would have to be done. □

The additional succinctness of AFA does not influence the computational complexity of the
emptiness check compared to the standard variant of alternating automata.

Lemma 4.3. The problem of language emptiness of AFA is PSPACE-complete.

The lemma is witnessed by a linear-space transformation of the problem of emptiness of an AFA
language to the PSPACE-complete problem of reachability in a Boolean transition system. This
transformation is shown in Section 8.

4.2 Boolean Operations on AFAs
From the standard Boolean operations over AFAs, we will mainly need conjunction and disjunction
in this paper. These operations can be implemented in linear space and time in a way analogous to
[D’Antoni et al. 2016], slightly adapted for our notion of initial/final formulae, as follows. Given
4[D’Antoni et al. 2016] also mentions an implementation of symbolic AFAs that uses MONA-like BDDs and is technically
close to our AFAs.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:10 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

two AFAsA = (V ,Q,∆, I , F) andA ′ = (V ,Q ′,∆′, I ′, F ′) withQ ∩Q ′ = ∅, the automaton accepting
the union of their languages can be constructed as A ∪ A ′ = (V ,Q ∪ Q ′,∆ ∪ ∆′, I ∨ I ′, F ∧ F ′),
and the automaton accepting the intersection of their languages can be constructed as A ∩A ′ =
(V ,Q ∪Q ′,∆ ∪ ∆′, I ∧ I ′, F ∧ F ′). Seeing correctness of the construction of A ∩A ′ is immediate.
Indeed, the initial condition enforces that the two AFAs run in parallel, disjointness of their state-
spaces prevents them from influencing one another, and the final condition defines their parallel
runs as accepting iff both of the runs accept. To see correctness of the construction of A ∪ A ′,
it is enough to consider that one of the automata can be started with the empty set of states
(corresponding to the formula ∧

q∈Q ¬q for A and likewise for A ′). This is possible since only one
of the initial formulae I and I ′ needs to be satisfied. The automaton that was started with the empty
set of states will stay with the empty set of states throughout the entire run and thus trivially
satisfy the (negative) final formula.

Example 4.4. Note that the AFA in Example 4.2 can be viewed as obtained by conjunction of two
AFAs: one consisting of the q and r states and the second of the p states. □

To complement an AFA A = (V ,Q,∆, I , F), we first transform the automaton into a form
corresponding to the symbolic AFA of [D’Antoni et al. 2016] and then use their complementation
procedure. More precisely, the transformation to the symbolic AFA form requires two steps:
• The first step simplifies the final condition. The final formula F is converted into DNF, yielding
a formula F1 ∨ . . . ∨ Fk , k ≥ 1, where each Fi , 1 ≤ i ≤ k , is a conjunction of negative literals
overQ . The AFAA is then transformed into a union of AFAsAi = (V ,Q,∆, I , Fi), 1 ≤ i ≤ k ,
where each Ai is a copy of A except that it uses one of the disjuncts Fi of the DNF form of
the original final formula F as its final formula. Each resulting AFAs hence have a purely
conjunctive final condition that corresponds a set of final states of [D’Antoni et al. 2016]
(a set of final states F ⊆ Q would correspond to the final formula ∧

q∈Q\F ¬q).
• The second step simplifies the structure of the transitions. For every q ∈ Q , the transition
formula ∆(q) is transformed into a disjunction of formulae of the form (φ1 (V)∧ψ1 (Q))∨ . . .∨
(φm (V) ∧ψm (Q)) where the φi (V) formulae, called input formulae below, speak about input
bit variables only, while theψi (Q) formulae, called target formulae below, speak exclusively
about the target states, for 1 ≤ i ≤ m. For this transformation, a slight modification of
transforming a formula into DNF can be used.

The complementation procedure of [D’Antoni et al. 2016] then proceeds in two steps: the
normalisation and the complementation itself. We sketch them below:
• For every q ∈ Q , normalisation transforms the transition formula ∆(q) = (φ1 (V) ∧ψ1 (Q)) ∨
. . . ∨ (φm (V) ∧ ψm (Q)) so that every two distinct input formulae φ (V) and φ ′(V) of the
resulting formula describe disjoint sets of bit vectors, i.e., ¬(φ (V) ∧ φ ′(V)) holds. To achieve
this (without trying to optimize the algorithm as in [D’Antoni et al. 2016]), one can consider
generating all Boolean combinations of the original φ (V) formulae, conjoining each of them
with the disjunction of those state formulae whose input formulae are taken positively in the
given case. More precisely, one can take∨

I ⊆{1, ...,m } (
∧
i ∈I φi))∧(

∧
i ∈{1, ...,m }\I ¬φi))∧

∨
i ∈I ψi .

• Finally, to complement the AFAs normalized in the above way, one proceeds as follows:
(1) The initial formula I is replaced by Ĩ . (2) For every q ∈ Q and every disjunct φ (V) ∧ψ (Q)

of the transition formula ∆(q), the target formula ψ (Q) is replaced by ψ̃ (Q). (3) The final
formula of the form ∧

q∈Q ′ ¬q,Q ′ ⊆ Q , is transformed to the formula∧
q∈Q\Q ′ ¬q, and false

is swapped for true and vice versa.
Clearly, the complementation contains three sources of exponential blow-up: (1) the simplification

of the final condition, (2) the simplification of transitions and (3) the normalization of transitions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:11

Note, however, that, in this paper, we will apply complementation exclusively on AFAs obtained
by Boolean operations from NFAs derived from regular expressions. Such AFAs already have the
simple final conditions, and so the first source of exponential blow-up does not apply. The second
and the third source of exponential complexity can manifest themselves but note that it does not
show up in the number of states. Finally, note that if we used AFAs with explicit alphabets, the
second and the third problem would disappear (but then the AFAs would usually be bigger anyway).

4.3 Succinct Alternating Finite Transducers
In our alternating finite transducers, we will need to use epsilon symbols representing the empty
word. Moreover, as we will explain later, in order to avoid some undesirable synchronization
when composing the transducers, we will need more such symbolsÐdiffering just syntactically.
Technically, we will encode the epsilon symbols using a set of epsilon bit variables E, containing one
new bit variable for each epsilon symbol. We will draw the epsilon bit variables from a countably
infinite set E. We will also assume that when one of these bits is set, other bits are not important.
LetW be a finite, totally ordered set of bit variables, which we can split to the set of input

bit variables V (W) = W \ E and the set of epsilon bit variables E (W) = W ∩ E. Given a word
w = b1 . . .bm ∈ P (W)∗, m ≥ 0, we denote by ⟩w⟨ the word that arises from w by erasing
all those bi , 1 ≤ i ≤ m, in which some epsilon bit variable is set, i.e., bi ∩ E , ∅. Further,
let k ≥ 1, and letW ⟨k⟩ = W × [k], assuming it to be ordered in the lexicographic way. The
indexing of the bit variables will be used to express the track on which they are read. Finally,
given a word w = b1 . . .bm ∈ P (W ⟨k⟩)∗, m ≥ 0, we denote by w ↓i , 1 ≤ i ≤ k , the word
b ′1 . . .b

′
m ∈ P (W)∗ that arises fromw by keeping the contents of the i-th track (without the index i)

only, i.e., b ′j × {i} = bj ∩ (W × {i}) for 1 ≤ j ≤ m.
A k-track succinct alternating finite transducer (AFT) overW is syntactically an alternating

automatonR = (W ⟨k⟩,Q,∆, I , F), k ≥ 1. LetV = V (W). The relation Rel (R) ⊆ (P (V)∗)k recognised
by R contains a k-tuple of words (x1, . . . ,xk) over P (V) iff there is a word w ∈ L(R) such that
xi = ⟩w↓i ⟨ for each 1 ≤ i ≤ k .

Below, we will sometimes say that the wordw encodes the k-tuple of words (x1, . . . ,xk). More-
over, for simplicity, instead of saying that R has a run over w that encodes (x1, . . . ,xk), we will
sometimes directly say that R has a run over (x1, . . . ,xk) or that R accepts (x1, . . . ,xk).
Finally, note that classical nondeterministic finite transducers (NFTs) are a special case of our

AFTs that can be defined by a similar restriction as the one used when restricting AFAs to NFAs.
In particular, the first track (with letters indexed with 1) can be seen as the input track, and the
second track (with letters indexed with 2) can be seen as the output track. AFTs as well as NFTs
recognize the class of rational relations [Barceló et al. 2013; Berstel 1979; Sakarovitch 2009].

Example 4.5. We now give a simple example of an AFT that implements escaping of every
apostrophe by a backlash in the UTF-8 encoding. Intuitively, the AFT will transform an input string
x'xx to the string x\'xx, i.e., the relation it represents will contain the couple (x'xx,x\'xx). All
the symbols should, however, be encoded in UTF-8. In this encoding, the apostrophe has the binary
code 00100111, and the backlash has the code 00101010. We will work with the set of bit variables
V8 = {v0, . . . ,v7} and a single epsilon bit variable e . We will superscript the bit variables by the
track on which they are read (hence, e.g., v2

1 is the same as (v1, 2), i.e., v1 is read on the second
track). Let api = vi0 ∧ vi1 ∧ vi2 ∧ ¬vi3 ∧ ¬vi4 ∧ vi5 ∧ ¬vi6 ∧ ¬vi7 ∧ ¬ei represent an apostrophe read
on the i-th track. Next, let bci = ¬vi0 ∧ vi1 ∧ ¬vi2 ∧ vi3 ∧ ¬vi4 ∧ vi5 ∧ ¬vi6 ∧ ¬vi7 ∧ ¬ei represent
a backlash read on the i-th track. Finally, let eqi, j = ei ↔ e j ∧∧

0≤k<8vik ↔ v jk denote that the
same symbol is read on the i-th and j-th track. The AFT that implements the described escaping can

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:12 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

be constructed as follows: R = ((V8 ∪ {e})⟨2⟩, {q0,q1},∆,q0,¬q1) where the transition formulae are
defined by ∆(q0) = (¬ap1 ∧ eq1,2 ∧ q0) ∨ (ap1 ∧ bc2 ∧ q1) and ∆(q1) = e

1 ∧ ap2 ∧ q0. □

5 DECIDING ACYCLIC FORMULAE
Our decision procedure for AC formulae is based on translating them into AFTs. For simplicity, we
assume that the formula is negation free (after transforming to NNF, negation at regular constraints
can be eliminated by AFA complementation). Notice that with no negations, the restriction AC
puts on disjunctions never applies. We also assume that the formula contains rational constraints
only (regular constraint can be understood as unary rational constraints).
Our algorithm then transforms a formula φ (x̄) into a rational constraint Rφ (x̄) inductively on

the structure of φ. As the base case, we get rational constraints R (x̄), which are already represented
as AFTs, and regular constraints A (x), already represented by AFAs. Boolean operations over
regular constraints can be treated using the corresponding Boolean operations over AFAs described
in Section 4.2. The resulting AFAs can then be viewed as rational constraints with one variable
(and hence as a single-track AFT).

Once constraints Rφ (x̄) and Rψ (ȳ) are available, the induction step translates formulae Rφ (x̄) ∧
Rψ (ȳ) and Rφ (x̄) ∨Rψ (ȳ) to constraints Rφ∧ψ (z̄) and Rφ∨ψ (z̄), respectively. To be able to describe
this step in detail, let Rφ = ((V ∪ Eφ)⟨|x̄ |⟩,Qφ ,∆φ , Iφ , Fφ) and Rψ = ((V ∪ Eψ)⟨|ȳ |⟩,Qψ ,∆ψ , Iψ , Fψ)
such that w.l.o.g. Qφ ∩Qψ = ∅ and Eφ ∩ Eψ = ∅.

Translation of conjunctions to AFTs. The construction of Rφ∧ψ has three steps:
(1) Alignment of tracks that ensures that distinct variables are assigned different tracks and

that the transducers agree on the track used for the shared variable.
(2) Saturation by ϵ-self loops allowing the AFTs to synchronize whenever one of them makes

an ϵ move on the shared track.
(3) Conjunction on the resulting AFTs viewing them as AFAs.

Alignment of tracks. Given constraints Rφ (x̄) and Rψ (ȳ), the goal of the alignment of tracks is
to assign distinct tracks to distinct variables of x̄ and ȳ, and to assign the same track in both of the
transducers to the shared variableÐif there is one (recall that, by acyclicity, x̄ and ȳ do not contain
repeating variables and share at most one common variable). This is implemented by choosing
a vector z̄ that consists of exactly one occurrence of every variable from x̄ and ȳ, i.e., {z̄} = {x̄ } ∪ {ȳ},
and by subsequently re-indexing the bit vector variables in the transition relations. Particularly, in
∆φ , every indexed bit vector variable vi (including epsilon bit variables) is replaced by v j with j
being the position of xi in z̄, and analogously in ∆ψ , every indexed bit variable vi is replaced by v j
with j being the position of yi in z̄. Both AFTs are then considered to have |z̄ | tracks.

Saturation by ϵ-self loops. This step is needed if x̄ and ȳ share a variable, i.e., {x̄ }∩{ȳ} , ∅. The two
input transducers then have to synchronise on reading its symbols. However, it may happen that,
at some point, one of them will want to read from the non-shared tracks exclusively, performing an
ϵ transition on the shared track. Since reading of the non-shared tracks can be ignored by the other
transducer, it should be allowed to perform an ϵ move on all of its tracks. However, that needs
not be allowed by its transition function. To compensate for this, we will saturate the transition
function by ϵ-self loops performed on all tracks. Unfortunately, there is one additional problem
with this step: If the added ϵ transitions were based on the same epsilon bit variables as those
already used in the given AFT, they could enable some additional synchronization within the given
AFT, thus allowing it to accept some more tuples of words. We give an example of this problem
below (Example 5.2). To resolve the problem, we assume that the two AFTs being conjuncted use
different epsilon bit variables (more of such variables can be used due the AFTs can be a result of

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:13

several previous conjunctions). Formally, for any choice σ ,σ ′ ∈ {φ,ψ } such that σ , σ ′, and for
every state q ∈ Qσ , the transition formula ∆σ (q) is replaced by ∆σ (q) ∨ (q ∧∨

e ∈Eσ ′
∧
i ∈[|z̄ |] ei).

Conjunction of AFTs viewed as AFAs. In the last step, the input AFTs with aligned tracks and satu-
rated by ϵ-self loops are conjoined using the automata intersection construction from Section 4.2.

Lemma 5.1. LetR ′φ andR ′ψ be the AFTs obtained from the input AFTsRφ andRψ by track alignment
and ϵ-self-loop saturation, and let Rφ∧ψ = R ′φ ∩ R ′ψ . Then, Rφ∧ψ (z̄) is equivalent to Rφ (x̄) ∧ Rψ (ȳ).

To see that the lemma holds, note that both R ′φ and R ′ψ have the same number of tracksÐnamely,
|z̄ |. This number can be bigger than the original number of tracks (|x̄ | or |ȳ |, resp.), but the AFTs
still represent the same relations over the original tracks (the added tracks are unconstrained).
The ϵ-self loop saturation does not alter the represented relations either as the added transitions
represent empty words across all tracks only, and, moreover, they cannot synchronize with the
original transitions, unblocking some originally blocked runs. Finally, due to the saturation, the two
AFTs cannot block each other by an epsilon move on the shared track available in one of them only.5

Example 5.2. We now provide an example illustrating the conjunction of AFTs, including the
need to saturate the AFTs by ϵ-self loops with different ϵ symbols. We will assume working with
the input alphabet Σ = {a,b} encoded using a single input bit variable v0: let a correspond to ¬v0
and b to v0. Moreover, we will use two epsilon bit variables, namely, e1 and e2. We consider the
following two simple AFTs, each with two tracks:
• R1 = ({v0, e1}⟨2⟩, {q0,q1,q2},∆1,q0,¬q0∧¬q2) with ∆1 (q0) = (a1∧b2∧q1)∨ (a1∧a2∧q1∧q2),
∆1 (q1) = false, and ∆1 (q2) = e

1
1 ∧ q1. Note that Rel (R1) = {(a,b)} since the run that starts

with a1 ∧ a2 gets stuck in one of its branches, namely the one that goes to q2. This is because
we require branches of a single run of an AFT to synchronize even on epsilon bit variables,
and the transition from q2 cannot synchronize with any move from q1.
• R2 = ({v0, e2}⟨2⟩, {p0,p1,p2},∆2,p0,¬p0 ∧ ¬p1) such that ∆2 (p0) = (a1 ∧ b2 ∧ p1), ∆2 (p1) =
e12 ∧ b2 ∧ p2, and ∆2 (p2) = false. Clearly, Rel (R2) = {(a,bb)}.

Let Qi , Ii , Fi denote the set of states, initial constraint, and final constraint of Ri , i ∈ {1, 2},
respectively. Assume that we want to construct an AFT for the constraint R1 (x ,y) ∧ R2 (x , z).
This constraint represents the ternary relation {(a,b,bb)}. It can be seen that if we apply the
above described construction for intersection of AFTs to R ′1 and R ′2, where R ′1 = R1 and R ′2
is the same as R2 up to all symbols from track to 2 are moved to track 3, we will get an AFT
R = ({v0, e1, e2}⟨3⟩,Q1 ∪Q2,∆, I1 ∧ I2, F1 ∧ F2) representing exactly this relation. We will not list
here the entire ∆ but let us note the below:
• ∆ will contain the following transition obtained by ϵ-self-loop saturation of R1: ∆(q1) =
(e12 ∧ e22 ∧ q1). This will allow R to synchronize its run through q1 with its run from p1 to p2.
Without the saturation, this would not be possible, and Rel (R) would be empty.
• On the other hand, if a single epsilon bit variable e was used in both AFTs as well as in
their saturation, the saturated ∆1 would include the transition ∆1 (q1) = (e1 ∧ e2 ∧ q1). This
transition could synchronize with the transition ∆1 (q2) = e

1∧q1, and the relation represented
by the saturated R1 would grow to Rel (R1) = {(a,b), (a,a)}. The result of the intersection
would then (wrongly) represent the relation {(a,b,bb), (a,a,bb)}. □

5Note that the same approach cannot be used for AFTs sharing more than one track. Indeed, by intersecting two general
rational relations, one needs not obtain a rational relation.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:14 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Translation of disjunctions to AFTs. The construction of an AFT for a disjunction of formulae
is slightly simpler. The alignment of variables is immediately followed by an application of the
AFA disjunction construction. That is, the AFT Rφ∨ψ is constructed simply as R ′φ ∪ R ′ψ from the
constraints R ′φ (z̄) and R ′ψ (z̄) produced by the alignment of the vectors of variables x̄ and ȳ in
Rφ (x̄) and Rψ (ȳ). The construction of R ′φ and R ′ψ does not require the saturation by ϵ-self loops
because the two transducers do not need to synchronise on reading shared variables. The vectors x̄
and ȳ are allowed to share any number of variables.

Theorem 5.3. Every acyclic formula φ (x̄) can be transformed into an equisatisfiable rational
constraint R (x̄) represented by an AFT R. The transformation can be done in polynomial time unless
φ contains a negated regular constraint represented by a non-normalized succinct NFA.

Corollary 5.4. Checking satisfiability of acyclic formulae is in PSPACE unless the formulae contain
a negated regular constraint represented by a non-normalized succinct NFA.

PSPACEmembership of satisfiability of acyclic formulae with binary rational constraints (without
negations of regular constraints and without considering succinct alphabet encoding) is proven
already in [Barceló et al. 2013]. Apart from extending the result to k-ary rational constraints, we
obtain a simpler proof as a corollary of Theorem 5.3, avoiding a need to use the highly intricate
polynomial-space procedure based on the Savitch´s trick used in [Barceló et al. 2013]. Not consid-
ering the problem of negating regular constraints, our PSPACE algorithm would first construct
a linear-size AFT for the input φ. We can then use the fact that the standard PSPACE algorithm for
checking emptiness of AFAs/AFTs easily generalises to succinct AFAs/AFTs. This is proved by our
linear-space reduction of emptiness of the language of succinct AFAs to reachability in Boolean
transition systems, presented in Section 8. Reachability in Boolean transition systems is known to
be PSPACE-complete.

5.1 Decidable Extensions of AC
The relatively liberal condition that AC puts on rational constraints allow us to easily extend
AC with other features, without having to change the decision procedure. Namely, we can add
Presburger constraints about word length, as well as word equations, as long as overall acyclicity
of a formula is preserved. Length constraints can be added in the general form φPres (|x1 |, . . . , |xk |),
where φPres is a Presburger formula.

Definition 5.5 (Extended acyclic formulae). A string formula φ augmented with length constraints
φPres (|x1 |, . . . , |xk |) is extended acyclic if every word equation or rational constraint contains each
variable at most once, rational constraints R (x1, . . . ,xn) only appear at positive positions, and for
every sub-formulaψ ∧ψ ′ at a positive position of φ (and also everyψ ∨ψ ′ at a negative position)
it is the case that |free(ψ) ∩ free(ψ ′) | ≤ 1, i.e.,ψ andψ ′ have at most one variable in common.

Any extended AC formula φ can be turned into a standard AC formula by translating word
equations and length constraints to rational constraints. Notice that, although quite powerful,
extended AC still cannot express SL formulae such as x = yy, and does not cover practical properties
such as, e.g., those in Example 3.3 (where two conjuncts contain both x and y).

Word equations to rational constraints. For simplicity, assume that equations do not contain
letters a ∈ Σ. This can be achieved by replacing every occurrence of a constraintb by a fresh variable
constrained by the regular language {b}. An equation x = x1 ◦ · · · ◦xn without multiple occurrences
of any variables is translated to a rational constraint R (x ,x1, . . . ,xn) with R = (W ⟨n + 1⟩,Q =

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:15

{q0, . . . ,qn },∆, I = q0, F = qn). The transitions for i ∈ [n] are
∆(qi−1) = (qi−1 ∨ qi) ∧

∧

j ∈[n]\{i }
e j ∧

∧

v ∈W ⟨n+1⟩
(vi ↔ v0).

and ∆(qn) = false. That is, the symbol on the first track is copied to the ith track while all the
other tracks read ϵ . Negated word equations can be translated to AFTs in a similar way.

Length constraints to rational constraints. The translation of length constraints to rational con-
straints is similarly straightforward. Suppose an extended AC formula contains a length con-
straint φPres (|x1 |, . . . , |xk |), where φPres is a Presburger formula over k variables y1, . . . ,yk ranging
over natural numbers. It is a classical result that the solution space of φPres forms a semi-linear
set [Ginsburg and Spanier 1966], i.e., can be represented as a finite union of linear sets Lj =
{ȳ0+∑m

i=1 λiȳi | λ1, . . . , λm ∈ N} ⊆ Nk with ȳ0, . . . ȳm ∈ Nk . Every linear setLj can directly be trans-
lated to a succinct k-track AFT recognising the relation {(x1, . . . ,xk) ∈ (Σ∗)k | (|x1 |, . . . , |xk |) ∈ Lj },
and the union of AFTs be constructed as shown in Section 4.2, resulting in an AFT RφPres (x1, . . . ,xk)
that is equivalent to φPres (|x1 |, . . . , |xk |).
6 RATIONAL CONSTRAINTS WITH SYNCHRONISATION PARAMETERS
In order to simplify the decision procedure for SL, which we will present in Section 7, we introduce
an enriched syntax of rational constraints. We will then extend the AC decision procedure from
Section 5 to the new type of constraints such that it can later be used as a subroutine in our decision
procedure of SL. Before giving details, we will outline the main idea behind the extension.

The AC decision procedure expects acyclicity, which prohibits formulae that are, e.g., of the form
(φ (x)∧φ ′(y))∧ψ (x ,y). Indeed, after replacing the inner-most conjunction by an equivalent rational
constraint, the formula turns into the conjunction Rφ∧φ′ (x ,y)∧Rψ (x ,y), which is a conjunction of
the form R (x ,y) ∧ S (x ,y). In general, satisfiability of such conjunctions is not decidable, and they
cannot be expressed as a single AFT since synchronisation of ϵ-moves on multiple tracks is not
always possible. However, our example conjunction does not compose two arbitrary AFTs. By its
construction, Rφ∧φ′ (x ,y) actually consists of two disjoint AFT parts. Each of the parts constrains
symbols read on one of the two tracks only and is completely oblivious of the other part. Due to
this, an AFT equivalent to Rφ∧φ′ (x ,y) ∧ Rψ (x ,y) can be constructed (let us outline, without so far
going into details, that the construction would saturate ϵ-moves for each track of Rφ∧φ′ separately).
Indeed, the original formula can also be rewritten as φ (x) ∧ (φ (y) ∧ψ (x ,y)), which is AC and can
be solved by the algorithm of Section 5.

The idea of exploiting the independence of tracks within a transducer can be taken a step further.
The two independent parts do not have to be totally oblivious of each other, as in the case of Rφ∧φ′
above, but can communicate in a certain limited way. To define the allowed form of communication
and to make the independent communicating parts syntactically explicit within string formulae,
we will introduce the notion of synchronisation parameters of AFTs. We will then explain how
formulae built from constraints with synchronisation parameters can be transformed into a single
rational constraint with parameters by a simple adaptation of the AC algorithm, and how the
parameters can be subsequently eliminated, leading to a single standard rational constraint.

Definition 6.1 (AFT with synchronisation parameters). An AFT with parameters s̄ = s1, . . . , sn is
defined as a standard AFTR = (V ,Q,∆, I , F) with the difference that the initial and the final formula
can talk apart from states about so-called synchronisation parameters too. That is, I , F ⊆ FQ∪{s̄ }
where I is still positive on states and F is still negative on states, but the synchronisation parameters
can appear in I and F both positively as well as negatively. The synchronisation parameters put an
additional constraint on accepting runs. A run ρ = ρ0 . . . ρm over a k-tuple of words w̄ is accepting

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:16 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

only if there is a truth assignment ν : {s̄} → B of parameters such that ν |= I and ν |= F . We then
say that w̄ is accepted with the parameter assignment ν .

String formulae can be built on top of AFTs with parameters in the same way as before. We write
φ[s̄](x̄) to denote a string formula that uses AFTs with synchronisation parameters from s̄ in its
rational constraints. Such a formula is interpreted over a union ι ∪ ν of an assignment ι : var(φ) →
P (V)∗ from string variables to strings, as usual, and a parameter assignment ν : {s̄} → B. An atomic
constraint R[s̄](x̄) is satisfied by ι ∪ν , written ι ∪ν |= R[s̄](x̄), if R accepts (ι (x1), . . . , ι (x |x̄ |)) with
the parameter assignment ν . Atomic string constraints without parameters are satisfied by ι ∪ ν iff
they are satisfied by ι. The satisfaction ι ∪ ν |= φ of a Boolean combination φ of atomic constraints
is then defined as usual.

Notice that within a non-trivial string formula, parameters may be shared among AFTs of several
rational constraints. They then not only synchronise initial and final configuration of a single
transducer run, but provide the aforementioned limited way of communication among AFTs of the
rational constraints within the formula.

Definition 6.2 (ACwith synchronisation parametersÐACsp). The definition of AC extends quite
straightforwardly to rational constraints with parameters. There is no other change in the definition
except for allowing rational constraints to use synchronisation parameters as defined above.

Notice that since we do not consider regular constraints with parameters, constraints with
parameters in ACsp formulae are never negated.
The synchronisation parameters allow for an easier transformation of string formulae into AC.

For instance, consider a formula of the form φ (x ,y)∧ψ (x ,y) where one of the conjuncts, say φ, can
be rewritten as φ1[s̄1](x) ∧ φ2[s̄2](y). The whole formula can be written as φ1[s̄1](x) ∧ (φ2[s̄2](y) ∧
ψ (x ,y)), which falls into ACsp. An example of such a formula φ (x ,y), commonly found in the
benchmarks we experimented with as presented later on, is a formula saying that x ◦ y belongs
to a regular language, expressed by an AFA A. This can be easily expressed by a conjunction
R1[s̄](x)∧R2[s̄](y) of two unary rational constraints with parameters. Intuitively, the AFTs R1 and
R2 are two copies of A. R1 nondeterministicaly chooses a configuration where the prefix of a run
of A reading a word x ends, accepts, and remembers the accepting configuration in parameter
values (it will have a parameter per state). R2 then reads the suffix of x , using the information
contained in parameter values to start from the configuration where R1 ended. We explain this
construction in detail in Section 7.
An ACsp formula φ with parameters can be translated into a single, parameter-free, rational

constraint and then decided by an AFA language emptiness check described in Section 8. The
translation is done in two steps:
(1) A generalised AC algorithm translates φ (x̄) to Rφ [s̄](x̄).
(2) Parameter elimination transforms Rφ [s̄](x̄) to a normal rational constraint R ′φ (x̄).
Generalised AC algorithm. To enable eliminations of conjunctions and disjunctions from ACsp

formulae, just a small modification of the procedure from Section 5 is enough. The presence
of parameters in the initial and final formulae does not require any special treatment, except
that, unlike for states (which are implicitly renamed), it is important that sets of synchronisation
parameters stay the same even if they intersect, so that the synchronisation is preserved in the
resulting AFT. That is, for □ ∈ {∧,∨}, Rφ [r̄](x̄), and Rψ [s̄](ȳ), the constraint Rφ□ψ [t̄](z̄) is created
in the same way as described in Section 5, the parameters within the initial and the final formulae
of the input AFTs are passed to the AFA construction □ unchanged, and {t̄ } = {r̄ } ∪ {s̄}.

Lemma 6.3. Rφ [r̄](x̄) □ Rψ [s̄](ȳ) is equivalent to Rφ□ψ [t̄](z̄).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:17

Elimination of parameters. The previous steps transform the formula into a single rational con-
straint with synchronisation parameters. Within such a constraint, every parameter communicates
one bit of information between the initial and final configuration of a run. The bit can be encoded
by an additional automata state passed from a configuration to a configuration via transitions
through the entire run, starting from an initial configuration where the parameter value is decided
in accordance with the initial formula, to the final configuration where it is checked against the final
formula. A technical complication, however, is that automata transitions are monotonic (positive
on states). Hence, they cannot prevent arbitrary states from appearing in target configurations
even though their presence is not enforced by the source configuration. For instance, starting
from a single state q1 and executing a transition ∆(q1) = q2 can yield a configuration q2 ∧ q3. The
assignment of 0 to a parameter cannot therefore be passed through the run in the form of absence
of a single designated state as it can be overwritten anywhere during the run.

To circumvent the above, we use a so-called two rail encoding of parameter values: every parameter
s is encoded using a pair of value indicator states, the positive value indicator s+ and the negative
value indicator s−. Addition of unnecessary states into target configurations during a run then cannot
cause that a parameter silently changes its value. One of the indicators can still get unnecessarily set,
but the other indicator will stay in the configuration too (states can be added into the configurations
reached, but cannot be removed). The parameter value thus becomes ambiguousÐboth s− and s+ are
present. The negative final formula can exclude all runs which arrive with ambiguous parameters
by enforcing that at least one of the indicators is false.
Formally, the parameter elimination replaces a constraint R (x̄)[s̄] with R = (W ⟨|x̄ |⟩,Q,∆, I , F)

and |s̄ | = n by a parameter free constraint R ′(x̄) with R ′ = (W ⟨|x̄ |⟩,Q ′,∆′, I ′, F ′) where
• Q ′ = Q ∪ {s+i , s−i | 1 ≤ i ≤ n} (parameters are added to Q), and
• ∆′ = ∆ ∪ {s+i 7→ s+i , s

−
i 7→ s−i | 1 ≤ i ≤ n} (once active value indicators stay active).

• I ′ = I+ ∧Choose where I+ is a positive formula that arises from I by replacing every negative
occurrence of a parameter ¬s by a positive occurrence of its negative indicator s−, and the
positive formula Choose = ∧n

i=1 s
+
i ∨ s−i enforces that every parameter has a value.

• F ′ = F− ∧Disambiguate where F− is a negative formula that arises from F by replacing every
positive occurence of a parameter s by a negative occurrence of its negative indicator ¬s−,
and the negative formula Disambiguate =

∧n
i=1 ¬s+i ∨¬s−i enforces that indicators determine

parameter values unambiguously, i.e., at most one indicator per parameter is set.

Lemma 6.4. ∃s̄ : R (x̄)[s̄] is equivalent to R ′(x̄).
7 DECIDING STRAIGHT-LINE FORMULAE
Our algorithm solves string formulae using the DPLL(T) framework [Nieuwenhuis et al. 2004]6,
whereT is a sound and complete solver for AC and SL. Loosely speaking, DPLL(T) can be construed
as a collaboration between a DPLL-based SAT-solver and theory solvers, wherein the input formula
is viewed as a Boolean formula by the SAT solver, checked for satisfiability by the SAT-solver, and if
satisfiable, theory solvers are invoked to check if the Boolean assignment found by the SAT solver
can in fact be realised in the involved theories. The details of the DPLL(T) framework are not so
important for our purpose. However, the crucial point is that all queries that a DPLL(T) solver asks
a T-theory solver are conjunctions from the CNF of the input formula (or their parts), enabling us
to concentrate on solving SL conjunctions only.

Our decision procedure for SL conjunctions transforms the input SL conjunction into an equisat-
isfiable ACsp formula, which is then decided as discussed in Section 6. The rest of the section is
thus devoted to a translation of a positive SL conjunction φ to an ACsp formula. The translation
6Also see [Kroening and Strichman 2008] for a gentle introduction to DPLL(T).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:18 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

internally combines rational constraints and equations into a more general kind of constraints in
which rational relations are mixed with concatenations and synchronisation parameters.

Example 7.1. As a running example for the section, we use an SL conjunction that captures the
essence of the vulnerability pattern from Example 1.1: A sanitizer is applied on an input string to
get rid of symbols c, replacing them by d, hoping that this will prevent a dangerous situation which
arises when a symbol d apears in a string somewhere behind c. However, the dangerous situation
will not be completely avoided since it is forgotten that the sanitized string will be concatenated
with another string that can still contain c.7

To formalize the example, assume a bit-vector encoding of an alphabet Σ which contains the
symbols c and d. Assume that each a ∈ Σ denotes the conjunction of (negated) bit variables encoding
it. As our running example, we will then consider the formula φ : y = R (x) ∧ z = x ◦y ∧A (z). The
AFT R = (W ⟨2⟩,Q = {q},∆ = {q 7→ q ∧ ¬d1 ∧ (c1 → d2) ∧∧

a∈Σ\{c} (a1 ↔ a2))}, I = q, F = true)
is a sanitizer that produces y by replacing all occurrences of c in its input string x by d, and it also
makes sure that x does not include d. The AFAA = (V ,Q ′ = {r0, r1, r2},∆′, I ′ = r0, F ′ = ¬r0 ∧¬r1)
where ∆′(r0) = (r0∧¬c)∨ (r1∧c), ∆′(r1) = (r1∧¬d)∨ (r2∧d), and ∆′(r2) = true is the specification.
It checks whether the opening symbol c can be later followed by the closing symbol d in the string
z. The formula is satisfiable. □

Definition 7.2 (Mixed constraints). A mixed constraint is of the form x = R[s̄](y1 ◦ · · · ◦yn) where
R is a binary AFT, with a concatenation of variables as the right-hand side argument, and s̄ is
a vector of synchronisation parameters. Such constraint has the expected meaning: it is satisfied
by the union ν ∪ ι of an assignment ι to string variables and an assignment ν to parameters iff
(ι (x), ι (y1) ◦ · · · ◦ ι (yn)) is accepted by R[s̄] with the parameter assignment ν .
All steps of our translation of the input SL formulaφ to an ACsp formula preserve the SL fragment,

naturally generalised to mixed constraints as follows.
Definition 7.3 (Generalised straight-line conjunction). A conjunction of string constraints is defined

to be generalised straight-line if it can be written as ψ ∧∧m
i=1 xi = Fi where ψ is a conjunction

over regular and negated regular constraints and each Fi is either of the form y1 ◦ · · · ◦ yn or
R[s̄](y1 ◦ · · · ◦ yn) such that it does not contain variables xi , . . . ,xm .
For simplicity, we assume that φ has gone through two preprocessing steps. First, all negations

were eliminated by complementing regular constraints, resulting in a purely positive conjunction.
Second, all theÐnow only positiveÐregular constraints were replaced by equivalent rational con-
straints. Particularly, a regular constraint A (x) is replaced by a rational constraint x ′ = R ′(x)
where x ′ is a fresh variable and R ′ is an AFT with Rel (R ′) = P (V)∗ × L(A). The AFT R ′ is created
from A by indexing all propositions in the transition relation by the index 2 of the second track.
It is not difficult to see that since x ′ is fresh, the replacement preserves SL, and also satisfiability,
since P (x) ∧ψ is equivalent to ∃x ′ : x ′ = R (x) ∧ψ for everyψ .

Example 7.4. In Example 7.1, the preprocessing replaces the conjunct A (z) by z ′ = S (z) where
S is the same asA, except occurrences of bit-vector variables in ∆′ are indexed by 2 since z will be
read on its second track. We obtain φ ′0 : y = R (x) ∧ z = x ◦ y ∧ z ′ = S (z) where z ′ is free. □

Due to the preprocessing, we are starting with a formula φ ′0 in the form of an SL conjunction of
rational constraints and equations. The translation to ACsp will be carried out in the following
three steps, which will be detailed in the rest of the section:
7In reality, where one undesirably concatenates a string command(′... with some string ...′); attack(); the situation is, of
course, more complex and sanitization is more sophisticated. However, having a real-life example, such as those used in our
experiments, as a running example would be too complex to understand.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:19

(1) Substitution transforms φ ′0 to a conjunction φ1 of mixed constraints.
(2) Splitting transforms φ1 to a conjunction φ2 of rational constraints with parameters.
(3) Ordering transforms φ2 to an AC conjunction φ3 with parameters.

Substitution. Equations in φ ′0 are combined with rational constraints into mixed constraints by
a straightforward substitution. In one substitution step, a conjunction x = y1◦· · ·◦yn∧ψ is replaced
by ψ [y1 ◦ · · · ◦ yn/x] where all occurrences of x are replaced by y1 ◦ · · · ◦ yn . The substitution
preserves the generalised straight-line fragment.

Lemma 7.5. If x = y1 ◦ · · · ◦ yn ∧ψ is SL, thenψ [y1 ◦ · · · ◦ yn/x] is equisatisfiable and SL.
The substitution steps are iterated eagerly in an arbitrary order until there are no equations.

Every substitution step obviously decreases the number of equations, so the iterative process
terminates after a finitely many steps with an equation-free SL conjunction of mixed constraints φ1.

Example 7.6. The substitution eliminates the equation z = x ◦ y in φ ′0 from Example 7.4, trans-
forming it to φ1 : y = R (x) ∧ u = S (x ◦ y). □

Splitting. We will now explain how synchronisation parameters are used to eliminate concatena-
tion within mixed constraints. The operation of binary splitting applied to an SL conjunction of
mixed constraints, φ : x = R (y1 ◦ · · · ◦ym ◦ z1 ◦ · · · ◦ zn)[s̄]∧ψ , where R = (W ⟨2⟩,Q,∆, I , F) and
Q = {q1, . . . ,ql } splits the mixed constraint and substitutes x by a concatenation of fresh variables
x1 ◦ x2 inψ . That is, it outputs the conjunction φ ′ : ζ ∧ψ [x1 ◦ x2/x] of mixed constraints, where
the rational constraint was split into the following conjunction ζ of two constraints:

ζ : x1 = R1 (y1 ◦ · · · ◦ ym)[s̄, t̄] ∧ x2 = R2 (z1 ◦ · · · ◦ zn)[s̄, t̄]
The vector t̄ consists of l fresh parameters, x1 and x2 are fresh string variables, and each AFT with
parameters Ri = (W ⟨2⟩,Q,∆, Ii , Fi), i ∈ {1, 2}, is derived from R by choosing initial/final formulae:

I1 = I , F1 =
l∧

i=1
qi → ti , I2 =

l∧

i=1
ti → qi , F2 = F .

Intuitively, each run ρ of R is split into a run ρ1 of R1, which corresponds to the first part of ρ in
which y1 ◦ · · · ◦ym is read along with a prefix x1 of x , and a run ρ2 of R2, which corresponds to the
part of ρ in which z1 ◦ · · · ◦ zn is read along with the suffix x2 of x . Using the new synchronisation
parameters t̄ , the formulae F1 and I2 ensure that the run ρ1 of R1 must indeed start in the states in
which the run ρ2 of R2 ended, that is, the original run ρ of R can be reconstructed by connecting
ρ1 and ρ2. Every occurrence of x inψ is replaced by the concatenation x1 ◦ x2.
Lemma 7.7. In the above, φ is equivalent to ∃x1x2t̄ : φ ′.
The resulting formula φ ′ is hence equisatisfiable to the original φ. Moreover, φ ′ is still generalised

SLÐthe two new constraints defining x1 and x2 can be placed at the position of the original
constraint defining x that was split, and the substitution [x1 ◦ x2/x] in the rest of the formula only
applies to the right-hand sides of constraints (since x can be defined only once).

Lemma 7.8. If φ is an SL conjunction of mixed constraints, then so is φ ′.

Moreover, by applying binary splitting steps eagerly in an arbitrary order onφ1, we are guaranteed
that all concatenations will be eliminated after a finite number of steps, thus arriving at the SL
conjunction of rational constraints with parameters φ2. The termination argument relies on the
straight-line restriction. Although it cannot be simply said that every step reduces the number
of concatenations because the substitution x1 ◦ x2 introduces new ones, the new concatenations
x1 ◦ x2 are introduced only into constraints defining variables that are higher in the straight-line

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:20 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

ordering than x . It is therefore possible to define a well-founded (integer) measure on the formulae
that decreases with every application of the binary splitting steps.

Lemma 7.9. All concatenations in the SL conjunction of mixed constraints φ1 will be eliminated
after a finite number of binary splitting steps.

We note that our implementation actually uses a slightly more efficient n-ary splitting instead of
the described binary. It splits a mixed constraint in one step into the number of conjuncts equal
to the length of the concatenation in its right-hand side. We present the simpler binary variant,
which eventually achieves the same effect.

Example 7.10. The formula from Example 7.6 would be transformed into φ2 : y = R (x) ∧ u1 =
S1[s̄](x) ∧ S2[s̄](y) where S1,S2 are as S up to that S1 has the final formula I ′ ∧∧2

i=0 (ri → s0)
and S2 has the final formula F ′ ∧∧2

i=0 (si → ri). Notice that u1 = S1[s̄](x) ∧ u2 = S2[s̄](y) still
enforce that x ◦ y has c eventually followed by d. The parameters remember where S1 ended its
run and force R2 to continue from the same state. □

Reordering modulo associativity. Substitution and splitting transform φ0 to a straight-line con-
junction φ2 of rational constraints with parameters. Before delegating it to the ACsp formulae
solver, it must be reorganized modulo associativity to achieve a structure satisfying the definition
of AC. One way of achieving this is to order the formula into a conjunction ∧m

i=1 xi = R[s̄i](yi)
satisfying the condition in the definition of SL (the definition of SL only requires that the formula
can be assumed). An simple way is discussed in [Lin and Barceló 2016]. It consists of drawing the
dependency graph of φ, a directed graph with the variables var(φ) as vertices which has an edge
x → y if and only if φ contains a conjunct x = R (y). Due to the straight-line restriction, the graph
must be acyclic. The ordering of variables can be then obtained as a topological sort of the graphs
vertices, which is computable in linear time (e.g. [Cormen et al. 2009], for instance by a depth-first
traversal). The final acyclic formula φ3 then arises when letting ∧m

i=1 associate from the right:
φ3 : (x1 = R1 (y1) ∧ (x2 = R2 (y2) ∧ (. . . ∧ (xm−1 = Rm−1 (ym−1) ∧ xm = Rm (ym)) . . .))).

To see that φ3 is indeed ACsp, observe that every conjunctive sub-formula is of the form (
∧
i<k xi =

Ri (yi)) ∧ xk = Rk (yk) where xk is by the definition of SL not present in the left conjunct. The left
and right conjuncts can therefore share at most one variable, yk .

Theorem 7.11. The formula φ3 obtained by substitution, splitting, and reordering from φ0 is
equisatisfiable and acyclic.

Example 7.12. The ACsp formula φ3 : y = R (x) ∧ u1 = S1[s̄](x)) ∧ S2[s̄](y) would be the final
result of the SL to ACsp translation. Let us use φ3 to also briefly illustrate the decision procedure
for ACsp of Section 6. The first step is the transformation to a single rational constraint with
parameters by induction over formula structure. This will produce R ′[s̄](x ,y, z) with states and
transitions consisting of those in R, S1 with indexes of alphabet bits incremented by one (y, and
z are now not the first and the second, but the second and the third track), and a copy S′2 of S2
with states replaced by their primed variant (so that they are disjoint from that of S1) and also
incremented indexes of alphabet bits. The initial and final configuration will be the conjunctions of
those of R,S1 and S′2. The last step, eliminating of parameters, will lead to the addition of positive
and negative indicator states for parameters s̄ = s1, s2, s3 with the universal self-loops and the
update of the initial and final formula as in Section 6. The rest is solved by the emptiness check
discussed in Section 8. Notice the small size of the resulting AFT. Compared to the original formula
from Example 7.1, it contains only one additional copy of A (the S′2), the six additional parameter
indicator states with self-loops and the initial and final condition on the parameter indicators. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:21

A note on the algorithm of [Lin and Barceló 2016]. We will now comment on the differences of
our algorithm for deciding SL from the earlier algorithm of [Lin and Barceló 2016]. It combines
reasoning on the level NFAs and nondeterministic transducers, utilising classical automata theoretic
techniques, with a technique for eliminating concatenation by enumerative automata splitting. It
first turns and SL formula into a pure AC formula and then uses the AC decision procedure.
An obvious advantage of our decision procedure described in Section 5 is the use of succinct

AFA. As opposed to the worst case exponentially larger NFA, it produces an AFA of a linear size
(unless the original formula contains negated regular constraints represented as general AFA. See
Section 5 for a detailed discussion). Let us also emphasize the advantages of our algorithm in the
first phase, translation of SL to ACsp. Similarly as in the case of deciding AC, the main advantage
of our algorithm is that, while [Lin and Barceló 2016] only works with NFTs, we propose ways of
utilising the power of alternation and succinct transition encoding.
We will illustrate the difference on an example. The concatenation in the conjunction x =

y ◦ z ∧w = R (x) would in [Lin and Barceló 2016] be done by enumerative splitting. It replaces the
conjunction by the disjunction ∨

q∈Q w1 = Rq (y) ∧w2 = qR (z). The Q in the disjunction is the set
of states of the (nondeterministic) transducer R, Rq is the same as the NFT R up to that the final
state is q, and qR the same as R up to that the initial state is q. Intuitively, the run of R is explicitly
separated into the part in which y is read along the prefixw1 ofw , and the suffix in which z is red
along the suffixw2 ofw . The variablew would be replaced byw1 ◦w2 in the rest of the formula.
The disjunction enumerates all admissible intermediate states q ∈ Q a run of R can cross, and for
each of them, it constructs two copies of R . This makes the cost of the transformation quadratic in
the number of states of the NFT R . A straightforward generalisation to our setting in which R is an
AFT is possible: The disjunction would have to list, instead of possible intermediate states q ∈ Q ,
all possible intermediate configurations C ⊆ Q a run of the AFA R can cross, thus increasing the
quadratic blow-up of the nondeterministic case to an exponential (due to the enumerative nature
of splitting, the size is without any optimisation bounded by an exponential even from below).
Our splitting algorithm utilises succinctness of alternation to reduce the cost of enumerative

AFA splitting from exponential space (or quadratic in the case of NFAs) to linear. The smaller
size of the resulting representation is payed for by a more complex alternating structure of the
resulting rational constraints. The worst case complexity of the satisfiability procedure thus remains
essentially the same. However, deferring most of the complexity to the last phase of the decision
procedure, AFA emptiness checking, allows to circumvent the potential blow-up by means of
modern model checking algorithms and heuristics and achieve much better scalability in practice.

8 MODEL CHECKING FOR AFA LANGUAGE EMPTINESS
In order to check unsatisfiability of a string formula using our translation to AFTs, it is necessary to
show that the resulting AFT does not accept any word, i.e., that the recognised language is empty.
The constructed AFTs are succinct, but tend to be quite complex: a naïve algorithm that would
translate AFTs to NFAs using an explicit subset construction, followed by systematic state-space
exploration, is therefore unlikely to scale to realistic string problems. We discuss how the problem
of AFT emptiness can instead be reduced (in linear time and space) to reachability in a Boolean
transition system, in a way similar to [Cox and Leasure 2017; Gange et al. 2013; Wang et al. 2016].
Our translation is also inspired by the use of model checkers to determinise NFAs in [Tabakov and
Vardi 2005], by a translation to sequential circuits that corresponds to symbolic subset construction.
We use a similar implicit construction to map AFAs and AFTs to NFAs.

As an efficiency aspect of the construction for AFAs, we observe that it is enough to work with
minimal sets of states, thanks to the monotonicity properties of AFAs (the fact that initial formulae
and transition formulae are positive in the state variables, and final formulae are negative). This

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:22 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

gives rise to three different versions: a direct translation that does not enforce minimality at all; an
intensionally-minimal translation that only considers minimal sets by virtue of additional Boolean
constraints; and a deterministic translation that resolves nondeterminism through additional system
inputs, but does not ensure fully-minimal state sets.

8.1 Direct Translation to Transition Systems
To simplify the presentation of our translation to a Boolean transition system, we focus on the
case of AFAs A = (Vn ,Q,∆, I , F) over a single track of bit-vectors of length n + 1. The translation
directly generalises to k-track AFTs, and to AFTs with epsilon characters, by simply choosing n
sufficiently large to cover the bits of all tracks.

We adopt a standard Boolean transition system view on the execution of the AFAA (e.g., [Clarke
et al. 1999]). If A has m = |Q | automaton states, then A can be interpreted as a (symbolically
described) transition system T di

A = (Bm , Initdi, Transdi). The transition system has state space Bm ,
i.e., a system state is a bit-vector q̄ = ⟨q0, . . . ,qm−1⟩ of lengthm identifying the active states in Q .
The initial states of the system are defined by Initdi[q̄] = I , the same positive Boolean formula as in
A. The transition relation Transdi of the system is a Boolean formula over two copies q̄, q̄′ of the
state variables, encoding that for each active pre-state qi in q̄ the formula ∆(qi) has to be satisfied
by the post-state q̄′. Input variables Vn = {x0, ...,xn } are existentially quantified in the transition
formula, expressing that all AFA transitions have to agree on the letter to be read:

Transdi[q̄, q̄′] = ∃v0, . . . ,vn :
m−1∧

i=0
qi → ∆(qi)[q̄/q̄′] (1)

To examine emptiness of A, it has to be checked whether T di
A can reach any state in the target

set Finaldi[q̄] = F , i.e., in the set described by the negative final formula F ofA. Since is well-known
that reachability in transition systems is a PSPACE-complete problem [Clarke et al. 1999], this
directly establishes that fragment AC is in PSPACE (Corollary 5.4).

Lemma 8.1. The language L(A) recognised by the AFA A is empty if and only if T di
A cannot reach

a configuration in Finaldi[q̄].

In practice, this means that emptiness of L(A) can be decided using a wide range of readily
available, highly optimised model checkers from the hardware verification field, utilising methods
such as k-induction [Sheeran et al. 2000], Craig interpolation [McMillan 2003], or IC3/PDR [Bradley
2012]. In our implementation, we represent T di

A in the AIGER format [Biere et al. 2017], and then
apply nuXmv [Cavada et al. 2014] and ABC [Brayton and Mishchenko 2010].

The encodingT di
A leaves room for optimisation, however, as it does not fully exploit the structure

of AFAs and introduces more transitions than strictly necessary. In (1), we can observe that if
Transdi[q̄, q̄′] is satisfied for some q̄, q̄′, then it will also be satisfied for every post-state q̄′′ ⪰ q̄′,
writing p̄ ⪯ q̄ for the point-wise order on bit-vectors p̄, q̄ ∈ Bm (i.e., p̄ ⪯ q̄ if pi implies qi for every
i ∈ {0, . . . ,m− 1}). This is due to the positiveness (ormonotonicity) of the transition formulae ∆(qi).
Similarly, since the initial formula I of an AFA is positive, initially more states than necessary might
be activated. Because the final formula F is negative, and since redundant active states can only
impose additional restrictions on the possible runs of an AFA, such redundant states can never lead
to more words being accepted.
More formally, we can observe that the transition system T di

A is well-structured [Finkel 1987],
which means that the state space Bm can be equipped with a well-quasi-order ≤ such that whenever
Transdi[q̄, q̄′] and q̄ ≤ p̄, then there is some state p̄ ′ with q̄′ ≤ p̄ ′ and Transdi[p̄, p̄ ′]. In our case, ≤ is

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:23

the inverse point-wise order ⪰ on bit-vectors;8 intuitively, deactivating AFA states can only enable
more transitions. Since the set Finaldi[q̄] is upward-closed with respect to ≤ (downward-closed with
respect to ⪯), the theory on well-structured transition systems tells us that it is enough to consider
transitions to ≤-maximal states (or ⪯-minimal states) of the transition system when checking
reachability of Finaldi[q̄]. In forward-exploration of the reachable states of T di

A , the non-redundant
states to be considered form an anti-chain. This can be exploited by defining tailor-made exploration
algorithms [Doyen and Raskin 2010; Kloos et al. 2013], or, as done in the next sections, by modifying
the transition system to only include non-redundant transitions.

8.2 Intensionally-Minimal Translation
We introduce several restricted versions of the transition system T di

A , by removing transitions to
non-minimal states. The strongest transition systemTmin

A = (Bm , Initmin, Transmin) obtained in this
way can abstractly be defined as:

Initmin[q̄] = Initdi[q̄] ∧ ∀p̄ ≺ q̄. ¬Initdi[p̄] (2)
Transmin[q̄, q̄′] = Transdi[q̄, q̄′] ∧ ∀p̄ ≺ q̄′. ¬Transdi[q̄, p̄] (3)

That means, Initmin and Transmin are defined to only retain the ⪯-minimal states. Computing Initmin

and Transmin corresponds to the logical problem of circumscription [McCarthy 1980], i.e., the com-
putation of the set of minimal models of a formula. Circumscription is in general computationally
hard, and its precise complexity still open in many cases; in (2) and (3), note that eliminating the
universal quantifiers (as well as the universal quantifiers introduced by negation of Transdi) might
lead to an exponential increase in formula size, so thatTmin

A does not directly appear useful as input
to a model checker.

We can derive amore practical, but weaker systemT im
A = (Bm , Initim, Transim) by onlyminimising

post-states in Transim with respect to the same input letter Vn :

Initim[q̄] = Initmin[q̄]

Transim[q̄, q̄′] = ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧ ∀p̄ ≺ q̄′. ¬Trans[q̄, p̄,Vn]

)

with Trans[q̄, q̄′,Vn] =
m−1∧

i=0
qi → ∆(qi)[q̄/q̄′]

The formulae still contain universal quantifiers ∀p̄, but it turns out that the quantifiers can now
be eliminated with only polynomial effort, due to the fact that p̄ only occurs negatively in the
scope of the quantifier. Indeed, whenever φ[q̄] is a formula that is positive in q̄, and φ[q̄] holds
for assignments q̄1, q̄3 ∈ Bm with q̄1 ⪯ q̄3, then φ[q̄] will also hold for any assignment q̄2 ∈ Bm
with q̄1 ⪯ q̄2 ⪯ q̄3 due to monotonicity. This implies that a satisfying assignment q̄1 ∈ Bm
is ⪯-minimal if no single bit in q̄1 can be switched from 1 to 0 without violating φ[q̄]. More
formally, φ[q̄] ∧ ¬∃p̄ ≺ q̄. φ[p̄] is equivalent to φ[q̄] ∧ ∧m−1

i=0 qi → ¬φ[q̄][qi/false], where we
write φ[qi/false] for the result of substituting qi with false in φ.

8Since the state space Bm of T di
A is finite, the łwell-” part is trivial.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:24 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

The corresponding, purely existential representation of Initim and Transim is:

Initim[q̄] ≡ Initdi[q̄] ∧
m−1∧

i=0
qi → ¬Initdi[q̄][qi/false] (4)

Transim[q̄, q̄′] ≡ ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧

m−1∧

i=0
q′i → ¬Trans[q̄, q̄′,Vn][q′i/false]

)
(5)

The representation is quadratic in size of the original formulae Initdi, Transdi, but the formulae
can in practice be reduced drastically by sharing of common sub-formulae, since them copies of
Initdi[q̄][qi/false] and Trans[q̄, q̄′,Vn][q′i/false] tend to be almost identical.

Lemma 8.2. The following statements are equivalent:

(1) T di
A can reach a configuration in Finaldi[q̄];

(2) Tmin
A can reach a configuration in Finaldi[q̄];

(3) T im
A can reach a configuration in Finaldi[q̄].

Example 8.3. To illustrate the T im
A encoding, we consider an AFA A that accepts the language

{xwy | |xwy | = 2k,k ≥ 1,x ∈ {a,b},y ∈ {c,d }} using the encoding of the alphabet Σ = {a,b, c,d }
from Example 4.1. We letA = ({v0,v1}, {q0,q1,q2,q3,q4},∆, I , F) where I = q0, F = ¬q0∧¬q1∧¬q3
(i.e., the accepting states are q2 and q4), and ∆ is defined as ∆(q0) = ¬v1 ∧ q1 ∧ q3, ∆(q1) = q2,
∆(q2) = q1, ∆(q3) = q3 ∨ (v1 ∧ q4), and ∆(q4) = false.
The direct transition system representation is T di

A = (B5, Initdi, Transdi), defined by:

Initdi[q̄] = q0, Transdi[q̄, q̄′] = ∃v0,v1.
*......,

(q0 → ¬v1 ∧ q′1 ∧ q′3) ∧
(q1 → q′2) ∧
(q2 → q′1) ∧
(q3 → q′3 ∨ (v1 ∧ q′4)) ∧
(q4 → false)

+//////-︸ ︷︷ ︸
Trans[q̄,q̄′,Vn]

The intensionally-minimal translationT im
A can be derived fromT di

A by conjoining the restrictions in
(4) and (5) (Transim[q̄, q̄′] is shown in simplified form for sake of presentation):

Initim[q̄] = q0 ∧ (q0 → ¬false) ∧
4∧

i=1
(qi → ¬q0) ≡ q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transim[q̄, q̄′] ≡ ∃v0,v1.
(
Trans[q̄, q̄′,Vn] ∧ ¬q′0 ∧ (q′1 → q0 ∨ q2) ∧ (q′2 → q1) ∧
(q′3 → q0 ∨ (q3 ∧ ¬(v1 ∧ q′4))) ∧ (q′4 → q3 ∧ ¬q′3)

)

□

8.3 Deterministic Translation
We introduce a further encoding of A as a transition system that is more compact than (4), (5), but
does not always ensure fully-minimal state sets. The main idea of the encoding is that a conjunctive
transition formula ∆(q1) = q2 ∧ q3, assuming that q2,q3 do not occur in any other transition
formula ∆(qi), can be interpreted as a set of deterministic updates q′2 = q1;q′3 = q1. For state
variables that occur in multiple transition formulae, the right-hand side of the update turns into
a disjunction. Disjunctions in transition formulae represent nondeterministic updates that can
be resolved using additional Boolean flags. The resulting transition system is deterministic, as
transitions are uniquely determined by the pre-state and variables representing system inputs.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:25

Example 8.4. We illustrate the encoding T det
A = (Bm , Initdet , Transdet) using the AFA from Ex-

ample 8.3. While the initial states Initdet[q̄] coincide with Initim[q̄] in Example 8.3, the transition
relation Transdet[q̄, q̄′] now consists of two parts: a deterministic assignment of the post-state q̄′ in
terms of the pre-state q̄, together with an auxiliary variable h3 that determines which branch of
∆(q3) is taken; and a conjunct that ensures that value of h3 is consistent with the inputs Vn . The
resulting Transdet[q̄, q̄′] is (in this example) equivalent to Transim[q̄, q̄′]:

Initdet[q̄] = q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transdet[q̄, q̄′] ≡ ∃h3.
*......,

(q′0 ↔ false) ∧
(q′1 ↔ q0 ∨ q2) ∧
(q′2 ↔ q1) ∧
(q′3 ↔ q0 ∨ q3 ∧ h3) ∧
(q′4 ↔ q3 ∧ ¬h3)

+//////-
∧ ∃v0,v1. *.,

(q0 → ¬v1) ∧
(q3 ∧ ¬h3 → v1) ∧
(q4 → false)

+/-
□

To define the encoding formally, we make the simplifying assumption that there is a unique
initial state q0, i.e., I = q0, and that all transition formulae ∆(qi) are in negation normal form (i.e.,
in particular state variables in ∆(qi) do not occur underneath negation). Both assumption can be
established by simple transformation of A. The transition system T det

A = (Bm , Initdet , Transdet) is:

Initdet[q̄] = q0 ∧
m−1∧

i=1
¬qi

Transdet[q̄, q̄′] = ∃H . *,
(m−1∧

i=0
q′i ↔ NewState(qi)

)
∧ ∃Vn .

(m−1∧

i=0
qi → InputInv (∆(qi), i)

)+-
The transition relation Transdet consists of two main parts: the state updates, which assert

that every post-state variable q′i is set to an update formula NewState(qi); and an input invariant
asserting that the letters that are read are consistent with the transition taken. To determinise
disjunctions in transition formulae ∆(qi), a set H of additional Boolean variables hl (uniquely
indexed by a position sequence l ∈ Z∗) is introduced, and existentially quantified in Transdet.
The update formulae NewState(qi) are defined as a disjunction of assignments extracted from

the transition formulae ∆(qj),

NewState(qi) =
∨
{φ | there is j ∈ {0, . . . ,m − 1} such that ⟨qi ,φ⟩ ∈ StateAsgn(∆(qj), j,qj)}

where each StateAsgn(∆(qj), j,qj) represents the set of asserted state variables qi in ∆(qj), together
with guards φ for the case that qi occurs underneath disjunctions. The set is recursively defined
(on formulae in NNF) as follows:

StateAsgn(φ1 ∧ φ2, l ,д) = StateAsgn(φ1, l ,д) ∪ StateAsgn(φ2, l ,д)

StateAsgn(φ1 ∨ φ2, l ,д) = StateAsgn(φ1, l .1, д ∧ hl) ∪ StateAsgn(φ2, l .2, д ∧ ¬hl)
StateAsgn(qi , l ,д) = {⟨qi ,д⟩}
StateAsgn(ϕ, l ,д) = ∅ (for any other ϕ) .

In particular, the case for disjunctions φ1 ∨ φ2 introduces a fresh variable hl ∈ H (indexed by
the position l of the disjunction) that controls which branch is taken. Input variables vi ∈ Vn are
ignored in the updates.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:26 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

The input invariants InputInv (∆(qi), i) are similarly defined recursively, and include the same
auxiliary variables hl ∈ H , but ensure input consistency:
InputInv (φ1 ∧ φ2, l) = InputInv (φ1, l) ∧ InputInv (φ2, l)

InputInv (φ1 ∨ φ2, l) =
(
hl → InputInv (φ1, l .1)

)
∧

(
¬hl → InputInv (φ2, l .2)

)

InputInv (vi , l) = vi , InputInv (¬vi , l) = ¬vi , InputInv (qi , l) = true, InputInv (ϕ, l) = ϕ .

9 IMPLEMENTATION AND EXPERIMENTS
We have implemented our method for deciding conjunctive AC and SL formulae as a solver called
Sloth (String LOgic THeory solver), extending the Princess SMT solver [Rümmer 2008]. The solver
Sloth can be obtained from https://github.com/uuverifiers/sloth/wiki. Hence, Princess provides us
with infrastructure such as an implementation of DPLL(T) or facilities for reading input formulae
in the SMT-LIBv2 format [Barrett et al. 2010]. Like Princess, Sloth was implemented in Scala. We
present results from several settings of our tool featuring different optimizations.
Sloth-1 The basic version of Sloth, denoted as Sloth-1 below, uses the direct translation of the

AFA emptiness problem to checking reachability in transition systems described in Section 8.1.
Then, it employs the nuXmvmodel checker [Cavada et al. 2014] to solve the reachability problem
via the IC3 algorithm [Bradley 2012], based on property-directed state space approximation.
Further, we have implemented five optimizations/variants of the basic solver: four of them are
described below, the last one at the end of the section.

Sloth-2 Our first optimization, implemented in Sloth-2, is rather simple: We assume working
with strings over an alphabet Σ and look for equations of the form x = a0 ◦y1 ◦ a1 . . . ◦yn ◦ an
where n ≥ 1, ∀0 ≤ i ≤ n : ai ∈ Σ∗ (i.e., ai are constant strings), and, for every 1 ≤ j ≤ n,
yj is a free string variable not used in any other constraint. The optimization replaces such
constraints by a regular constraint (a0 ◦ Σ∗ ◦ a1 . . . ◦ Σ∗ ◦ an) (x). This step allows us to avoid
many split operations. The optimization is motivated by a frequent appearance of constraints
of the given kind in some of the considered benchmarks. As shown by our experimental results
below, the optimization yields very significant savings in practice, despite of its simplicity.

Sloth-3 Our second optimization, implemented in Sloth-3, replaces the use of nuXmv and
IC3 in Sloth-2 by our own, rather simple model checker working directly on the generated
AFA. In particular, our model checker is used whenever no split operation is needed after the
preprocessing proposed in our first optimization. It works explicitly with sets of conjunctive state
formulae representing the configurations reached. The initial formula and transition formulae
are first converted to DNF using the Tseytin procedure. Then a SAT solverÐin particular, sat4j
[Berre and Parrain 2010]Ðis used to generate new reachable configurations and to check the
final condition. Our experimental results show that using this simple model checking approach
can win over the advanced IC3 algorithm on formulae without splitting.

Sloth-4 Our further optimization, Sloth-4, optimizes Sloth-3 by employing the intensionally
minimal successor computation of Section 8.2 within the IC3-based model checking of nuXmv.

Sloth-5 Finally, Sloth-5 modifies Sloth-4 by replacing the use of nuXmv with the property
directed reachability (i.e., IC3) implementation in the ABC tool [Brayton and Mishchenko 2010].

We present data on two benchmark groups (each consisting of two benchmark sets) that demon-
strate two points. First, the main strength of our tool is shown on solving complex combinations
of transducer and concatenation constraints (generated from program code similar to that of
Example 1.1) that are beyond capabilities of any other solver. Second, we show that our tool is
competitive also on simpler examples that can be handled by other tools (smaller constraints
with less intertwined and general combinations of rational and concatenation constraints). All the
benchmarks fall within the decidable straight-line fragment (possibly extended with the restricted

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:27

length constraints). All experiments were executed on a computer with Intel Xeon E5-2630v2 CPU
@ 2.60 GHz and 32 GiB RAM.

Complex combinations of concatenation and rational constraints. The first set of our benchmarks
consisted of 10 formulae (5 sat and 5 unsat) derived manually from the PHP programs available
from the web page of the Stranger tool [Yu et al. 2010]. The property checked was absence
of the vulnerability pattern .*<script.* in the output of the programs. The formulae contain
7ś42 variables (average 21) and 7ś38 atomic constraints (average 18). Apart from the Boolean
connectives ∧ and ∨, they use regular constraints, concatenation, the str.replaceall operation,
and several special-purpose transducers encoding various PHP functions used in the programs
(e.g., addslashes, trim, etc.).

Table 1. PHP benchmarks from the web of Stranger.
Program #sat (sec) #unsat (sec) #mo #win +/-
Sloth-1 4 (178) 5 (6,989) 1 1/0
Sloth-2 4 (83) 5 (5,478) 1 0/2
Sloth-3 4 (72) 5 (3,673) 1 1/2
Sloth-4 4 (93) 4 (6,168) 2 0/0
Sloth-5 4 (324) 4 (4,409) 2 2/1

Results of running the different ver-
sions of Sloth on the formulae are
shown in Table 1. Apart from the Sloth
version used, the different columns
show numbers of solved sat/unsat for-
mulae (together with the time used),
numbers of out-of-memory runs (łmo”),
as well as numbers of sat/unsat in-
stances for which the particular Sloth version provided the best result (łwin +/-”). We can see
that Sloth was able to solve 9 out of the 10 formulae, and that each of its versionsÐapart from
Sloth-4Ðprovided the best result in at least some case.
Our second benchmark consists of 8 challenging formulae taken from the paper [Kern 2014]

providing an overview of XSS vulnerabilities in JavaScript programs (including the motivating
example from the introduction).

Table 2. Benchmarks from [Kern 2014].
Solver #sat (sec) #unsat (sec) #win +/-
Sloth-1 4 (458) 4 (583) 0/2
Sloth-2 4 (483) 4 (585) 0/1
Sloth-3 4 (508) 4 (907) 2/1
Sloth-4 4 (445) 4 (1,024) 1/0
Sloth-5 4 (568) 4 (824) 1/0

The formulae contain 9ś12 variables (av-
erage 9.75) and 9ś13 atomic constraints
(average 10.5). Apart from conjunctions,
they use regular constraints, concatena-
tion, str.replaceall, and again several
special-purpose transducers encoding vari-
ous JavaScript functions (e.g., htmlescape,
escapeString, etc.). The results of our exper-
iments are shown in Table 2. The meaning of the columns is the same as in Table 1 except that we
drop the out-of-memory column since Sloth could handle all the formulaeÐwhich we consider to
be an excellent result.

These results are the highlight of our experiments, taking into account that we are not aware of
any other tool capable of handling the logic fragment used in the formulae.9

A Comparison with other tools on simpler benchmarks. Our next benchmark consisted of 3,392
formulae provided to us by the authors of the Stranger tool. These formulae were derived by
Stranger from real web applications analyzed for security; to enable other tools to handle the
benchmarks, in the benchmarks the str.replaceall operationwas approximated by str.replace.
9We tried to replace the special-purpose transducers by a sequence of str.replaceall operations in order to match the
syntactic fragment of the S3P solver [Trinh et al. 2016]. However, neither Sloth nor S3P could handle the modified formulae.
We have not experimented with other semi-decision procedures, such as those implemented within Stranger or SLOG
[Wang et al. 2016], since they are indeed a different kind of tool, and, moreover, often are not able to process input in the
SMT-LIBv2 format, which would complicate the experiments.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:28 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Apart from the ∧ and ∨ connectives, the formulae use regular constraints, concatenation, and the
str.replace operation. They contain 1ś211 string variables (on average 6.5) and 1ś182 atomic
formulae (on average 5.8). Importantly, the use of concatenation is much less intertwined with
str.replace than it is with rational constraints in benchmarks from Tables 1 and 2 (only about
120 from the 3,392 examples contain str.replace). Results of experiments on this benchmark are
shown in Table 3. In the table, we compare the different versions of our Sloth, the S3P solver,
and the CVC4 string solver [Liang et al. 2014].10 The meaning of the columns is the same as in
the previous tables, except that we now specify both the number of time-outs (for a time-out of 5
minutes) and out-of-memory runs (łto/mo”).

Table 3. Benchmarks from Stranger with str.replace.
Solver #sat (sec) #unsat (sec) #to/mo #win +/-
Sloth-1 1,200 (19,133) 2,079 (3,276) 105/8 30/43
Sloth-2 1,211 (13,120) 2,079 (3,338) 97/5 19/0
Sloth-3 1,290 (6,619) 2,082 (1,012) 14/6 263/592
Sloth-4 1,288 (6,240) 2,082 (1,030) 17/5 230/327
Sloth-5 1,291 (6,460) 2,082 (953) 14/5 768/1,120
CVC4 1,297 (857) 2,082 (265) 13/0 ś
S3P 1,291 (171) 2,078 (56) 13/0 ś

From the results, we can see
that CVC4 is winning, but (1) un-
like Sloth, it is a semi-decision
procedure only, and (2) the for-
mulae of this benchmark are
much simpler than in the previ-
ous benchmarks (from the point
of view of the operations used),
and hence the power of Sloth
cannot really manifest.
Despite that, our solver succeeds in almost the same number of examples as CVC4, and it is

reasonably efficient. Moreover, a closer analysis of the results reveals that our solver won in 16
sat and 3 unsat instances. Compared with S3P, Sloth won in 22 sat and 4 unsat instances (plus
S3P provided 8 unknown and 1 wrong answer and also crashed once). This shows that Sloth can
compete with semi-decision procedures at least in some cases even on a still quite simple fragment
of the logic it supports.

Table 4. Benchmarks from Stranger with str.replaceall.
Program #sat (sec) #unsat (sec) #to/mo #win +/-
Sloth-1 101 (1,404) 13 (18) 6/0 9/1
Sloth-2 104 (1,178) 13 (18) 3/0 8/5
Sloth-3 103 (772) 13 (19) 4/0 10/1
Sloth-4 101 (316) 13 (23) 6/0 24/2
Sloth-5 102 (520) 13 (20) 5/0 52/4
S3P 86 (11) 6 (26) 0/5 ś

Our final set of benchmarks is
obtained from the third one by fil-
tering out the 120 examples con-
taining str.replace and replac-
ing the str.replace operations by
str.replaceall, which reflects the
real semantics of the original pro-
grams. This makes the benchmarks
more challenging, although they are
still simple compared to those of Tables 1 and 2. The results are shown in Table 4. The meaning
of the columns is the same as in the previous tables. We compare the different versions of Sloth
against S3P only since CVC4 does not support str.replaceall. On the examples, S3P crashed
6 times and provided 6 times the unknown result and 13 times a wrong result. Overall, although
Sloth is still slower, it is more reliable than S3P (roughly 10 % of wrong and 10 % of inconclusive
results for S3P versus 0 % of wrong and 5% of inconclusive results for Sloth).

As a final remark, we note that, apart from experimenting with the Sloth-1ś5 versions, we also
tried a version obtained from Sloth-3 by replacing the intensionally minimal successor computation
of Section 8.2 by the deterministic successor computation of Section 8.3. On the given benchmark,
this version provided 3 times the best result. This underlines the fact that all of the described
optimizations can be useful in some cases.

10The S3P solver and CVC4 solvers are taken as two representatives of semi-decision procedures for the given fragment
with input from SMT-LIBv2.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:29

10 CONCLUSIONS
We have presented the first practical algorithm for solving string constraints with concatenation,
general transduction, and regular constraints; the algorithm is at the same time a decision procedure
for the acyclic fragment AC of intersection of rational relations of [Barceló et al. 2013] and the
straight-line fragment SL of [Lin and Barceló 2016]. The algorithm uses novel ideas including
alternating finite automata as symbolic representations and the use of fast model checkers like IC3
[Bradley 2012] for solving emptiness of alternating automata. In initial experiments, our solver
has shown to compare favourably with existing string solvers, both in terms of expressiveness
and performance. More importantly, our solver can solve benchmarking examples that cannot be
handled by existing solvers.

There are several avenues planned for future work, including more general integration of length
constraints and support for practically relevant operations like splitting at delimiters and indexOf.
Extending our approach to incorporate a more general class of length constraints (e.g. Presburger-
expressible constraints) seems to be rather challenging since this possibly would require us to
extend our notion of alternating finite automata with monotonic counters (see [Lin and Barceló
2016]), which (among others) introduces new problems on how to solve language emptiness.

ACKNOWLEDGMENTS
Holík and Janků were supported by the Czech Science Foundation (project 16-24707Y). Holík, Janků,
and Vojnar were supported by the internal BUT grant agency (project FIT-S-17-4014) and the IT4IXS:
IT4Innovations Excellence in Science (project LQ1602). Lin was supported by European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement no 759969). Rümmer was supported by the Swedish Research Council under
grant 2014-5484.

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.

2014. String Constraints for Verification. In CAV. 150ś166.
Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni

Vigna. 2008. Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applications. In S&P.
387ś401.

Pablo Barceló, Diego Figueira, and Leonid Libkin. 2013. Graph Logics with Rational Relations. Logical Methods in Computer
Science 9, 3 (2013). DOI:http://dx.doi.org/10.2168/LMCS-9(3:1)2013

Pablo Barceló, Leonid Libkin, A. W. Lin, and Peter T. Wood. 2012. Expressive Languages for Path Queries over Graph-
Structured Data. ACM Trans. Database Syst. 37, 4 (2012), 31.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. In Proc. of SMT’10.
Clark W. Barrett, Cesare Tinelli, Morgan Deters, Tianyi Liang, Andrew Reynolds, and Nestan Tsiskaridze. 2016. Efficient

solving of string constraints for security analysis. In Proceedings of the Symposium and Bootcamp on the Science of Security,
Pittsburgh, PA, USA, April 19-21, 2016. 4ś6. DOI:http://dx.doi.org/10.1145/2898375.2898393

Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. JSAT 7, 2-3 (2010), 59ś6. http://jsat.ewi.tudelft.nl/
content/volume7/JSAT7_4_LeBerre.pdf

Jean Berstel. 1979. Transductions and Context-Free Languages. Teubner-Verlag.
Armin Biere, Keijo Heljanko, and Siert Wieringa. 2017. AIGER 1.9 and Beyond (Draft).

http://fmv.jku.at/hwmcc11/beyond1.pdf (cited in 2017). (2017).
Nikolaj Bjùrner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating programs.

In TACAS. 307ś321.
Aaron R. Bradley. 2012. Understanding IC3. In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International

Conference, Trento, Italy, June 17-20, 2012. Proceedings. 1ś14. DOI:http://dx.doi.org/10.1007/978-3-642-31612-8_1
Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-Strength Verification Tool. In Computer Aided

Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, Tayssir Touili, Byron
Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 24ś40. DOI:http://dx.doi.org/10.1007/
978-3-642-14295-6_5

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:30 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2008. EXE: Automatically Generating
Inputs of Death. ACM Trans. Inf. Syst. Secur. 12, 2 (2008), 10:1ś10:38. DOI:http://dx.doi.org/10.1145/1455518.1455522

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen, Nikolai Tillmann, and Willem
Visser. 2011. Symbolic execution for software testing in practice: preliminary assessment. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 1066ś1071.
DOI:http://dx.doi.org/10.1145/1985793.1985995

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In CAV’14 (Lecture Notes in Computer
Science), Vol. 8559. Springer, 334ś342.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. The MIT Press, Cambridge, Massachusetts.
Google co. 2015. Google Closure Library (referred in Nov 2015). https://developers.google.com/closure/library/. (2015).
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition

(3rd ed.). The MIT Press.
Arlen Cox and Jason Leasure. 2017. Model Checking Regular Language Constraints. CoRR abs/1708.09073 (2017).

arXiv:1708.09073 http://arxiv.org/abs/1708.09073
Loris D’Antoni, Zachary Kincaid, and Fang Wang. 2016. A Symbolic Decision Procedure for Symbolic Alternating Finite

Automata. CoRR abs/1610.01722 (2016). http://arxiv.org/abs/1610.01722
Loris D’Antoni and Margus Veanes. 2013. Static Analysis of String Encoders and Decoders. In VMCAI. 209ś228.
Leonardo De Moura and Nikolaj Bjùrner. 2011. Satisfiability modulo theories: introduction and applications. Commun.

ACM 54, 9 (2011), 69ś77.
Volker Diekert. 2002. Makanin’s Algorithm. In Algebraic Combinatorics on Words, M. Lothaire (Ed.). Encyclopedia of

Mathematics and its Applications, Vol. 90. Cambridge University Press, Chapter 12, 387ś442.
Laurent Doyen and Jean-François Raskin. 2010. Antichain Algorithms for Finite Automata. In TACAS’10 (Lecture Notes in

Computer Science), Vol. 6015. Springer, 2ś22. DOI:http://dx.doi.org/10.1007/978-3-642-12002-2_2
Alain Finkel. 1987. A Generalization of the Procedure of Karp and Miller to Well Structured Transition Systems. In Automata,

Languages and Programming, 14th International Colloquium, ICALP87, Karlsruhe, Germany, July 13-17, 1987, Proceedings
(Lecture Notes in Computer Science), Thomas Ottmann (Ed.), Vol. 267. Springer, 499ś508. DOI:http://dx.doi.org/10.1007/
3-540-18088-5_43

Xiang Fu and Chung-Chih Li. 2010. Modeling Regular Replacement for String Constraint Solving. In NFM. 67ś76.
Xiang Fu, Michael C. Powell, Michael Bantegui, and Chung-Chih Li. 2013. Simple linear string constraints. Formal Asp.

Comput. 25, 6 (2013), 847ś891.
Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. 2013. Word equations with length constraints:

what’s decidable? In Hardware and Software: Verification and Testing. Springer, 209ś226.
Graeme Gange, Jorge A. Navas, Peter J. Stuckey, Harald Sùndergaard, and Peter Schachte. 2013. Unbounded Model-Checking

with Interpolation for Regular Language Constraints. In TACAS’2013 (Lecture Notes in Computer Science), Vol. 7795.
Springer, 277ś291.

Seymour Ginsburg and Edwin H. Spanier. 1966. Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 2
(1966), 285ś296. http://projecteuclid.org/euclid.pjm/1102994974

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005.
213ś223. DOI:http://dx.doi.org/10.1145/1065010.1065036

Claudio Gutiérrez. 1998. Solving Equations in Strings: On Makanin’s Algorithm. In LATIN. 358ś373.
Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z. Yang. 2013. mXSS attacks: attacking

well-secured web-applications by using innerHTML mutations. In CCS. 777ś788.
Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and Precise Sanitizer

Analysis with BEK. In USENIX Security Symposium. http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf
Pieter Hooimeijer and Westley Weimer. 2012. StrSolve: solving string constraints lazily. Autom. Softw. Eng. 19, 4 (2012),

531ś559.
Artur Jez. 2016. Recompression: A Simple and Powerful Technique for Word Equations. J. ACM 63, 1 (2016), 4:1ś4:51. DOI:

http://dx.doi.org/10.1145/2743014
Scott Kausler and Elena Sherman. 2014. Evaluation of String Constraint Solvers in the Context of Symbolic Execution. In

Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE ’14). ACM, New York,
NY, USA, 259ś270. DOI:http://dx.doi.org/10.1145/2642937.2643003

Christoph Kern. 2014. Securing the Tangled Web. Commun. ACM 57, 9 (Sept. 2014), 38ś47.
Adam Kiezun and others. 2012. HAMPI: A solver for word equations over strings, regular expressions, and context-free

grammars. ACM Trans. Softw. Eng. Methodol. 21, 4 (2012), 25.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

String Constraints with Concatenation and Transducers Solved Efficiently 4:31

Nils Klarlund, Anders Mùller, and Michael I. Schwartzbach. 2002. MONA Implementation Secrets. International Journal of
Foundations of Computer Science 13, 4 (2002), 571ś586.

Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica Piskac. 2013. Incremental, Inductive Coverability. In CAV’13
(Lecture Notes in Computer Science), Vol. 8044. Springer, 158ś173.

Daniel Kroening and Ofer Strichman. 2008. Decision Procedures. Springer.
Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2014. A DPLL(T) Theory Solver for a

Theory of Strings and Regular Expressions. In CAV. 646ś662.
Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2016. An efficient

SMT solver for string constraints. Formal Methods in System Design 48, 3 (2016), 206ś234. DOI:http://dx.doi.org/10.1007/
s10703-016-0247-6

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. 2015. A Decision Procedure for Regular
Membership and Length Constraints over Unbounded Strings. In Frontiers of Combining Systems - 10th International
Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings. 135ś150. DOI:http://dx.doi.org/10.1007/
978-3-319-24246-0_9

Anthony Widjaja Lin and Pablo Barceló. 2016. String solving with word equations and transducers: towards a logic for
analysing mutation XSS. In POPL. 123ś136. DOI:http://dx.doi.org/10.1145/2837614.2837641

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: Practical Symbolic Execution of Standalone JavaScript.
In SPIN.

Gennady S Makanin. 1977. The problem of solvability of equations in a free semigroup. Sbornik: Mathematics 32, 2 (1977),
129ś198.

John McCarthy. 1980. Circumscription - A Form of Non-Monotonic Reasoning. Artif. Intell. 13, 1-2 (1980), 27ś39. DOI:
http://dx.doi.org/10.1016/0004-3702(80)90011-9

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Verification, 15th Inter-
national Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. 1ś13. DOI:http://dx.doi.org/10.1007/
978-3-540-45069-6_1

Christophe Morvan. 2000. On Rational Graphs. In FoSSaCS. 252ś266.
Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2004. Abstract DPLL and Abstract DPLL Modulo Theories. In

LPAR’04 (LNCS), Vol. 3452. Springer, 36ś50.
OWASP. 2013. https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf. (2013).
Wojciech Plandowski. 2004. Satisfiability of word equations with constants is in PSPACE. J. ACM 51, 3 (2004), 483ś496.
Wojciech Plandowski. 2006. An efficient algorithm for solving word equations. In STOC. 467ś476.
Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. 2012. Symbolic execution of programs with strings. In SAICSIT.

139ś148.
Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In Proceedings,

15th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LNCS), Vol. 5330. Springer,
274ś289.

Jacques Sakarovitch. 2009. Elements of automata theory. Cambridge University Press.
Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. 2010. A Symbolic

Execution Framework for JavaScript. In S&P. 513ś528.
Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. 488ś498. DOI:http://dx.doi.org/10.1145/2491411.2491447

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-Solver.
In FMCAD (LNCS), Vol. 1954. Springer, 108ś125.

Deian Tabakov and Moshe Y. Vardi. 2005. Experimental Evaluation of Classical Automata Constructions. In Logic for
Programming, Artificial Intelligence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings (Lecture Notes in Computer Science), Geoff Sutcliffe and Andrei Voronkov (Eds.), Vol. 3835.
Springer, 396ś411. DOI:http://dx.doi.org/10.1007/11591191_28

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web
Applications. In CCS. 1232ś1243.

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive Reasoning over Recursively-Defined Strings. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I. 218ś240. DOI:http://dx.doi.org/10.1007/978-3-319-41528-4_12

Moshe Y. Vardi. 1995. An Automata-Theoretic Approach to Linear Temporal Logic. In Logics for Concurrency - Structure
versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceedings). 238ś266. DOI:http:
//dx.doi.org/10.1007/3-540-60915-6_6

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

4:32 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjùrner. 2012. Symbolic finite state
transducers: algorithms and applications. In POPL. 137ś150.

Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String Analysis via Automata
Manipulation with Logic Circuit Representation. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Vol. 9779. Springer,
241ś260. DOI:http://dx.doi.org/10.1007/978-3-319-41528-4

Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and Zhendong Su. 2008. Dynamic test
input generation for web applications. In ISSTA. 249ś260.

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Eui Chul Richard Shin, and Dawn Song. 2011. A
Systematic Analysis of XSS Sanitization in Web Application Frameworks. In ESORICS. 150ś171.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: An Automata-Based String Analysis Tool for PHP. In TACAS.
154ś157. Benchmark can be found at http://www.cs.ucsb.edu/~vlab/stranger/.

Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-based symbolic string analysis for vulnerability
detection. Formal Methods in System Design 44, 1 (2014), 44ś70.

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2009. Symbolic String Verification: Combining String Analysis and Size Analysis.
In TACAS. 322ś336.

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2011. Relational String Verification Using Multi-Track Automata. Int. J. Found.
Comput. Sci. 22, 8 (2011), 1909ś1924.

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a Z3-based string solver for web application analysis. In
ESEC/SIGSOFT FSE. 114ś124.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

Chain-Free String Constraints

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Bui Phi Diep1(B), Lukáš Holı́k2,
and Petr Janků2

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,bui.phi-diep}@it.uu.se

2 Brno University of Technology, Brno, Czech Republic
{holik,ijanku}@fit.vutbr.cz

Abstract. We address the satisfiability problem for string constraints that com-
bine relational constraints represented by transducers, word equations, and string
length constraints. This problem is undecidable in general. Therefore, we pro-
pose a new decidable fragment of string constraints, called weakly chaining string
constraints, for which we show that the satisfiability problem is decidable. This
fragment pushes the borders of decidability of string constraints by generalis-
ing the existing straight-line as well as the acyclic fragment of the string logic.
We have developed a prototype implementation of our new decision procedure,
and integrated it into in an existing framework that uses CEGAR with under-
approximation of string constraints based on flattening. Our experimental results
show the competitiveness and accuracy of the new framework.

Keywords: String constraints · Satisfiability modulo theories ·
Program verification

1 Introduction

The recent years have seen many works dedicated to extensions of SMT solvers with
new background theories that can lead to efficient analysis of programs with high-
level data types. A data type that has attracted a lot of attention is string (for instance
[2,4,7,9,10,14,16–18,20,33,37,38]). Strings are present in almost all programming
and scripting languages. String solvers can be extremely useful in applications such as
verification of string-manipulating programs [4] and analysis of security vulnerabili-
ties of scripting languages (e.g., [20,29,30,37]). The wide range of the commonly used
primitives for manipulating strings in such languages requires string solvers to handle
an expressive class of string logics. The most important features that a string solver
have to model are concatenation (which is used to express assignments in programs),
transduction (which can be used to model sanitisation and replacement operations), and
string length (which is used to constraint lengths of strings).

This work has been supported by the Czech Science Foundation (project No. 19-24397S), the
IT4Innovations Excellence in Science (project No. LQ1602), and the FIT BUT internal projects
FIT-S-17-4014 and FEKT/FIT-J-19-5906.

c© Springer Nature Switzerland AG 2019
Y.-F. Chen et al. (Eds.): ATVA 2019, LNCS 11781, pp. 277–293, 2019.
https://doi.org/10.1007/978-3-030-31784-3_16

278 P. A. Abdulla et al.

It is well known that the satisfiability problem for the full class of string constraints
with concatenation, transduction, and length constraints is undecidable in general [10,
23] even for a simple formula of the form T (x,x) where T is a rational transducer and
x is a string variable. However, this theoretical barrier did not prevent the development
of numerous efficient solvers such as Z3-str3 [7], Z3-str2 [38], CVC4 [18], S3P [33,
34], and TRAU [2,3]. These tools implement semi-algorithms to handle a large variety
of string constraints, but do not provide completeness guarantees. Another direction
of research is to find meaningful and expressive subclasses of string logics for which
the satisfiability problem is decidable. Such classes include the acyclic fragment of
Norn [5], the solved form fragment [13], and also the straight-line fragment [9,14,20].

In this paper, we propose an approach which is a mixture of the two above research
directions, namely finding decidable fragments and making use of it to develop effi-
cient semi-algorithms. To that aim, we define the class of chain-free formulas which
strictly subsumes the acyclic fragment of Norn [5] as well as the straight-line frag-
ment of [9,14,20], and thus extends the known border of decidability for string con-
straints. The extension is of a practical relevance. A straight-line constraint models a
path through a string program in the single static assignment form, but as soon as the
program compares two initialised string variables, the string constraint falls out of the
fragment. The acyclic restriction of Norn on the other hand does not include transducer
constraints and does not allow multiple occurrences of a variable in a single string con-
straint (e.g. an equation of the form xy = zz). Our chain-free fragment is liberal enough
to accommodate constraints that share both these forbidden features (including xy= zz).

The following pseudo-PHP code (a variation of a code at [35]) that prompts a user to
change his password is an example of a program that generates a chain-free constraint
that is neither straight-line nor acyclic according to [4,20].

$old=$database->real_escape_string($oldIn);

$new=$database->real_escape_string($newIn);

$pass=$database->query("SELECT password FROM users WHERE userID=".$user);

if($pass == $old)

if($new != $old)

$query = "UPDATE users SET password=".$new." WHERE userID=".$user;

$database->query($query);

The user inputs the old password oldIn and the new password newIn, both are sani-
tized and assigned to old and new, respectively. The old sanitized password is compared
with the value pass from the database, to authenticate the user, and then also with the
new sanitized password, to ensure that a different password was chosen, and finally
saved in the database. The sanitization is present to prevent SQL injection. To ensure
that the sanitization works, we wish to verify that the SQL query query is safe, that is,
it does not belong to a regular language Bad of dangerous inputs. This safety condition
is expressed by the constraint

new = T (newIn)∧old = T (oldIn)∧pass = old∧new �= old

∧query = u.new.v.user∧query ∈ Bad

The sanitization on lines 1 and 2 is modeled by the transducer T , and u and v are the
constant strings from line 7. The constraints fall out from the straight-line due to the test

Chain-Free String Constraints 279

new �= old. The main idea behind the chain-free fragment is to associate to the set of
relational constraints a splitting graph where each node corresponds to an occurrence of
a variable in the relational constraints of the formula (as shown in Fig. 1). An edge from
an occurrence of x to an occurrence of y means that the source occurrence of x appears
in a relational constraint which has in the opposite side an occurrence of y different
from the target occurrence of y. The chain-free fragment prohibits loops in the graph,
that we call chains, such as those shown in red in Fig. 1.

x z y

y x u v

Fig. 1. The splitting graph of x = z ·
y∧ y = x ·u · v. (Color figure online)

Then, we identify the so called weakly chain-
ing fragment which strictly extends the chain-free
fragment by allowing benign chains. Benign chains
relate relational constraints where each left side
contains only one variable, the constraints are all
length preserving, and all the nodes of the cycles
appear exclusively on the left or exclusively on the
right sides of the involved relational constraints (as
is the case in Fig. 1). Weakly chaining constraints
may in practice arise from the checking that an
encoding followed a decoding function is indeed the identity, i.e., satisfiability of con-
straints of the form Tenc(Tdec(x)) = x, discussed e.g. in [15]. For instance, in situations
similar to the example above, one might like to verify that the sanitization of a password
followed by the application of a function supposed to invert the sanitization gives the
original password.

Our decision procedure for the weakly chaining formulas proceeds in several steps.
The formula is transformed to an equisatisfiable chain-free formula, and then to an
equisatisfiable concatenation free formula in which the relational constraints are of the
form T (x,y) where x and y are two string variables and T is a transducer/relational
constraint. Finally, we provide a decision procedure of a chain and concatenation-free
formulae. The algorithm is based on two techniques. First, we show that the chain-free
conjunction over relational constraints can be turned into a single equivalent transducer
constraint (in a similar manner as in [6]). Second, consistency of the resulting transducer
constraint with the input length constraints is checked via the computation of the Parikh
image of the transducer.

To demonstrate the usefulness of our approach, we have implemented our deci-
sion procedure in SLOTH [14], and then integrated it in the open-source solver TRAU

[2,3]. TRAU is a string solver which is based on a Counter-Example Guided Abstrac-
tion Refinement (CEGAR) framework which contains both an under- and an over-
approximation module. These two modules interact together in order to automatically
make these approximations more precise. We have implemented our decision procedure
inside the over-approximation module which takes as an input a constraint and checks
if it belongs to the weakly chaining fragment. If it is the case, then we use our decision
procedure outlined above. Otherwise, we start by choosing a minimal set of occurrences
of variables x that needs to be replaced by fresh ones such that the resulting constraint
falls in our decidable fragment. We compare our prototype implementation against four
other state-of-the-art string solvers, namely Ostrich [10], Z3-str3 [7], CVC4 [18,19],
and TRAU [1]. For our comparison with Z3-str3, we use the version that is part of Z3

280 P. A. Abdulla et al.

4.8.4. Our experimental results show the competitiveness as as well as accuracy of the
framework compared to the solver TRAU [2,3]. Furthermore, the experimental results
show the competitiveness and generality of our method compared to the existing tech-
niques. In summary, our main contributions are: (1) a new decidable fragment of string
constraints, called chain-free, which strictly generalises the existing straight-line as well
as the acyclic fragment [4,20] and precisely characterises the decidability limitations of
general relational/transducer constraints combined with concatenation, (2) a relaxation
of the chain-free fragment, called weakly chaining, which allows special chains with
length preserving relational constraints, (3) a decision procedures for checking the sat-
isfiability problem of chain-free as well as weakly chaining string constraints, and (4)
a prototype with experimental results that demonstrate the efficiency and generality of
our technique on benchmarks from the literature as well as on new benchmarks.

2 Preliminaries

Sets and Strings. We use N, Z to denote the sets of natural numbers and integers,
respectively. A finite set Σ of letters is an alphabet, a sequence of symbols a1 · · ·an
from Σ is a word or a string over Σ, with its length n denoted by |w|, ε is the empty word
with |ε| = 0, it is a neutral element with respect to string concatenation ◦, and Σ∗ is the
set of all words over Σ including ε.

Logic. Given a predicate formula, an occurrence of a predicate is positive if it is under
an even number of negations. A formula is in disjunctive normal form (DNF) if it is
a disjunction of clauses that are themselves conjunctions of (negated) predicates. We
write Ψ[x/t] to denote the formula obtained by substituting in the formula Ψ each occur-
rence of the variable x by the term t.

(Multi-tape)-Automata and Transducers. A Finite Automaton (FA) over an alphabet Σ
is a tuple A = 〈Q,Δ, I,F〉, where Q is a finite set of states, Δ ⊆Q×Σε ×Q with Σε = Σ∪
{ε} is a set of transitions, and I ⊆Q (resp. F ⊆Q) are the initial (resp. accepting) states.
A accepts a word w iff there is a sequence q0a1q1a2 · · ·anqn such that (qi−1,ai,qi) ∈ Δ
for all 1 ≤ i≤ n, q0 ∈ I, qn ∈ F , and w= a1 ◦· · ·◦an. The language of A , denoted L(A),
is the set all accepted words.

Given n ∈ N, a n-tape automaton T is an automaton over the alphabet (Σε)
n. It

recognizes the relation R (T) ⊆ (Σ∗)n that contains vectors of words (w1,w2, . . . ,wn)
for which there is (a(1,1),a(2,1), . . . ,a(n,1)) · · ·(a(1,m),a(2,m), . . . ,a(n,m)) ∈ L(T) with
wi = a(i,1) ◦ · · · ◦a(i,m) for all i ∈ {1, . . . ,n}. A n-tape automaton T is said to be length-
preserving if its transition relation Δ ⊆Q×Σn×Q. A transducer is a 2-tape automaton.

Let us recall some well-know facts about the class of multi-tape automata. First, the
class of n-tape automata is closed under union but not under complementation nor inter-
section. However, the class of length-preserving multi-tape automata is closed under
intersection. Multi-tape automata are closed under composition. Let T and T ′ be two
multi-tape automata of dimension n and m, respectively, and let i ∈ {1, . . . ,n} and j ∈
{1, . . . ,m} be two indices. Then, it is possible to construct a (n+m−1)-tape automaton
T ∧(i, j) T ′ which accepts the set of words (w1, . . . ,wn,u1, . . . ,u j−1,u j+1, . . . ,um) if and

Chain-Free String Constraints 281

only if (w1, . . . ,wn) ∈R (T) and (u1, . . . ,u j−1,wi,u j+1, . . . ,um) ∈R (T ′). Furthermore,
we can show that multi-tape automata are closed under permutations: Given a permu-
tation σ : {1, . . . ,n} → {1, . . . ,n} and a n-tape automaton T , it is possible to construct
a n-tape automaton σ(T) such that R (σ(T)) = {(wσ(1), . . . ,wσ(n)) |(w1,w2, . . . ,wn) ∈
R (T)}. Finally, given a n-tape automaton T and a natural number k ≥ n, we can con-
struct a k-tape automaton s. t. (w1, . . . ,wk) ∈R (T ′) if and only if (w1, . . . ,wn) ∈R (T).

3 String Constraints

Fig. 2. Syntax of string formulae

The syntax of a string formula Ψ over
an alphabet Σ and a set of variables
X is given in Fig. 2. It is a Boolean
combination of memberships, relational,
and arithmetic constraints over string
terms tstr (i.e., concatenations of vari-
ables in X). Membership constraints
denote membership in the language of
a finite-state automaton A over Σ. Rela-
tional constraints denote either an equal-
ity of string terms, which we normally
write as t = t ′ instead of =(t, t ′), or that the terms are related by a relation recog-
nised by a transducer T . (Observe that the equality relations can be also expressed
using length preserving transducers.) Finally, arithmetic terms tar are linear functions
over term lengths and integers, and arithmetic constraints are inequalities of arithmetic
terms. String formulae allow using negation with one restriction, namely, constraints
that are not invertible must have only positive occurrences. General transducers are not
invertible, it is not possible to negate them. Regular membership, length preserving
relations (including equality), and length constraints are invertible.

To simplify presentation, we do not consider mixed string terms tstr that contain,
besides variables of X, also symbols of Σ. This is without loss of generality because a
mixed term can be encoded as a conjunction of the pure term over X obtained by replac-
ing every occurrence of a letter a ∈ Σ by a fresh variable x and the regular membership
constraints Aa(x) with L(Aa) = {a}. Observe also that membership and equality con-
straints may be expressed using transducers.

Semantics. We describe the semantics of our logic using a mapping η, called interpre-
tation, that assigns to each string variable in X a word in Σ∗. Extended to string terms by
η(ts1 ◦ ts2) = η(ts1) ◦η(ts2). Extended to arithmetic terms by η(|ts|) = |η(ts)|, η(k) = k
and η(ti + t ′i) = η(ti)+η(t ′i). Extended to atomic constraints, η returns a truth value:

η(A(tstr)) = � iff η(tstr) ∈ L(A)
η(R(tstr, t ′str)) = � iff (η(tstr),η(t ′str)) ∈ R (R)

η(ti1 ≤ ti2) = � iff η(ti1) ≤ η(ti2)

Given two interpretations η1 and η2 over two disjoint sets of string variables X1 and
X2, respectively. We use η1 ∪ η2 to denote the interpretation over X1 ∪ X2 such that
(η1 ∪η2)(x) = η1(x) if x ∈ X1 and (η1 ∪η2)(x) = η2(x) if x ∈ X2.

282 P. A. Abdulla et al.

The truth value of a Boolean combination of formulae under η is defined as usual.
If η(Ψ) = � then η is a solution of Ψ, written η |= Ψ. The formula Ψ is satisfiable iff
it has a solution, otherwise it is unsatisfiable.

A relational constraint is said to be left-sided if and only if it is on the form R(x, tstr)
where x∈ X is a string variable and tstr is a string term. Any string formula can be trans-
formed into a formula where all the relational constraints are left-sided by replacing any
relational constraint of the form R(tstr, t ′str) by R(x, t ′str)∧ x = t where x is fresh.

A formula Ψ is said to be concatenation free if and only if for every relational
constraint R(tstr, t ′str), the string terms tstr and t ′str appearing in the parameters of any
relational constraints in Ψ are variables (i.e., tstr, t ′str ∈ X).

4 Chain Free and Weakly Chaining Fragment

It is well known that the satisfiability problem for the class of string constraint for-
mulas is undecidable in general [10,23]. This problem is undecidable already for a
single transducer constraint of the form T (x,x) (by a simple reduction from the Post-
Correspondence Problem). In the following, we define a subclass called weakly chain-
ing fragment for which we prove that the satisfiability problem is decidable.

Splitting Graph. Let Ψ ::=
∧m

j=1 ϕ j be a conjunction of relational string constraints
with ϕ j ::= Rj(t2 j−1, t2 j),1 ≤ j ≤ m where for each i : 1 ≤ i ≤ 2m, ti is a concatenation
of variables x1

i ◦ · · · ◦ xnii . We define the set of positions of Ψ as P = {(i, j) | 1 ≤ j ≤
2m ∧ 1 ≤ i ≤ n j}. The splitting graph of Ψ is then the graph GΨ = (P,E,var,con)
where the positions in P are its nodes, and the mapping var :P→ X labels each position
(i, j) with the variable xij appearing at that position. We say that (i,2 j−1) (resp. (i,2 j))
is the ith left (resp. right) positions of the jth constraint, and that Rj is the predicate
of these positions. Any pair of a left and a right position of the same constraint are
called opposing. The set of edges E then consists of edges (p, p′) between positions for
which there is an intermediate position p′′ (different from p′) that is opposing to p and
is labeled by the same variable as p′ (var(p′′) = var(p′)). Finally, the labelling con of
edges assigns to (p, p′) the constraint of p, that is, con(p, p′) = Rj where p is a position
of the jth constraint. An example of a splitting graph is on Fig. 1.

Chains. A chain1 in the graph is a sequence of the form (p0, p1),(p1, p2), . . . ,(pn, p0)
of edges in E. A chain is benign if (1) all the relational constraints corresponding to the
edges con(p0, p1),con(p1, p2), . . . ,con(pn, p0) are left sided and and all the string rela-
tions involved in these constraints are length preserving, and (2) the sequence of posi-
tions p0, p1, . . . , pn consists of left positions only, or from right positions only. Observe
that if there is a benign chain that uses only right positions then there exists also a
benign chain that uses only left positions. The graph is chain-free if it has no chains,
and it is weakly chaining if all its chains are benign. A formula is chain-free (resp.
weakly chaining) if the splitting graph of every clause in its DNF is chain-free (resp.
weakly chaining). Benign chains are on Fig. 1 shown in red.

1 We use chains instead of cycles in order to avoid confusion between our decidable fragment
and the ones that exist in literatures.

Chain-Free String Constraints 283

In the following sections, we will show decision procedures for the chain-free and
weakly chaining fragments. Particularly, we will show how a weakly chaining formula
can be transformed to a chain-free formula by elimination of benign cycles, how then
concatenation can be eliminated from a chain-free formula, and finally how to decide a
concatenation free-formula.

Undecidability of Chaining Formulae. Before presenting the decision procedures for
weakly chaining formulae, we finish the current section by stating that the chain-free
fragment is indeed the limit of decidability of general transducer constraints, in the
following sense: We say that two conjunctive string formulae have the same relation-
concatenation skeleton if one can be obtained from the other by removing member-
ship and length constraints and replacing a constraint of the form R(t, t ′) by another
constraint of the form R′(t, t ′). A skeleton class is then an equivalence class of string
formulae that have the same relation-concatenation skeleton.

Lemma 1. The satisfiability problem is undecidable for every given skeleton class.

The proof of the above lemma can be done through a reduction from undecidabil-
ity of general transducer constraints of the form T (x,x). Together with decidability of
chain-free formulae, discussed in Sects. 6 and 7, the lemma implies that the satisfiability
problem for a skeleton class is decidable if and only if its splitting graph is chain-free.
In other words, chain-freeness is the most precise criterion of decidability of string for-
mulae based on relation-concatenation skeletons (that is, a criterion independent of the
particular values of relational, membership, and length constraints).

5 Weakly Chaining to Chain-Free

In the following, we show that, given a weakly chaining formula, we can transform it
to an equisatisfiable chain-free formula.

Theorem 1. A weakly chaining formula can be transformed to an equisatisfiable chain-
free formula.

The rest of this section is devoted to the proof of Theorem 1 (which also provides
an algorithm how to transform any weakly chaining formula into an equisatisfiable
chain-free formula). In the following, we assume w.l.o.g. that the given weakly-chaining
formula Ψ is conjunctive. The proof is done by induction on the number B of relational
constraints that are labelling the set of benign chains in the splitting graph of Ψ.

Base Case (B=0). Since there is no benign chain in GΨ, Theorem 1 holds.

Induction Case (B > 0). In the following, we will show how to remove one benign
chain (and its set of labelling relational constraints) in the case where the splitting
graph of Ψ does not contain nested chains. If nested chains are present, then the proof
follows the same main ideas, but the reasoning is generalised from one benign chain
to strongly connected components. Let ρ = (p0, p1),(p1, p2), . . . ,(pn, p0) be a benign

284 P. A. Abdulla et al.

chain in the splitting graph GΨ. For every i ∈ {0, . . . ,n}, let Ri(xi, ti) be the length pre-
serving relational constraint to which the position pi belongs. We assume w.l.o.g.2 that
all the positions p0, p1, . . . , pn are left positions. Since ρ is a benign chain, we have
that the variable xi is appearing in the string term t(i+n)mod(n+1) for all i ∈ {0, . . . ,n}.
Furthermore, we can use the fact that the relational constraints are length preserving
to deduce that the variables x0,x1, . . . ,xn have the same length. This implies also that,
for every i ∈ {0,1, . . . ,n}, the string term t ′i that is constructed by removing from ti one
occurrence of x(i+1)mod(n+1) is equivalent to the empty word. Therefore, the relational
constraint Ri(xi, ti) can be rewritten as Ri(xi,x(i+1)mod(n+1)) for all i ∈ {0,1, . . . ,n}.

Let xi1 ,xi2 , . . . ,xik be the maximal subsequence of pairwise distinct variables in
x0,x1, . . . ,xn. Let index be a mapping that associates to each index � ∈ {0, . . . ,n}
the index j ∈ {1, . . . ,k} such that x� = xi j . We can transform the transducer Ri,
with i ∈ {0, . . . ,n}, to a length preserving k-tape automaton Ai such that a word
(w1,w2, . . . ,wk) is accepted by Ai if and only if (windex(i),windex((i+1)mod(n+1))) is
accepted by Ri. Let then A be the k-tape automaton resulting from the intersec-
tion of A0, . . . ,An. Observe that A is also length-preserving. Furthermore, we have
that (w1,w2, . . . ,wk) is accepted by A if and only if (windex(i),windex((i+1)mod(n+1)))
is accepted by Ri for all i ∈ {0, . . . ,n} (i.e., the automaton A characterizes all pos-
sible solutions of

∧n
i=0Ri(xi,x(i+1)mod(n+1))). Ideally, we would like to replace the∧n

i=0Ri(xi,x(i+n)mod(n+1)) by A(xi1 ,xi2 , . . . ,xik), however, our syntax forbids such k-ary
relation. To overcome this problem, we first extend our alphabet Σ by all the letters in
Σk and then we replace

∧n
i=0Ri(xi,x(i+1)mod(n+1)) by ϕ := A(x)∧∧k

j=1 π j(xi j ,x) where
x is a fresh variable and for every j ∈ {1, . . . ,k}, π j is the length preserving trans-
ducer that accepts all pairs of the form (wj,(w1,w2, . . . ,wk)). Finally, let Ψ′ be the
formula obtained from Ψ by replacing the subformula

∧n
i=0Ri(xi, ti) in Ψ by ϕ∧|t ′i | = 0

(remember that the string term t ′i is ti from which we have removed one occurrence of
the variable x(i+1)mod(n+1)). It is easy to see that Ψ′ is satisfiable iff Ψ is also satisfiable.
Furthermore, the number of relational constraints that are labelling the set of benign
chains in the splitting graph of Ψ′ is strictly less than B (since π j can not be used to
label any benign chain in Ψ′).

6 Chain-Free to Concatenation Free

In the following, we show that we can reduce the satisfiability problem for a chain
free formula to the satisfiability problem of a concatenation free formula. To that aim,
we describe an algorithm that eliminates concatenation from relational constraints by
iterating simple splitting steps. When it terminates, it returns a formula over constraints
that are concatenation free. The algorithm can be applied if the string constraints in the
formula allow splitting, and it is guaranteed to terminate if the formula is chain-free.
We will explain these two notions below together with the description of the algorithm.

2 This is possible since if there is benign chain that uses only right positions then there exists
also a benign chain that uses only left positions.

Chain-Free String Constraints 285

Splitting. The split of a relational constraint ϕ :: = R(x ◦ t,y ◦ t ′) with t, t ′ �= ε is the
formula ΦL ∨ΦR where

ΦL ::=
∨n

i=1Ri(x1,y)∧R′
i(x2 ◦ t, t ′) [x/x1 ◦ x2]

ΦR ::=
∨m

j=1Rj(x,y1)∧R′
j(t,y2 ◦ t ′) [y/y1 ◦ y2]

m,n∈ N, x1,x2,y1,y2 are fresh variables, and η |= ϕ if and only if there is an assignment
η′ : {x1,x2,y1,y2} → Σ∗ such that η∪η′ |= (ΦL ∧ x = x1 ◦ x2)∨ (ΦR ∧ y = y1 ◦ y2). The
formula ΦL is called the left split and ΦR is called the right split of ϕ. In case t ′ = ε, the
split is defined in the same way but with ΦL left out, and if t = ε, then ΦR is left out.
If both t and t ′ equal ε, then ϕ is concatenation free and does not have a split. A simple
example is the equation xy = zz with the split (x1 = z∧x2y = z)∨ (x = z1 ∧y = z2z1z2).
A class of relational constraints C allows splitting if for every constraint in C that is
not concatenation free, it is possible to compute a split that belongs to C . Equalities as
well as transducer constraints allow splitting. A left split of an equality x ◦ t = y ◦ t ′ is
x1 = y∧ x2 ◦ t = t ′. A left split of a transducer constraint T (x◦ t,y◦ t ′) is the formula

∨
q∈QTq(x1,y)∧ qT (x2 ◦ t, t ′)

where Q is the set of states of T , and qT and Tq are the T with the original set of initial
and final states, respectively, replaced by {q} (this is the automata splitting technique
of [4] extended to transducers in [20]). The right splits are analogous.

Splitting Algorithm. A splitting algorithm for eliminating concatenation iterates split-
ting steps on a formula in DNF. A splitting step can be applied to one of the clauses if
it can be written in the form ϒ ::= ϕ∧Ψ where ϕ ::= R(x◦ t,y◦ t ′). It then replaces the
clause by a DNF of the disjunction

(ΦL ∧Ψ[x/x1 ◦ x2]∧|x| = |x1|+ |x2|)∨ (ΦR ∧Ψ[y/y1 ◦ y2]∧|y| = |y1|+ |y2|)

where ΦL and ΦR are the left and the right split, respectively, of ϕ. The left or the right
disjunct is omitted if t ′ = ε or t = ε, respectively. The splitting step is not applied when
both t and t ′ equal ε, i.e. ϕ is concatenation free. In order to ensure termination, the
algorithm applies splitting steps under the following regimen consisting of two phases.

In Phase 1, the algorithm maintains each clause ϒ of a DNF of the string formula
annotated with a reminder, a sub-graph Hϒ of its splitting graph Gϒ. The reminders
restrict the choice of splitting steps so that a splitting step can be applied to a clause
ϒ = ϕ ∧ Ψ only if ϕ is a root constraint in Hϒ, meaning that all positions at one of
the sides of ϕ are root nodes of Hϒ. The reminder graphs are assigned to clauses as
follows. The algorithm is initialised with Hϒ ::= Gϒ for each clause ϒ. After taking a
splitting step, the reminder graph of each new clause ϒ′ is a sub-graph Hϒ′ of its splitting
graph Gϒ′ . Particularly, Hϒ′ contains only those constraints of ϒ′ (their positions that
is) that are non-concatenation-free successors of the constraints of ϒ that appear in
Hϒ. The newly created concatenation free constraints do not propagate to Hϒ′ . Here,
by saying that a constraint ϕ′ of ϒ′ is a successor of a constraint ϕ of ϒ means that
either ϕ′ = ϕ[x/x1 ◦ x2] or ϕ′ = ϕ[y/y1 ◦ y2], or that they are the constraints explicitly
mentioned in the definition of left or right split. Phase 1 terminates when the reminder
graphs of all clauses are empty.

286 P. A. Abdulla et al.

Phase 2 then performs splitting steps in any order until all constraints are concate-
nation free.

Theorem 2. When run on a chain-free formula, the splitting algorithm terminates with
an equisatisfiable chain and concatenation-free formula.

Hereafter, we provide a brief overview of the proof of Theorem 2. The main diffi-
culty with proving termination of splitting is the substitution of variables involved in
the left and right split. The left split makes a step towards concatenation freeness by
removing one concatenation operator ◦ from the clause, since the terms x ◦ t and y ◦ t ′
are replaced by x1, y, t ′, and x2 ◦ t. However, the substitution of x by x1 ◦ x2 in the
reminder of the clause introduces as many new concatenations as there are occurrences
of x other than the one explicit in the definition of the left split (and similarly for the
right split). Therefore, to guarantee termination of splitting, we must limit the effect of
substitution by enforcing chain-freeness.

Why chain-freeness is the right property here may be intuitively explained as fol-
lows. The splitting graph of a clause is in fact a map of how chains of substitutions may
increase the number of concatenations in the clause. Consider an edge in the splitting
graph from a position p to a position p′. By definition, there is an intermediate posi-
tion p′′ opposite p and carrying the same variable as p′. This means that when splitting
decreases the number of concatenations on the side of p by one (the label of p may be
y referred to in the left split), the substitution of the label of p′′ (this would be x in the
left split) would cause that the position p′ also labeled by x is replaced by the concate-
nation x1 ◦ x2. Moreover, since the length of the side of p′ is now larger, it is possible
to perform more splitting steps that follow edges starting at the side of p′ and increase
numbers of ◦ at positions reachable from p′ and consequently also further along the
path in the splitting graph starting at (p, p′). Hence the intuitive meaning of the edge is
that decreasing the number of ◦ at the side of p might increase the number of ◦ at the
side of p′. Chain-freeness now guarantees that it can happen only finitely many times
that decreasing the number of ◦ at the side of a position p can through a sequence of
splitting steps lead to increasing this number.

7 Satisfiability of Chain and Concatenation-Free Formula

In this section, we explain a decision procedure of a chain and concatenation-free for-
mula. The algorithm is essentially a combination of two standard techniques. First,
concatenation and chain-free conjunction over relational constraints is a formula in the
“acyclic fragment” of [6] that can be turned into a single equivalent transducer con-
straint (an approach used also in e.g. [14]). Second, consistency of the resulting trans-
ducer with the input length constraints may be checked via computation of the Parikh
image of the transducer.

We will now describe the two steps in a more detail. For simplicity, we will assume
only transducer and length constraints. This is without loss of generality because the
other types of constraints can be encoded to transducers.

Transducer Constraints. A conjunction of transducer constraints may be decided
through computing an equisatisfiable multi-tape transducer constraint and checking

Chain-Free String Constraints 287

emptiness of its language. The transducer constraint is computed by synchronizing pairs
of constraints in the conjunction. That is, synchronization of two transducer constraints
T1(x1, . . . ,xn) and T2(y1, . . . ,ym) is possible if they share at most one variable (essen-
tially the standard automata product construction where the two transducers synchro-
nise on the common variable). The result of their synchronization is then a constraint
T1 ∧(i, j)T2(x1, . . . ,xn,y1 . . .y j−1,y j+1, . . . ,ym) where y j is the common variable equal to
xi for some 1 ≤ i≤ n or a constraint T1 ∧T2(x1, . . . ,xn,y1, . . . ,ym) if there is no common
variable. The T1 ∧T2 is a lose version of ∧(i, j) that does not synchronise the two transi-
tion relations (see e.g. [14,20] for details on implementation of a similar construction).
Since the original constraint is chain and concatenation-free, two constraints may share
at most one variable. This property is an invariant under synchronization steps, hence
they may be preformed in any order until only single constraint remains. Termination
of this procedure is immediate because every step decreases the number of constraints.

Length Constraints. A formula of the form Ψr ∧ Ψl where Ψr is a conjunction of
relational constraints and Ψl is a conjunction of length constraints may be decided
through replacing Ψr by a Presburger formula Ψ′

r over length constraints that captures
the length constraints implied by Ψr. That is, an assignment ν : {|x| | x ∈ X} → N is a
solution of Ψ′

r if and only if there is a solution η of Ψr such that |η(x)| = ν(|x|) for all
x∈ X. The conjunction Ψ′

r ∧Ψl is then an existential Presburger formula equisatisfiable
to the original conjunction, solvable by an of-the-shelf SMT solver.

Construction of Ψ′
r is based on computation of the Parikh image of the synchro-

nised constraint T (x1, . . . ,xn) equivalent to Ψr. Since T is a standard finite automaton
over the alphabet of n-tuples Σn

ε , its Parikh image can be computed in the form of a
semi-linear set represented as an existential Presburger formula ΨParikh by a standard
automata construction (see e.g. [32]). The formula captures the relationship between
the numbers of occurrences of letters of Σn

ε in words of L(T). Particularly, the numbers
of letter occurrences are represented by the Parikh variables P = {#α | α ∈ Σn

ε} and it
holds that The formulaν |= ΨParikh iff there is a word w∈L(T) such that for all α ∈ Σn

ε ,
α appears ν(#α) times in w.

The formula Ψ′
r is then extracted from ΨParikh as follows. Let A = {#ai | a ∈ Σ,1 ≤

i≤ n} be a set of auxiliary variables expressing how many times the letter a∈ Σ appears
on the ith position of a symbol from Σn

ε in a word from L(T). Let α[i] denotes the ith
component of the tuple α ∈ Σn

ε . We construct the formula Φ that uses variables A to
describe the relation between values of |x1|, . . . , |xn| and variables of P:

Φ :=
∧n

i=1

(
|xi| = ∑a∈Σ #ai ∧

∧
a∈Σ

(
#ai = ∑α∈Σn

ε s.t. α[i]=a #α
))

We the obtain Ψ′
r by eliminating the quantifiers from ∃P∃A : Φ∧ΨParikh.

8 Experimental Results

We have implemented our decision procedure in SLOTH [14] and then used it in the
over-approximation module of the string solver TRAU+, which is an extension of
TRAU[3]. TRAU+ is as an open source string solver and used Z3 [11] as the SMT solver
to handle generated arithmetic constraints. TRAU+ is based on a Counter-Example

288 P. A. Abdulla et al.

Table 1. Results of running solvers over Chain-Free, two sets of the SLOG, and four sets of PyEx
suite.

Guided Abstraction Refinement (CEGAR) framework which contains both an under-
and an over-approximation module. These two modules interact together in order to
automatically make these approximations more precise. The extension of SLOTH in the
over-approximation module of TRAU+ takes as an input a constraint and checks if it
belongs to the weakly-chaining fragment. If it is the case, then we use our decision pro-
cedure outlined above. Otherwise, we start by choosing a minimal set of occurrences
of variables x that needs to be replaced by fresh ones such that the resulting constraint
falls in our decidable fragment.

We compare TRAU+ performance against the performance of four other state-of-
the-art string solvers, namely Ostrich [10], Z3-str3 [7], CVC4 1.6 [18,19], and TRAU

[1]. For our comparison with Z3-str3, we use the version that is part of Z3 4.8.4. The
goal of our experiments is twofold:

Chain-Free String Constraints 289

– TRAU+ handles transducer constraints in an efficient manner TRAU+ can handle
more cases than TRAUsince the new over-approximation of TRAU+ supports more
and new transducer constraints that the one of TRAU.

– TRAU+ performs either better or as well as existing tools on transducer-less bench-
marks.

We carry experiments on suites that draw from the real world applications with
diverse characteristics. The first suite is our new suite Chain-Free. Chain-Free is
obtained from variations of various PHP code, including the introductory example. The
second suite is SLOG [36] that is derived from the security analysis of real web appli-
cations. The suite was generated by Ostrich group. The last suite is PyEx [27] that
is derived from PyEx - a symbolic executor designed to assist Python developers to
achieve high coverage testing. The suite was generated by CVC4 group on 4 popular
Python packages: httplib2, pip, pymongo, and requests. The summary of experi-
menting Chain-Free, SLOG, and PyEx is given in Table 1. All experiments were per-
formed on an Intel Core i7 2.7 Ghz with 16 GB of RAM. The time limit is 30s for each
test which is widely used in the evaluation of other string solvers. Additionally, we use
2700 s for Chain-Free suite - much larger than usual as its constraints are difficult. Rows
with heading “sat”(“unsat”) indicate the number of times the solver returned satisfiable
(unsatisfiable). Rows with heading “timeout” indicate the number of times the solver
exceeded the time limit. Rows with heading “error/unknown” indicate the number of
times the solver either crashed or returned unknown.

Chain-Free suite consists of 26 challenging chain-free tests, 6 of them being
also straight-line. The tests contain Concatenation, ReplaceAll, and general transduc-
ers constraints encoding various JavaScript and PHP functions such as htmlescape,
escapeString. Since Z3-str3, CVC4, and TRAU do not support the language of gen-
eral transducers, we skip performing experiments on those tools in the suite. Ostrich
returns 6 times “timeout” for straight-line tests, and times 20 “unknown” for the rest.
TRAU+ handles well most cases, and gets “timeout” for only 7 tests.

SLOG suite consists of 3512 tests which contain transducer constraints such as
Replace and ReplaceAll. Since Z3-str3 and CVC4 do not support the ReplaceAll func-
tion, we skip doing experiments on those tools in the ReplaceAll set. In both sets, the
result shows that TRAU+ clearly improved TRAU. In particular, TRAU+ can handle most
cases where TRAU returns either “unknown” and “timeout”. TRAU+ has also better per-
formance than other solvers.

PyEx suite consists of 25421 tests which contain diverse string constraints such
as IndexOf, CharAt, SubString, Concatenation. TRAU and CVC4 have similar perfor-
mance on the suite. While TRAU is better on PyEx-dt and PyEx-z3 sets (3 less error/un-
known results, roughly 1000 less timeouts), CVC4 is better on PyEx-zz set (about 800
less timeouts). CVC4 and TRAU clearly have an edge over Z3-str3 in all aspects. Com-
paring with Ostrich on this benchmark is problematic because it mostly fails due to
unsupported syntactic features. TRAU+ is better than TRAU on all three benchmark
sets. This shows that our proposed procedure is efficient in solving not only transducer
examples, but also in transducer-less examples.

290 P. A. Abdulla et al.

To summarise our experimental results, we can see that:

– TRAU+ handles more transducer examples in an efficient manner. This is illus-
trated by the Chain-Free and Slog suites. The experiment results on these bench-
marks show that TRAU+ outperforms TRAU. Many tests on which TRAU returns
“unknown” are now successfully handled by TRAU+ .

– TRAU+ performs as well as existing tools on transducer-less benchmarks and in fact
sometimes TRAU+ outperforms them. This is illustrated by the PyEx suite. In fact,
this benchmark is handled very well by TRAU, but nevertheless, as evident from the
table, our tool is doing better than TRAU. In fact, As TRAU+ out-performs TRAU

in some examples in the PyEx suite. In those examples, TRAU returned “unknown’
while TRAU+ returned “unsat”. This means that the new over-approximation not
only improves TRAU in transducer benchmarks, but it also improves TRAU in
transducer-less examples. Furthermore, observe that the PyEx suite has only around
4000 “unsat” cases out of 25k cases.

9 Related Work

Already in 1946, Quine [26] showed that the first order theory of string equations is
undecidable. An important line of work has been to identify subclasses for which decid-
ability can be achieved. The pioneering work by Makanin [21] proposed a decision pro-
cedure for quantifier-free word equations, i.e., Boolean combinations of equalities and
disequalities, where the variables may denote words of arbitrary lengths. The decid-
ability and complexity of different subclasses have been considered by several works,
e.g. [12,13,22,24,25,28,31]. Generalizations of the work of Makanin by adding new
types of constraints have been difficult to achieve. For instance, the satisfiability of word
equations combined with length constraints of the form |x| = |y| is open [8]. Recently,
regular and especially relational transducers constraints were identified as a strongly
desirable feature of string languages especially in the context software analysis with an
emphasis on security. Adding these to the mix leads immediately to undecidability [23]
and hence numerous decidable fragments were proposed [4,6,9,10,20]. From these,
the straight line fragment of [20] is the most general decidable combination of con-
catenation and transducers. It is however incomparable to the acyclic fragment of [4]
(which does not have transducers but could be extended with them in a straightforward
manner). Some works add also other syntactic features, such as [9,10], but the limit
of decidable combinations of the core string features—transducers/regular constraints,
length constraints, and concatenation stays at [20] and [4]. The weakly chaining decid-
able fragment present in this paper significantly generalises both these fragments in a
practically relevant direction.

The strong practical motivation in string solving led to a rise of a number of
SMT solvers that do not always provide completeness guarantees but concentrate on
solving practical problem instances, through applying a variety of calculi and algo-
rithms. A number of tools handle string constraints by means of length-based under-
approximation and translation to bit-vectors [17,29,30], assuming a fixed upper bound
on the length of the possible solutions. Our method on the other hand allows to analyse

Chain-Free String Constraints 291

constraints without a length limit and with completeness guarantees. More recently,
also DPLL(T)-based string solvers lift the restriction of strings of bounded length;
this generation of solvers includes Z3-str3 [7], Z3-str2 [38], CVC4 [18], S3P [33,34],
Norn [5], Trau [3], Sloth [14], and Ostrich [10]. DPLL(T)-based solvers handle a variety
of string constraints, including word equations, regular expression membership, length
constraints, and (more rarely) regular/rational relations; the solvers are not complete for
the full combination of those constraints though, and often only decide a (more or less
well-defined) fragment of the individual constraints. Equality constraints are normally
handled by means of splitting into simpler sub-cases, in combination with powerful
techniques for Boolean reasoning to curb the resulting exponential search space. Our
implementation is combining strong completeness guarantees of [14] extended to han-
dle the fragment proposed in this paper with an efficient approximation techniques of
[3] and its performance on existing benchmarks compares favourably with the most
efficient of the above tools.

A further direction is automata-based solvers for analyzing string-manipulated
programs. Stranger [37] soundly over-approximates string constraints using regular
languages, and outperforms DPLL(T)-based solvers when checking single execution
traces, according to some evaluations [16]. It has recently also been observed [14,36]
that automata-based algorithms can be combined with model checking algorithms, in
particular IC3/PDR, for more efficient checking of the emptiness for automata. How-
ever, many kinds of constraints, including length constraints and word equations, cannot
be handled by automata-based solvers in a complete manner.

References

1. Abdulla, P.A., et al.: Trau String Solver. https://github.com/diepbp/FAT
2. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of string con-

straints. In: PLDI. ACM (2017)
3. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: FMCAD. IEEE (2018)
4. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) CAV

2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08867-9 10

5. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4 29

6. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Logical Methods
Comput. Sci. 9(3) (2013). https://doi.org/10.2168/LMCS-9(3:1)2013

7. Berzish, M., Zheng, Y., Ganesh, V.: Z3str3: a string solver with theory-aware branching.
CoRR abs/1704.07935 (2017)

8. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and undecid-
able extensions of this theory. Z. Math. Logik Grundlagen Math. 34(4) (1988)

9. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string constraints
with the replace all function. Proc. ACM Program. Lang. 2(POPL) (2018). https://doi.org/
10.1145/3158091

10. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path feasibil-
ity of string-manipulating programs with complex operations. Proc. ACM Program. Lang.
3(POPL) (2019). https://doi.org/10.1145/3290362

292 P. A. Abdulla et al.

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

12. Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic over length,
and string-number conversion. CoRR abs/1605.09442 (2016)

13. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length con-
straints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol.
7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-
3 21

14. Holı́k, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with concatena-
tion and transducers solved efficiently. PACMPL 2(POPL) (2018). https://doi.org/10.1145/
3158092

15. Hu, Q., D’Antoni, L.: Automatic program inversion using symbolic transducers. In: SIG-
PLAN Notices, vol. 52, no. 6, June 2017

16. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the context of symbolic
execution. In: ASE 2014. ACM (2014)

17. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver for string
constraints. In: ISTA 2009. ACM (2009)

18. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory solver for a
theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 43

19. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: CVC4 (2016). http://cvc4.cs.nyu.
edu/papers/CAV2014-strings/

20. Lin, A.W., Barceló, P.: String solving with word equations and transducers: towards a logic
for analysing mutation XSS. In: POPL 2016. ACM (2016)

21. Makanin, G.: The problem of solvability of equations in a free semigroup. Math. USSR-
Sbornik 32(2) (1977)

22. Matiyasevich, Y.: Computation paradigms in light of Hilbert’s tenth problem. In: Cooper,
S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 59–85. Springer, New
York (2008). https://doi.org/10.1007/978-0-387-68546-5 4

23. Morvan, C.: On rational graphs. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol. 1784, pp.
252–266. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46432-8 17

24. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3)
(2004)

25. Plandowski, W.: An efficient algorithm for solving word equations. In: STOC 2006. ACM
(2006)

26. Quine, W.V.: Concatenation as a basis for arithmetic. J. Symb. Log. 11(4) (1946)
27. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up DPLL(T)

string solvers using context-dependent simplification. In: Majumdar, R., Kunčak, V. (eds.)
CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 24

28. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-49116-3 20

29. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution
framework for JavaScript. In: IEEE Symposium on Security and Privacy. IEEE (2010)

30. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: systematic discovery of client-side
validation vulnerabilities in rich web applications. In: NDSS. The Internet Society (2010)

Chain-Free String Constraints 293

31. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a generaliza-
tion. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150. Springer, Heidel-
berg (1992). https://doi.org/10.1007/3-540-55124-7 4

32. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1136–
1149. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8 94

33. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: a symbolic string solver for vulnerability detection in
web applications. In: CCS 2014. ACM (2014)

34. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined strings.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–240. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

35. TwistIt.tech: PHP tutorials (2019). https://www.makephpsites.com/php-tutorials/user-
management-tools/changing-passwords.php. Accessed 29 Apr 2019

36. Wang, H.-E., Tsai, T.-L., Lin, C.-H., Yu, F., Jiang, J.-H.R.: String analysis via automata
manipulation with logic circuit representation. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 241–260. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-41528-4 13

37. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis tool for PHP.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 154–157. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 13

38. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web application anal-
ysis. In: ESEC/FSE 2013. ACM (2013)

Efficient Handling of String-Number Conversion
Parosh Aziz Abdulla

Uppsala University
Uppsala, Sweden
parosh@it.uu.se

Mohamed Faouzi Atig
Uppsala University
Uppsala, Sweden

mohamed_faouzi.atig@it.uu.se

Yu-Fang Chen
Academia Sinica
Taipei, Taiwan

yfc@iis.sinica.edu.tw

Bui Phi Diep
Uppsala University
Uppsala, Sweden

bui.phi-diep@it.uu.se

Julian Dolby
IBM Research

NY, USA
dolby@us.ibm.com

Petr Janků
Brno University of Technology

Brno, Czechia
ijanku@fit.vutbr.cz

Hsin-Hung Lin
Academia Sinica
Taipei, Taiwan

hlin@iis.sinica.edu.tw

Lukáš Holík
Brno University of Technology

Brno, Czechia
holik@fit.vutbr.cz

Wei-Cheng Wu
University of Southern California

CA, USA
wwu@isi.edu

Abstract
String-number conversion is an important class of con-
straints needed for the symbolic execution of string-
manipulating programs. In particular solving string con-
straints with string-number conversion is necessary for the
analysis of scripting languages such as JavaScript and Python,
where string-number conversion is a part of the definition of
the core semantics of these languages. However, solving this
type of constraint is very challenging for the state-of-the-art
solvers. We propose in this paper an approach that can ef-
ficiently support both string-number conversion and other
common types of string constraints. Experimental results
show that it significantly outperforms other state-of-the-art
tools on benchmarks that involves string-number conver-
sion.

CCS Concepts: · Security and privacy→ Logic and ver-
ification; · Software and its engineering→ Formal meth-
ods.

Keywords: String Solver, Formal Verification, Automata

ACM Reference Format:
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui
Phi Diep, Julian Dolby, Petr Janků, Hsin-Hung Lin, Lukáš Holík,
and Wei-Cheng Wu. 2020. Efficient Handling of String-Number
Conversion. In Proceedings of the 41st ACM SIGPLAN International

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’20, June 15ś20, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386034

Conference on Programming Language Design and Implementation
(PLDI ’20), June 15ś20, 2020, London, UK. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3385412.3386034

1 Introduction
Symbolic execution is a very popular technique that allows
programmers to check the feasibility of a path in a program,
i.e., determining the value of the inputs under which the
given path can be executed. The path feasibility problem is
usually solved by a reduction to the satisfiability of a formula.
More precisely, program statements in the path are trans-
lated to equivalent constraints in static single assignment
(SSA) form and then solved by Satisfiability Modulo Theory
(SMT) solvers. The types of constraints needed depend on the
types of program expressions to be analyzed. Therefore, SMT
solvers need to support different combinations of theories
so that they can handle a wide range of types.

Among all data types, the string data type is omnipresent
in modern programming languages. Various security vul-
nerabilities such as injection and cross-site scripting attack
are caused by malicious string values. Therefore, string con-
straint solving has received considerable attention in the con-
straint solving community. Operations such as equality con-
straints (e.g. x .y = y.x), regular constraints (e.g., x ∈ (a.b)∗),
and integer constraints (e.g., |x | − |y | > 3), are widely sup-
ported by most state-of-the-art string constraint solvers such
as, CVC4 [8], OSTRICH [13], Sloth [21], Trau+ [1, 2, 5], Z3
[15] and Z3Str3 [9].
An important class of string operations is the string-

number conversions. While string length operations are
sometimes well supported, converting a string x to an inte-
ger n (e.g., using the operation n = toNum(x)) or turning an
integer value n into its string form x (e.g., using the opera-
tion x = toStr(n)) suffer from limited support (in terms of
the scale of formulae they can handle) by the state-of-the-art
string constraint solvers.

943

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

In fact, a code that receives string input tends to need to
convert at least some of that input into numbers. For example,
the program fragment below is a variant of the Luhn test
algorithm that is often used in credit card or ID validation.
function checkLuhn(value) {

var sum = 0;
for (var i = value.length - 1; i >= 0; i-=2) {

var d = parseInt(value.charAt(i));
sum += d;

}
for (var i = value.length - 2; i >= 0; i-=2) {

var d = parseInt(value.charAt(i));
if ((d *= 2) > 9) d -= 9;
sum += d;

}
var last= sum.toString().charAt(sum.length-1);
return last == '0';

}

The input value of the Luhn test algorithm is a sequence
of digits. The algorithm processes the digits in the reversed
order. The value of every odd digit (e.g., 1st, 3rd, etc.) is
added to sum directly. For the value of every even digit, the
algorithm (1) doubles its value, (2) subtracts its value by 9
if the doubled-value is larger than 9, and (3) adds the final
result to sum. At the end, the input is validated if the last
digit of sum is 0 (i.e., sum mod 10=0).
To check whether the program path that traverses both

loops exactly once and finally passes this test has a valid
input, we create the following (string) constraint:

1 value0 ∈ [1, 9]+ ∧ sum0 = 0∧
2 i0 = |value0 | − 1∧
3 d0 = toNum(charAt(value0, i0))∧
4 sum1 = sum0 + d0∧
5 i1 = |value0 | − 2∧
6 d1 = toNum(charAt(value0 , i1))∧
7 sum2 = sum1 + ite(d1 ∗ 2 > 9, d1 ∗ 2 − 9, d1 ∗ 2)∧
8 i2 = 0
9 last0 = charAt(toStr(sum2), |toStr(sum2)| − 1)∧
10 last0 = ł0”
Here value0 and last0 are string variables and the others

are integer variables. The method charAt(x , i) returns the
character at index i in the string x while n = ite(b, e , e ′)
assigns to n the value of the expression e if b is true and the
value of the expression e ′ otherwise. Line 1 describes the
initial condition: value should be a sequence of digits and
sum is initially zero. Lines 2-4 and lines 5-7 describe one
execution of the first and second loop, respectively. Line 8
describes the condition on i2 before leaving the loop. Finally,
Lines 9-10 describe the condition that the last digit of sum is
zero. Observe that to describe such a program path, we need
a solver that supports the following types of constraints:

• Regular constraints (e.g., value0 ∈ [1, 9]+, which says
value0 is in the regular language [0, 9]+),

• Integer constraints (e.g., i0 = |value0 | − 1, which says
i0 equals the length of value0 minus one),

• Equality constraints (often y = charAt(x , i) is encoded
as x = x1.x2.x3 ∧ |x1 | = i ∧ |x2 | = 1 ∧ y = x2, which
uses equality of string terms x and x1.x2.x3), and

• String-number conversion (e.g., toStr(sum2), which is
the string value of the number sum2).

Most of the state-of-the-art string constraint solvers pro-
vide limited support to the combination of above constraints.
In Table 3 of our evaluation (Section 9), CVC4 fails to solve
constraints corresponding to checkLuhn of more than 6 loop
iterations in 2 minutes, Z3 can only solve the cases corre-
sponding to 2 to 5, and 9 loop iterations, and Z3Str3 fails to
solve any case.
Even, more crucially, in many programming languages,

string-number conversion is a part of the definition of their
core semantics. JavaScript, which powers most interactive
content on the Web and increasingly server-side code with
Node.js, is one of such languages. Other scripting languages
do too, but we focus on JavaScript due to its prominence.
To see how string-integer conversion pervades semantics,
consider the following program:

for(var i = 0; i < 10; i++) {
arr[i] = 0;

}

A casual glance at the above code reveals no use of strings
at all, but the semantics of field access is somewhat unusual
in JavaScript. In fact, the arrays in JavaScript are indexed
by strings, and numeric indices are converted to strings.
This conversion is mandated explicitly by the JavaScript
semantics. The 2019 edition of ECMAScript [16] requires
that ToPropertyKey be called on the element expression
(ğ12.3.2.1), andToPropertyKey calls ToString on that value
in all but special cases (ğ7.1.14). Therefore, any faithful sym-
bolic execution of JavaScript must handle such conversions
for even basic array operations to work correctly. Consider
the following code snippet that manipulates an array x, with
its value shown on the right:

1 x = [0,0,0,0,0] [0,0,0,0,0]
2 x[3] = 4 [0,0,0,4,0]
3 x[03] = 2 [0,0,0,2,0]
4 x["3"] = 5 [0,0,0,5,0]
5 x["03"] = 7 [0,0,0,5,0] and x["03"] = 7
6 x["03"-1] = 2 [0,0,2,5,0] and x["03"] = 7

Here x[3] in line 2, x[03] in line 3, and x["3"] in line 4 all
denote the same array element of x["3"] (due to the implicit
conversion of numeric indices to strings in JavaScript), but
x["03"] denotes a completely different element (which is
stored at the index "03" of the array). So naïve modeling
of array indices with integers will not work ś it cannot
distinguish the indices "3" and "03".

But if array indices are modeled as strings, we must handle
arithmetic somehow. Let us look at the case of line 6, we need

944

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

to update the value of x["03"-1]. The evaluation of the ex-
pression "03"-1 involves an implicit type conversion from
the string "03" to an integer value 3 due to the - (minus) op-
eration. The result of the evaluation of "03"-1 is the integer
2, which is then converted back to string "2" and used as the
array index. Hence x["03"-1] means the array element of
x["2"]. Even for a simple example like this, the conversion
between string and number is unavoidable. This is a rather
basic array operation in JavaScript, and not handling string-
number conversion operations will cripple any analysis of
non-trivial JavaScript code. Thus, we need stronger solvers
that are able to handle string-number conversion operations
in order to be able to analyze real code.

Solving string constraint with string-number conversion
is a very challenging problem. From the theoretical point of
view, this problem is already proven to be undecidable [14].
From practical point of view, our experimental results (in
Section 9) show that the current the state-of-the-art string
constraint solvers provide little support to string-number
conversion.
In this paper, we propose a framework that efficiently

handles string constraints with string-number conversion.
Since the problem is provably unsolvable, our framework
combines over and under-approximation techniques. The
over-approximation is for proving UNSAT when possible,
while the under-approximation is for proving SAT when pos-
sible. Both over- and under-approximation fall in a decidable
fragment of string constraints that we can efficiently solve.

For ease of presentation, we use the following toy example

Φ= {ł0”x =xł0”, toNum(x)= toNum(y), |y |>|x |>1, 1000<|y |}
to explain the main ideas behind our decision procedure. To
make our terminology explicit:Φ states that ł0” concatenated
with x is the same as x with ł0”, the numeric value of the
string x is equivalent to that of y, y is longer than x , y is
longer than 1000 characters, and x is longer than 1. Notice
that Φ is satisfiable. E.g., it has a model x = ł00” and y =
ł01002”. Although this toy example is seemingly trivial, all the
state-of-the-art string constraint solvers we tried (including
Z3, CVC4, and Z3Str3) cannot solve it within 10 minutes.
Our new decision procedure solves the example in few

seconds. It proceeds in two steps: The first step consists in
over-approximating the set of input constraints into a set
that falls in the chain-free fragment [5], which is decidable.
Observe that we could over-approximate the input constraint
into any decidable fragment, e.g. the acyclic fragment [3] or
the straight-line fragment [13]. Our choice of the chain-free
fragment [5] is only motivated by the fact that the chain-
free fragment is the largest known decidable fragment for
that class of string constraints. In our example, we over-
approximate the formula Φ by converting ł0”x = xł0” to two
formulae {x1 = ł0”x, x2 = xł0”} and replacing the constraint
toNum(x) = toNum(y) withnx = ny∧(nx = −1∨(nx , −1∧
x ∈ [0−9]∗))∧(ny = −1∨(ny , −1∧y ∈ [0−9]∗))). Observe

q00 q01 q0m

q10

q20

q30
q11 q21 q1m

q2m

q3m

v0
0

v1
0 v2

0

v3
0

v0 v1 vm−1
v0
m

v1
m v2

m

v3
mv0

1

v1
1

v2
1

Figure 1. An example of a parametric flat automaton

that if the over-approximation is UNSAT then our decision
procedure declares that the original formula is also UNSAT
and terminates. Surprisingly, despite its simplicity, our over-
approximation procedure works very well in practice as
shown by our experimental results (in Section 9). Coming
back to the formula Φ, the over-approximation module will
return SAT in this case.
The second step of our decision procedure is only en-

abled if the over-approximation step returns SAT. In this
case, our decision procedure uses an under-approximation
technique (which is our main contribution) to restrict the
search domain of each string variable to strings that obey
some predefined and parameterized pattern. We propose to
use patterns defined by parametric flat automata (PFA). A
PFA is a flat finite state automaton consisting of a prede-
fined sequence of loops, each of fixed length (see Figure 1).
The size of the PFA is parameterized by the length of the
sequence of loops and the size of each loop. Adjusting these
parameters enlarges or prunes the potential solution space.
This approach based on PFA is very flexible yet allows very
efficient manipulation. In fact, our procedure restricts the
search space for each variable to the set of words accepted
by the corresponding given PFA.

Then, we show that given such restriction, one can reduce
the string constraint solving problem to a linear formula sat-
isfiability problem in polynomial-time. To gain in efficiency,
we label each transition of a PFAwith a unique character vari-
able (whose domain is the set of natural numbers) instead
of having a transition between every two states for each
symbol in the alphabet. This is done by associating to each
character in our alphabet a unique natural number. This al-
lows us to avoid the alphabet explosion problem from which
the approach in [1] suffers and it is the key for handling
string-number conversion efficiently.

In the following, we explain the construction of the linear
formula using Φ as an example. Assume that we project the
domains of x and y to the PFA in Figure 2 (a) and (b), respec-
tively. The variables v0, v1, v2, v3 in the figure are character
variables. Thus, v0, v1, v2, v3 are also integer variables.

The linear formula produced after the domain restriction
will be over variables v0, v1, v2, v3, as well as the number
of occurrences of each character variable #v0, #v1, #v2, #v3.
Each model of the linear formula encodes a model of the
string constraint. For example, x = ł00” andy = ł01002” is en-
coded by the assignment (v0,v1,v2,v3, #v0, #v1, #v2, #v3) →

945

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

q0

q1

v0 v1

(a) Ax

q2

q3

v2 v3

(b) Ay

q0 q2

q1

v0 v1

q3

v3 v4

v2

(c) A′
x

Figure 2. Parametric flat automata of x and y

(0, 0, 0, 0, 1, 1, 501, 501).1 The assignment says, for example,
that x is the parametric word obtained by traversing the loop
of Ax once (because #v0 = #v1 = 1), which is v0v1. Under
the assignment v0 = 0 and v1 = 0, we obtain x = ł00”.

If a model of the produced linear formula is found, then the
procedure concludes SAT with an assignment to the string
variables. If not, our procedure changes the PFAs to a more
expressive one (by adding more states and transitions) and
repeat the analysis. We report unknown after failing to prove
SAT using a certain number of PFAs.
To demonstrate the usefulness of our approach, we have

implemented our decision procedure in an open source
solver, called Z3-Trau and evaluated it on a large set of bench-
marks obtained from the literature and from symbolic execu-
tion of real world programs. The experimental results show
that Z3-Trau is among the best tools for solving basic string
constraints and significantly outperforms all other tools on
benchmarks with string-number conversion constraints. In
this benchmark, the total amount of tests cannot be solved
by Z3-Trau is only a half to the second best tool.

Summary of the Contributions.
• An efficient procedure for checking satisfiability of
string constraints with string-number conversion.

• The class of parametric flat automata which is the key
for efficient handling of string constraints.

• An algorithm that translates the satisfiability problem
of string constraints to the satisfiability problem of a
linear formula in polynomial-time when the search
space restricted by PFAs.

• An open source tool Z3-Trauwith experimental results
that demonstrate the efficiency of our approach on
both existing and real-life benchmarks

Outline. After recalling the definition in Section 3, Section 4
presents a brief overview of our decision procedure. Section
5 introduces the class of parametric flat automata. Section 6
describes how to use PFA to restrict the searching domain of
string variables. Section 7 shows how to construct the linear
formula for basic string constraints (i.e., regular, equality, and
integer constraints). Section 8 presents the construction of
the linear formula for string-number conversion operations.
Section 9 presents the details of our implementation and our
experimental results. Related works are discussed in Section
1In these examples, we use the shorthand (x1, . . . , xk) → (n1, . . . , nk)
to denote the function {x1 7→ n1, . . . , xk 7→ nk }.

10. Finally, Section 11 concludes the paper with a discussion
of future works.

2 Preliminaries
We use N and Z to denote the sets of natural numbers and
integers. For a set A, we use |A| to denote its size. For n,m ∈
N, we write [n,m] for the set of natural numbers {k | n ≤
k ≤ m}. The function f with the domain restricted to a set
D is denoted by fD , and a set of functions F restricted to a
set D is FD = { fD | f ∈ F }. An alphabet is a finite set Σ of
characters and a word over Σ is a sequencew = a1 . . . an of
characters from Σ, with ϵ denoting the empty word. We use
w1 ·w2 to denote the concatenation of wordsw1 andw2. Σ∗ is
the set of all words over Σ, Σ+ = Σ∗ \{ϵ} and Σϵ = Σ∪{ϵ}. A
language over Σ is a subset L of Σ∗. We use |w | to denote the
length of w and |w |a to denote the number of occurrences
of the character a ∈ Σ inw .

A finite automaton (FA) is a tuple (Q,T , Σ,qi ,qf), whereQ
is the set of states,T ⊆ Q×(Σ∪{ϵ})×Q is the set of transitions,
Σ is the alphabet, qi is the initial state, and qf is the final
state. A run π ofA over a wordw = a1 · · ·an is a sequence of
transitions (q0,a1,q1), (q1,a1,q2), . . . , (qn−1,an,qn). The run
π (resp. the word w) is accepting (resp. accepted) if q0 = qi
and qn = qf . The language of A (denoted by L(A)) consists
of the set of all accepted words.
Through the paper, we will use quantifier-free linear in-

teger arithmetic formulae, and call them linear formulae for
short. Given a linear formula ϕ over variables V and an in-
teger interpretation of V , a function I : V → Z, we denote
by I |= ϕ that I satisfies ϕ (which is defined in the standard
manner), and call I a model of ϕ. We use [[ϕ]] to denote the
set all models of ϕ.
The Parikh image of a word w ∈ Σ∗ maps each Parikh

variable #a, where a ∈ Σ is a character, to the number of
occurrences of a inw . Formally, given a set S , let #S denote
the set of Parikh variables {#s | s ∈ S}. The Parikh image
ofw is a function P(w) : #Σ → N such that P(w)(#a) = |w |a
for each a ∈ Σ. The Parikh image of a language L is defined
as follows P(L) = {P(w) | w ∈ L}. It is well known that the
Parikh image of a regular language can be characterized by
a linear formula.

Lemma 2.1 ([40]). Let A be a FA over the alphabet Σ. Then,
we can compute, in linear time, a linear formula ΦP(A), over
#Σ, such that [[ΦP(A)]]#Σ = P(L(A)).

3 String Constraints
In this section, we formally define string constraints. To
begin with, we fix a finite alphabet Σ ⊆ N. Note that here we
assume that the alphabet is a finite subset of natural numbers.
Essentially, we try to capture the numerical encoding of the
corresponding symbols in computers (e.g., in ASCII, ‘A’ is
encoded as 65). Hence, we can assume w.l.o.g. that there
is a one-to-one mapping between numbers in Σ and the

946

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

character it encodes. For the simplicity of presentation, we
assume that the character ‘0’ is mapped to the number 0,
‘1’ to 1,. . ., and ‘9’ to 9. For other character c , we use [[c]] to
denote the number that it maps to. Notice that this approach
is general enough to support any finite set of characters.
A minor technical difficulty is that sometimes we may

need to treat ϵ as a number. Therefore, we encode ϵ as some
fixed number [[ϵ]] ∈ N \ Σ.

Assume that X is a set of string variables ranging over Σ∗

and Z a set of integer variables ranging over Z. An interpre-
tation over X and Z is a mapping I : X ∪Z → Σ∗ ∪Z. A word
term is an element in X ∗. We lift the interpretation I to word
terms and linear constraints in the standard manner.

We use four types of atomic string constraint:

• An equality constraint ϕe is of the form t1 = t2 where
t1, t2 are word terms. The model of ϕe is the set of
interpretations [[ϕe]] = {I | I (t1) = I (t2)}. A disequality
constraint ϕd is of the form t1 , t2 and is interpreted
analogously.

• An integer constraint ϕi is a linear constraint over the
integer variables in Z and values of |x | for all x ∈ X ,
where | · | : X → N is the string length function defined
in the standard way. We define [[ϕi]] = {I | I (ϕi) =
true}.

• A regular constraint ϕr is of the form x ∈ L(A) where
x is a string variable and A is a finite automaton. The
model of ϕm is the set of interpretations [[ϕm]] = {I |
I (x) ∈ L(A)}.

• A string-number conversion constraint ϕs is of the form
n = toNum(x), where the function toNum(x) is de-
fined as follows. For a ∈ [0, 9], we have toNum(a) = a
and forw ·a ∈ [0, 9]+, toNum(w · a) = 10×toNum(w)+
a. Forw < [0, 9]+, toNum(w) = −1. We define [[ϕs]] =
{I | I (n) = toNum(I (x))}. The number-string conver-
sion constraint x = toStr(n) is treated as a syntactic
sugar for n = toNum(x). We assume decimal encoding
of numbers.

A string constraint is then a conjunction of atomic string
constraints, with the semantics defined in the standard man-
ner. It is satisfiable if there is an interpretation which evalu-
ates the constraint to true. Often we refer to the first three
types of atomic string constraints the basic string constraints.

Notice that only positive integer is supported in the string-
number conversion function. This is the semantics used by
most of the SMT solvers, and hence we follow it in this
paper. The encoding has a benefit that it can also handle
the case where x is łnot a number", using the condition
toNum(x) = −1. Supporting only positive integer is not a
strong restriction, since converting from negative integer
can still be encoded using only the positive version.

4 Decision Procedure Overview
Our decision procedure has two steps: The first step consists
in over-approximating the set of input constraints into a
set that falls in the chain-free fragment [5], which is decid-
able. The over-approximation module proceeds as follows:
First, it replaces all string-number conversion constraint
n = toNum(x) by n = −1 ∨ (n , −1 ∧ x ∈ [0 − 9]∗) to ob-
tain an over-approximation Φ consisting of only basic string
constraints. Then, it over-approximates Φ to a chain-free
string constraint [5], which consists of only integer, member-
ship, and chain-free equality constraints. Informally, a set of
equality constraints has a chain if we can find some circu-
lar dependency between the string variables in the equality
constraints. Our procedure iteratively searches for such de-
pendency chains in the equality constraints. If a chain is
found then we replace a variable appearing in that chain by
a fresh one. By doing this, we break that chain.We repeat this
procedure until there are no more chains. Observe that if the
over-approximation is UNSAT then our decision procedure
declares that the original formula is also UNSAT.
The second step of our decision procedure is only en-

abled if the over-approximation step returns SAT. In this
case, our decision procedure under-approximates the string
constraints by restricting the search domain of each string
variable to the language defined by some PFA. This approach
based on PFA allows very efficient manipulation. We will
show that given such restriction, one can reduce the string
constraint solving problem to a linear formula satisfiability
problem. The rest of the paper will be mainly dedicated to the
explanation of the under-approximation technique (which
is our main contribution).

5 Parametric Flat Automata
We introduce parametric flat automata that will be used
to define patterns used by the under-approximation
module to restrict the domain of string variables.

q00 q01 q0m

q10

q20

ql00
−1 q11

q21

ql11
−1 q1m

q2m

qlmm
−1

a00

a10

al0−10
a0 a1 am−1

a0m

a1m

alm−1
ma01

a11

al1−11

Flat Automata. A finite state automaton A =

(Q,T , Σ,q00,q0m) is said to be flat if it satisfies the fol-
lowing structural constraints (see also the figure above):

1. The final state q0m is reached from the initial state
q00 through a straight path of m − 1 transitions
(q0i ,ai ,q0i+1) ∈ T with q0i ∈ Q and ai ∈ Σ for i ∈
[0,m − 1].

2. Each state q0i is the origin of a unique simple cycle
of the length li ∈ N, consisting of states q j−1i ∈ Q

and transitions (q j−1i ,a
j−1
i ,q

j mod li
i), with aj−1i ∈ Σ, for

j ∈ [1, li]. Notice that the case when li = 0 is also
admissible and means that there is no cycle on qi .

947

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

3. Each character in Σ appears on at most one transition
of the automaton A.

The crucial feature of flat automata is that their seman-
tics can be faithfully represented by a linear formula and
handled efficiently by an SMT solver. Such encoding into
linear formula results in efficient algorithms and decision
procedures. For instance, we avoid dealing with costly stan-
dard automata operations (e.g., checking the non-emptiness
of the intersection of several regular languages is known
to be Pspace-complete while it is in NP for the class of flat
automata). The encoding is possible due to the flat struc-
ture, which has the property that łevery word w ∈ L(A) is
uniquely determined by its Parikh image P(w)". More pre-
cisely, the Parikh image of a wordw ∈ L(A) can be seen as
an encoding ofw and can be uniquely decoded:

Lemma 5.1. For a flat FA A, there is a function decodeA such
that for eachw ∈ L(A), decodeA(P(w)) = w .
Observe that the P(w) value of any variable appearing

within a cycle of A is equal to the number of repetitions
of that cycle in the accepting run. This is an immediate
consequence of the fact that every character appears on at
most one transition. Thus, the accepting run onw (and sow
itself) can be reconstructed from P(w).

More concretely, the function decodeA can be implemented
as follows. Given I# : #Σ → N, and assuming that the lengths
of the loops of A are l0, . . . , lm , decodeA(I#) is constructed
as the word w0a0w1 · · ·am−1wm where for each i ∈ [0,m],
wi = (a0i · · ·ali−1i)#a0i if li > 0 andwi = ϵ if li = 0.

For example, in the automaton given at the beginning
of this section, from |x |a0 = |x |a1 = · · · = |x |am−1 = 1,
|x |a01 = |x |a11 = |x |a21 = 2 and |x |aij = 0 otherwise, we derive
that x = a0(a01a11a21)2a1 · · ·am−1.

Parametric (Flat) Automata. Next, we define parametric
automaton (PA) as a pair P = (A,ψ)whereA is an automaton
operating over an alphabet V of character variables and ψ
is an interpretation constraint, a linear formula over V . Para-
metric flat automaton (PFA) is then a parametric automaton
whose automaton is flat. See Figure 1 and 2 for examples of
PFAs (without interpretation constraints, i.e.,ψ = true.).
Parametric automata accept words over V , called para-

metric words, but we still use them as representations of
languages over Σ. Namely, words over V are interpreted
as words over Σ under an interpretation of V , a mapping
I : V → Σϵ (recall that Σϵ ::= Σ ∪ {ϵ} ⊆ N). For a
parametric word x = v1v2 · · ·vk over V , its interpreta-
tion I (x) is then defined as I (v1) · I (v2) · . . . · I (vk). We
then define the semantics of the PA P as the set of strings
[[P]] = {I (x) | x ∈ L(A), I ∈ [[ψ]]} of all interpretations
satisfyingψ of all parametric strings in the language of A.

We say that a mapping Ie : V ∪#V → N is a word encoding
of a word w (or a P-encoding of w) if w is an instantiation
of some parametric word x ∈ L(P) whose Parikh image

and interpretation of character variables are defined by Ie .
Conversely,w is a P-decoding of Ie . We use encodeP (w) below
to denote all P-encodings of a word w , and decodeP (Ie) to
denote all P-decodings of a word encoding Ie . Namely,
encodeP (w) = {Ie |x ∈ L(P), I (x) = w, I ∈ [[ψ]], Ie = I ∪ P(x)}
decodeP (Ie) = {w |x ∈ L(P), I (x) = w, I ∈ [[ψ]], Ie = I ∪ P(x)}
Since a word encoding Ie only records the numbers of

occurrences of character variables (Parikh image), the same
word encoding may be shared by multiple words, as formal-
ized in the definition of decodeP (Ie).
Example 5.2. Let use consider the PFA Px = (Ax , true)
from Figure 2 (a) and let Y=(v1,v2, #v1, #v2). Then we have
encodePx (łaaa”) = {(Y→([[a]], [[ϵ]], 3, 3),Y→([[ϵ]], [[a]], 3, 3)}
and decodePx ((Y→([[a]], [[ϵ]], 3, 3)) = {łaaa”}.
If P is a PFA, then by Lemma 5.1, every word encoding

Ie ∈ encodeP (w) can be decoded uniquely to the wordw , i.e.
{w} = decodeP (encodeP (w))

Similarly, as stated by the following corollary of
Lemma 5.1, Parikh image of parametric words in L(A) paired
with character variable interpretations satisfyingψ encode
precisely the words in [[P]].
Corollary 5.3. For a PFA P = (A,ψ),

[[P]] = decodeP ({(I ∪ I#) | I# ∈ P(L(A)), I ∈ [[ψ]]}).

6 Flat Domain Restriction
In this section, we describe formally how to restrict the
domain of string variables to patterns defined by PFA. We
start the description of the algorithm that converts a string
constraint ϕin to a linear formula representing the set of
solutions under the domain restriction.
The domain restriction is formally defined by restricting

the domain of each string variable by a chosen PFA. Namely,
assuming that X is the set of string variables of ϕin, a flat
domain restriction for ϕin is a mapping R that assigns to each
variable x ∈ X , a PFA R(x) over character variables Vx . Let
VR =

⋃
x ∈X Vx be the set of all character variables used in R.

We require that these PFA operate over pairwise disjoint sets
of character variables, that is if x , y then Vx ∩Vy = ∅. The
particular choice of a PFA for each variable depends on the
strategy used in the implementation, and will be discussed
in Section 9. The flattening of the input string constraint ϕin,
denoted flattenR(ϕin), will be built inductively following the
structure of ϕin. For a conjunction of string constraints, we
let flattenR(ϕ∧ϕ ′) ::= flattenR(ϕ)∧flattenR(ϕ ′). We do such
decomposition until reached atomic string constraints. We
show how to build a flattening flattenR(ϕ) for every atomic
string constraint ϕ in the following sections.
The semantics of a string constraint ϕ restricted by R is

then defined as [[ϕ]]R = {I ∈ [[ϕ]] | ∀x ∈ X : I (x) ∈ [[R(x)]]}.
The correctness of the entire construction of flattenR(ϕin)

is expressed by Theorem 6.2. It uses the decoding function

948

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

decodeR parameterized by the domain restriction R. Let Z be
the set of integer variables in ϕin. The function maps an inter-
pretations Ie overZ∪VR∪#VR to an interpretation overZ∪X ,
following the domain restriction R. Informally, it łdecodes"
an interpretation of integer variablesZ∪VR∪#VR to an inter-
pretation of variables in the string constraint ϕin. Formally,
we define decodeR(Ie) ::= {I | ∀z ∈ Z : I (z) = Ie (z) ∧ ∀x ∈
X : {I (x)} = decodeR(x)((Ie)VR(x)∪#VR(x))}. The condition says
that (1) I and Ie are consistent over variables in Z and (2)
(Ie)VR(x)∪#VR(x) is a word encoding that R(x)-encodes I (x).
We also define the R-encoding function as the counterpart
of R-decoding, namely, for a interpretation I of the string
constraint ϕin, we let encodeR(I) = {Ie | decodeR(Ie) = {I }}.
We lift decodeR and encodeR to sets of interpretations in the
standard manner.

Example 6.1. We consider the domain restriction R such
that R(x) = (Ax , true) from Figure 2 (a) and R(y) =
(Ay , true) from Figure 2 (b). Let the set of integer vari-
ables be Z = {vz } and let VR(x) = {v0,v1,v2,v3}. For the
interpretation Ie = (vz,v0,v1,v2,v3, #v0, #v1, #v2, #v3) →
(3, [[a]], [[b]], [[c]], [[ϵ]], 3, 3, 2, 2), we have decodeR(Ie) =

{(z, x,y) → (3, łababab”, łcc”)}.
Conversely, for I = (z, x,y) → (3, łababab”, łcc”) and Y =
(vz,v0,v1,v2,v3, #v0, #v1, #v2, #v3), we have encodeR(I) =

Y → (3, [[a]], [[b]], [[c]], [[ϵ]], 3, 3, 2, 2),
Y → (3, [[a]], [[b]], [[ϵ]], [[c]], 3, 3, 2, 2),
Y → (3, [[a]], [[b]], [[c]], [[c]], 3, 3, 1, 1)

Theorem 6.2. decodeR([[flattenR(ϕin)]]) = [[ϕin]]R

The theorem can be proved by a structural induction
over ϕin. However, for the induction step to go through, we
will need to guarantee a stronger correspondence of string
constraints ϕ and their flattenings flattenR(ϕ) than just the
semantic equality decodeR([[flattenR(ϕ)]]) = [[ϕ]]R . Particu-
larly, we will need to ensure that flattenR(ϕ) captures exactly
all R-encodings of [[ϕ]]R (indeed, notice that if it would be
allowed to capture only some of the encodings, then for
instance flattenR(ϕ) ∧ flattenR(ϕ ′) could only underapprox-
imate [[ϕ ∧ ϕ ′]]R). The inductive argument needed in the
correctness proof of the under-approximation then reads as

[[flattenR(ϕ)]]VR∪V#R = encodeR[[ϕ]]
In the next sections, we will formulate the corresponding
correctness lemma for flattening constructed from each type
of atomic string constraints. We note that the restriction of
[[flattenR(ϕ)]] to VR ∪ V#R here is needed since flattenR(ϕ)
will be constructed with some auxiliary variables.

7 Flattening of Basic String Constraints
We will first discuss flattening of the basic string constraints,
that is, regular, equality, and integer constraints. We start
by two needed operations over PA, synchronization and
concatenation.

Synchronization of PAs. We will now discuss a construc-
tion of the synchronization formula for two PAs P and P ′. It
is a linear formula ΨP×P ′ that specifies how each word in
the semantic intersection [[P]] ∩ [[P ′]] is encoded by P and
by P ′. More precisely, the models of ΨP×P ′ represent pairs
of word encodings Ie and I ′e such that Ie ∈ encodeP (w) and
I ′e ∈ encodeP ′(w) (hencew ∈ [[P]] ∩ [[P ′]]).

Particularly, the synchronization formula is built for two
PAs P=((Q,T ,V ,qi ,qf),ψ) and P ′=((Q ′,T ′,V ′,q′i ,q

′
f),ψ ′)

such that V ∩ V ′ = ∅. It is extracted from the asynchro-
nous product of P and P ′. The asynchronous product is an
automaton that usesQ ×Q ′ as the set of states andVϵ ×V ′

ϵ as
the alphabet. Every accepting run of P × P ′ corresponds to a
pair of accepting runs, a run of P over a parametric word x
and a run of P ′ over a parametric word x ′. The word accepted
by the run of P×P ′ induces constraints on the interpretations
of I over V and I ′ over V ′ under which the two parametric
words have the same interpretation, i.e. I (x) = I ′(x ′).

Intuitively, when the product automaton P × P ′ takes a
transition ((q1,q′1), (v,v ′), (q2,q′2)), it means the character
variablev andv ′ should be assigned the same value, P moves
under v from state q1 to state q2 and P ′ from q′1 to q′2 under
v ′. When P × P ′ takes a transition ((q1,q′1), (v, ϵ), (q2,q′1)),
it means that the character variable v should be assigned
ϵ , P moves under v to q1, and P ′ takes no action, since no
action is needed to match P ’s reading of ϵ (hence consumes
no symbol from the input word). Symmetrically, P ′ might
read a variable v assigned ϵ and P may stay.
Formally, the asynchronous product automaton is a tu-

ple P × P ′ = (Q × Q ′,T×,Vϵ × V ′
ϵ , (qi ,q′i), (qf ,q′f)), where

the transition relation T× is the minimal set satisfying the
following:

• If (q1,v,q2) ∈ T and (q′1,v ′,q′2) ∈ T ′, then we have
((q1,q′1), (v,v ′), (q2,q′2)) ∈ T×.

• If (q1,v,q2) ∈ T , then for all states q′ ∈ Q ′, we have
((q1,q′), (v, ϵ), (q2,q′)) ∈ T×.

• If (q′1,v ′,q′2) ∈ T ′, then for all states q ∈ Q , we have
((q,q′1), (ϵ,v ′), (q,q′2)) ∈ T×.

The synchronization formula ΨP×P ′ is extracted from P × P ′

as follows. Its first part is the Parikh formula ΦP(P × P ′) of
the product, which encodes all accepting runs of P × P ′. The
second part is a constraint that extracts from a run of P × P ′

the corresponding runs of P and of P ′:

Ψ# ::=
©«
∧
v ∈V

#v =
∑
x ′∈V ′

ϵ

#(v, x ′)ª®¬
∧

(∧
v ′∈V ′

#v ′ =
∑
x ∈Vϵ

#(x,v ′)
)

Notice that x, x ′ are either variables or ϵ . Finally, the third
part forces the interpretations of the parametric words ac-
cepted by P and P ′ to be the same:

Ψ= ::=
∧

x ∈Vϵ ,x ′∈V ′
ϵ

#(x, x ′) > 0 → (x = x ′)

949

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

The synchronization formula is then the conjunction
ΨP×P ′ ::= ΦP(P × P ′) ∧ Ψ# ∧ Ψ= ∧ψ ∧ψ ′

The correctness of this construction is stated in Lemma 7.1
below. The correctness of the construction of under-
approximations of equality constraints and regular con-
straints in Section 7.1 and Section 7.2 rely on it.
Lemma 7.1. [[ΨP×P ′]]V∪V ′∪#V∪#V ′ = {Ie ∪ I ′e | Ie ∈
encodeP (w), I ′e ∈ encodeP ′(w),w ∈ [[P]] ∩ [[P ′]]}

Informally, the lemma states that the models of ΨP×P ′ en-
code precisely the pairs of equivalent encodings of words
from [[P]] and [[P ′]], that constitute the intersection [[P]] ∩
[[P ′]]. Since that the models of ΨP×P ′ include also an assign-
ment to the auxiliary variables of (Vϵ ×V ′

ϵ) ∪ #(Vϵ ×V ′
ϵ), the

lemma restricts [[ΨP×P ′]] to V ∪V ′ ∪ #V ∪ #V ′.
Notice that if P is flat (or, symmetrically, if P ′ is flat), then

the semantic intersection [[P]] ∩ [[P ′]] can be still decoded
from the synchronization formula ΨP×P ′ . Namely, due to
Corollary 5.3, we have that if P is a PFA, then

decodeP ([[ΨP×P ′]]V∪#V) = [[P]] ∩ [[P ′]]
Concatenation of PFAs. Concatenation of PFAs will be
needed when flattening equality constraints. Its implemen-
tation is straightforward, connect the final state of the first
PFA with the initial state of the second by an ϵ-transition.
Since our automata do not allow transition directly labeled
by ϵ , the ϵ-transition is labeled by a fresh variable vϵ forced
by the constraint vϵ = ϵ to take the value ϵ .
Formally, given PFA P = ((Q,T ,V ,qi ,qf),ψ) and P ′ =

((Q ′,T ′,V ′,q′i ,q
′
f),ψ ′) with Q ∩ Q ′ = ∅ = V ∩ V ′, their

concatenation is the PFA P · P ′ = (Q ∪ Q ′,T ∪ T ′ ∪
{(qf ,vϵ ,q′i)},V ∪V ′ ∪ {vϵ },qi ,q′f ,ψ ∧ψ ′ ∧ vϵ = ϵ) where
vϵ is fresh, not from V ∪V ′.
Lemma 7.2. encodeP ·P ′([[P · P]])V∪V ′∪#V∪#V ′ = {Ie ∪ I ′e |
Ie ∈ encodeP ([[P]])∧ I ′e ∈ encodeP ′([[P ′]])}, for PFAs P and P ′.

With synchronization and concatenation of PA, we are
ready to describe flattening of the basic string constraints.

7.1 Flattening of Regular Constraints
Let us first describe the construction of flattenR(ϕr) for a
regular constraint ϕr ::= x ∈ L(A). In order to synchro-
nize the FA A with the PFA R(x), we represent A by a PA
P ′ = (A′,Ψchar). The automaton A′ of P ′ operates over fresh
character variables va,a ∈ Σϵ , and is obtained from A by re-
placing every occurrence of each charactera ∈ Σϵ on a transi-
tion by the variableva . The interpretation restriction formula
Ψchar of P ′ then binds the fresh character variables to the char-
acter values they represent, namely, Ψchar =

∧
a∈Σϵ va = [[a]].

Obviously, L(A) = [[P ′]]. We then let
flattenR(ϕr) = ΨR(x)×P ′

The following lemma states the correctness of this con-
struction. It follows from Corollary 5.3 and Lemma 7.1.

Lemma 7.3. [[flattenR(ϕr)]]VR∪#VR = encodeR([[ϕr]]) .

7.2 Flattening of Equality Constraints
We now describe the construction of flattenR(ϕe) for an
equality constraint ϕe ::= x0 · x1 · · · xn = xn+1 · xn+2 · · · xm .
To simplify the presentation, we assume that the variables
are pairwise different, i.e. that i , j =⇒ xi , x j . We may
make this assumption without loss of generality, since multi-
ple occurrences of variables in ϕe can be eliminated. In fact,
whenever xi = x j for i , j, we may replace x j by a fresh
variable x ′j and conjoin the modified ϕe with a new equality
x j = x

′
j . We also assume that all disequality constraint t , t ′

are already converted to equivalent equality constraints and
integer constraints in the standard way [4].

Having made these assumptions, we may proceed follows.
First, we build two PFAs P left and P right that encode the left
and the right-hand side word term of the equality constraint
ϕe , respectively, by concatenating the restrictions of the in-
dividual variables. That is
P left ::= R(x1) · . . . · R(xn) P right ::= R(xn+1) · . . . · R(xm)
The under-approximation of ϕe is then obtained as their

synchronization formula
flattenR(ϕe) = ΨP left×P right

The correctness of the construction is stated by the lemma:

Lemma 7.4. [[flattenR(ϕe)]]VR∪#VR = encodeR([[ϕe]]).

7.3 Flattening of Integer Constraints
Given an integer constraint ϕl that talks about lengths |x |
of string variables x ∈ X . We use a version of ϕl where
every occurrence of every length function |x | is replaced
by an auxiliary length variable lx and we add a formula to
ensure that the value of lx is equal to that of |x | even when
x is encoded using the character variables Vx and Parikh
variables #Vx of R(x). We will need a set auxiliary variables
{lv | v ∈ Vx } to express the length by which the character
variable v contributes to the length of an R-encoded string
x . That is, lv will be 0 if v is assigned [[ϵ]], otherwise it will
equal to the number #v of its occurrences in the word:

Ψlv ::= (v = [[ϵ]] ∧ lv = 0) ∨ (v , [[ϵ]] ∧ lv = #v)
The length of the encoded word x is then the sum of the
lengths contributed by the individual character variables in
Vx , hence we let

Ψlx ::= lx =
∑
v ∈Vx

lv ∧
∧
v ∈Vx

Ψlv .

Finally, the linear formula created for ϕl is

flattenR(ϕl) ::= ϕl ∧
∧
x ∈X

Ψlx

and the following lemma states its correctness.

Lemma 7.5. [[flattenR(ϕl)]]VR∪#VR = encodeR([[ϕl]])

950

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

8 Flattening of String-Number Conversion
Last, we present the main contribution of this paper, the
construction of a flattening flattenR(ϕs) of string-number
conversion constraint ϕs ::= n = toNum(x).
Let us begin with a simple example. Assume that we use

the PFA in Figure 2 (a) to restrict the domain of x . Then we
know that when 0 ≤ v0,v1 ≤ 9, then n is a positive integer
value, and otherwise n = −1. So we should first add the
constraint ((0 ≤ v0 ≤ 9) ∧ (0 ≤ v1 ≤ 9)) ∨ (n = −1 ∧ (v0 >
9 ∨v1 > 9)).

For the case that n is a positive integer, the value of n can
be characterized by a constraint (assume character variables
are not assigned ϵ) n = (v0 × 10 + v1) × (1 + 100 + 1002 +
. . . 100#v0−1) = (v0 × 10 +v1) × 100#v0−1

100−1 . The constraint uses
#v0 to capture the total number of loop traversals. Notice
that the constraint above contains an exponential component
100#v0
100−1 . To solve the satisfiability of this formula, one needs
to solve an exponential constraint.
Let us have a look at another example. If we restrict the

domain of x to the PFA in Figure 2 (c), for the case when n is
positive, we have the relation n = (v0 × 10+v1) × (1+ 100+
1002+ . . . 100#v0−1)×10×100#v3+v2×100#v3+(v3×10+v4)×
(1+100+1002+ . . . 100#v3−1) = (v0×10+v1)× 100#v0−1

100−1 ×10×
100#v3 +v2 × 100#v3 + (v3 × 10 +v4) × 100#v3−1

100−1 . Observe that
the formula has multiple exponential components, including
100#v0×100#v3

100−1 and 100#v3
100−1 .

It is not difficult to see from the examples above that,
if R(x) is an arbitrary PFA withm loops, the formula that
defines the number n contains at leastm exponential compo-
nents, one for each loop. To the best of our knowledge, the sat-
isfiability problem of integer constraints with a mix of poly-
nomials and exponentials is still open. The problem is diffi-
cult even for the case that variables are real numbers [17, 18].
For example, the algorithm in [24] involves a quantifier elim-
ination procedure which is double-exponential to the length
of the input formula and hence cannot handle large instances.
We therefore do not expect that such constraint can be solved
efficiently. Instead, we will define a special form of the flat
restriction R(x) of x that leads to an easier linear formula.

Efficient String-Number Conversion using PFA. We
will now discuss the special form of R(x), called numeric
PFA, which we choose for string variables appearing in
string-integer constraints and that leads to efficient under-
approximation technique. Besides simple induced linear for-
mulae, we still want single R(x) to cover as many numerals
as possible. We want an łeasy" completeness property, that
is, (1) the space of all numerals can be covered completely by
our special numeric PFAs, (2) these numeric PFAs are gener-
ated easily, and (3) each of them covers a large and practically
significant portion of numerals (so that satisfiable assign-
ments can be often found within the domain restriction of

q0 q1 qm
v1 v2 vm

v0

Figure 3. PFA for string-number conversion constraints

just few of numeric PFAs). Particularly, we will proceed to-
wards a definition of numeric PFA (Am,ψm),m ∈ N which
covers all numerals that encode integers withm digits.
Our first attempt is a PFA without loop, i.e., a straight

line structure q0 q1 qm
v1 v2 vm . The corresponding

integer constraint does not have exponential components.
However, it does cover all numbers with at mostm-digits.
Consider the example toNum(x) = 10∧ |x | = 5. The number
10 has only 2-digits, at the first glance, a straight-line PFA
with two transitions, i.e., the PFA q0 q1 q2

v1 v2 should
be sufficient for the domain restriction of x . If we do so, we
will conclude that the formula is unsatisfiable, because the
length of x cannot be 5 under this domain restriction.

However, the formula is satisfiable when x = ł00010”. Ob-
serve that toNum(ł00010”) = 10 since PFAs accept numerals
with the least significant bit first. The key is that even for
a bounded integer, the corresponding numeral can be of an
unbounded length with arbitrarily many trailing ‘0’s at the
front. All numbers with up tom-digits can be however still
handled without having to solve exponential constraints. It is
enough to equip the initial state of the PFA with a 0-self-loop.

Consequently, the automaton Am of our numeric PFA will
have the following form illustrated in Figure 3. It has a self-
loop on the initial state labeled by the character variable v0,
forced by the constraint

Ψv0 ::= v0 = 0

to hold the value 0. This transition ensures that the under-
approximation handles numerals with arbitrary number of
trailing zeros. The self-loop is followed by a chain ofm transi-
tions (qi−1,vi ,qi), 1 ≤ i ≤ m, leading towards the final state
qm . The chain encodes at mostm meaningful digits (only at
most because the first variables in the sequence can still be
assigned zeros and some variables may be assigned ϵ). Hence
this PFA covers all numerals that encode numbers with at
mostm digits. Although it still has a loop, it will not create
any exponential component defining the value of n because
the loop only represents a sequence of ł0" at the front of x .
Thus, it will not affect the integer value of n = toNum(x).

Numeric PFA with these restrictions would satisfy our
primary objective, that is, they would induce linear formulae
and would łeasily" and completely cover all numerals. A last
problem still needs to be solved before they can be efficient in
practice. Recall that the character variables can be assigned ϵ .
Therefore, a single chain ofk interesting digits,k ≤ m, can be
by Am represented in

(k
m

)
ways, each corresponding to one

possible interleaving of k digits withm−k epsilons. This may

951

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

lead to a formula of exponential size when defining the value
of n. In order to eliminate this potential blow-up in the size
of the formula, we add toψm an additional constraint that
forces all epsilons to be shifted behind the least significant
digit. This will leave us with only one interleaving. This is
the formula

Ψm
shift ::=

∧
1≤i≤m

vi , [[ϵ]] =⇒ vi−1 , [[ϵ]] .

Last, since this restriction is meaningful only when the string
is indeed a numeral, we also define the constraint represent-
ing the strings which are not numerals, the formula

Ψm
NaN ::=

∨
i ∈[1,m]

vi > 9

and define the final form of the interpretation restriction
used by Am as

ψm ::= Ψm
NaN ∨ (Ψv0 ∧ Ψm

shift) .
Consequently, we design our domain restrictions R so that
for string variables x that appear within string-integer con-
straints, R(x) is a numeric PFA (Am,ψm),m ∈ N.
Assuming that the domain restriction for x is (Am,ψm),

the value of the integer n can be extracted from a numeral
using the formula

Ψm
toInt ::=

∨
1≤k≤m

Ψm
last(k)∧(n = v1∗10k−1+v2∗10k−2+. . .+vk)

where Ψm
last(k) says that the last variable of Am assigned a

non-ϵ value is vk , namely

Ψm
last(k) ::= (k =m ∧vk ≥ 0) ∨ (vk ≥ 0 ∧vk+1 = −1) .

Since we also need to distinguish the case when x is not
a number, in which case n should equal −1, the formula
under-approximating ϕs is finally constructed as

flattenR(ϕs) ::= ΦP(Am)∧((Ψm
NaN ∧ n = −1) ∨ (¬Ψm

NaN ∧ Ψm
toInt)

)
The following lemma states correctness of this construction:

Lemma 8.1. [[flattenR(ψs)]]VR∪#VR = encodeR([[ϕs]])

9 Implementation and Evaluation
We have implemented our string constraint solving proce-
dure in a tool called Z3-Trau. Z3-Trau is implemented as a
theory solver of the SMT solver Z3 [15]. In this way, we can
concentrate on solving conjunctive constraints and let Z3
handle the other boolean connectives. Secondly, it makes it
possible to solve not only formulae over string constraints
but also combinations of string constraints with other theo-
ries that Z3 supports. Furthermore, this approach allows us
to more effectively handle the arithmetic constraints that are
generated by the under-approximation module and, lastly, it
eliminates the need to have our own parser.

In Z3-Trau, we use the following PFA selection strategy.
We use numeric PFAs for string variables appearing in string-
number conversion and standard PFAs for others. We select
a sizem for numeric PFAs, a number p of their loops, and
the length q of the loops. Initially, we set (m,p,q) = (5, 2,q)
where q is dynamic and obtained from our internal static
analysis. We doublem and increase p and q by one if refine-
ment is required. We set an upper bound for each parameter
and report UNKNOWN if a solution cannot be found within
the bound.
Our over-approximation module also uses heuristics to

derive the constant value of any side of the constraint
n = toNum(x) to refine the over-approximation. For instance,
assume we can derive that n = 12 from some integer con-
straints. Then we can derive the value of x belongs to the
regular language (0∗12).

The way our theory solver and Z3 interact is almost stan-
dard. When Z3 asks our theory solver a string constraint
satisfiability problem, our solver tries to prove it is SAT or
UNSAT using the procedure discussed in this paper. For
under-approximation, whenever a corresponding linear for-
mula is created, we attach the current value ofm, p, q to the
formula, and then push it to Z3 core. If our theory solver
reports UNKNOWN, Z3 remembers it in a global flag incom-
plete and either tries another solution branch, or the same
solution branch with different value ofm, p, q. If Z3 com-
pletes the search of all solution branches, it reports UNSAT
if the flag incomplete is down, and UNKNOWN otherwise.
We compare Z3-Trau (1e715b7dab)2 with other state-of-

the-art string solvers, namely, CVC4 (version 1.7) [8], Z3 (ver-
sion 4.8.7) [15], andZ3Str3 (version 4.8.7) [47]. For these tools,
the versions we used are the latest release version. Observe
that CVC4 and Z3 are DPLL(T)-based string solvers. We do
not compare with Sloth [21] since it does not support length
constraints, which occur in most of our benchmarks. We also
do not compare with ABC [6] (a model counter for string
constraints), Ostrich [13] and Trau+ [5], because they do not
support many of the string functions in our benchmarks,
especially string-number conversion.

We perform two sets of experiments. In the first set of ex-
periments, we compare Z3-Trau with other tools on existing
benchmarks over basic string constraints. Those benchmarks
do not involve string-number conversion functions. In the
second set of experiments, we compare Z3-Trau with the
other tools on new suites focusing on string-number conver-
sion. Our goals of experiments are the following:

• Z3-Trau performs as good as or better than the other
tools in solving the satisfiability problems of basic
string constraints.

• Z3-Trau performs significantly better than the other
tools in solving the satisfiability problems on string-
number conversion benchmark, and this shows the

2https://github.com/guluchen/z3/tree/1e715b7dab

952

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

efficiency of PFA in general and numeric PFA in par-
ticular.

In the first set of experiments, we use the following bench-
mark examples:

• PyEx [34] comes from running the symbolic executor
PyEx over some Python packages.

• LeetCode comes from running PyEx over a sample
code collected from the LeetCode [25] website, includ-
ing functions that check whether a string is a valid
IPv4 or IPv6 address, sum up two binary numbers,
check whether an input string is an abbreviation of
another input string, and convert a sequence of digits
to a string according to a given mapping.

• StringFuzz [10] is generated by the fuzz testing tool of
the same name.

• cvc4pred and cvc4term are obtained from the CVC4
group [33]. These benchmarks contain a small amount
of string-number conversion constraints (< 5%).

In the second experiment, we compare with tools support-
ing string-number conversion on the benchmarks collected
from the symbolic executor Py-Conbyte3, which has the
supports of string-number conversion. We ran it on several
examples collected from the LeetCode platform and from
Python core libraries, which involve diverse usages of string-
number conversion in Python such as parsing date-time,
verifying and restoring IP addresses from strings, etc. We
also have examples that encode execution paths of some
JavaScript programs (the Luhn algorithm and some array
manipulations).

All experiments were executed on a machine with 4-core
CPU and 16 GiB RAM. The timeout was set to 10s for each
test. We use the results from Z3-Trau, CVC4, and Z3 as the
reference answer for the validation of the correctness of the
results. Occasionally, two of them report inconsistent an-
swers (one SAT and one UNSAT). To decide which solver is
right, we developed a validator. It takes the model I returned
from the solver who reported SAT, assigns I (x) to all vari-
ables x in the test to obtain a modified test, and re-evaluates
the modified test by multiple solvers. If the results from all
solvers are consistent, we mark the test SAT or UNSAT ac-
cording to the results. Otherwise, we manually simplify and
inspect the test until we get a conclusive result.

The results of the experiments are summarized in Table 1,
Table 2, and Table 3. Rows with heading SAT/UNSAT show
numbers of solved formulae. Rows with heading UNKNOWN
or TIMEOUT indicate the number of instances for which the
solver fails to return an answer. ERRORmeans system crashes
due to various reasons (usually out of memory). INCORRECT
shows the number of cases where the tool gives a wrong
answer.

3https://github.com/spencerwuwu/py-conbyte

Table 1. Results of Z3-Trau, CVC4, Z3, and Z3Str3 on Basic
String Constraint benchmarks.

Z3-Trau CVC4 Z3 Z3Str3

PyEx

SAT 21377 20350 18492 3037
UNSAT 3860 3841 3847 3816

UNKNOWN 0 0 0 7
TIMEOUT 184 1230 3082 16872

ERROR 0 0 0 1675
INCORRECT 0 0 0 14

LeetCode

SAT 877 874 881 661
UNSAT 1785 1785 1785 1780

UNKNOWN 0 0 0 122
TIMEOUT 0 7 0 90

ERROR 4 0 0 13
INCORRECT 0 0 0 0

StringFuzz

SAT 515 615 338 505
UNSAT 301 255 198 192

UNKNOWN 0 0 0 4
TIMEOUT 249 195 529 364

ERROR 0 0 0 0
INCORRECT 0 0 0 0

cvc4pred

SAT 13 11 12 8
UNSAT 822 818 808 774

UNKNOWN 0 0 0 4
TIMEOUT 0 6 15 38

ERROR 0 0 0 11
INCORRECT 0 0 0 0

cvc4term

SAT 10 9 7 2
UNSAT 1032 1026 1022 957

UNKNOWN 0 0 0 3
TIMEOUT 3 10 16 58

ERROR 0 0 0 11
INCORRECT 0 0 0 14

Total

SAT 22792 21859 19730 4213
UNSAT 7800 7725 7550 7519

UNKNOWN 0 0 0 140
TIMEOUT 436 1448 3642 17422

ERROR 4 0 0 1710
INCORRECT 0 0 0 28

From Table 1, we can see that the performance of Z3-Trau
is as good as that of the most competitive tools such as CVC4
and Z3 on basic string constraints. In all of the benchmarks,
Z3-Trau ranked either the 1st or the 2nd on the number of
solved (SAT+UNSAT) cases. On the StringFuzz benchmarks
that are SAT, Z3-Trau does not perform as well as the best
performing tool. We however do not consider this crucial
because these benchmarks are just randomly generated for
debugging. On the most important benchmarks, those that
come from program analysis, Z3-Trau is comparable to the
best performing tool.
From Table 2, we can see that Z3-Trau significantly out-

performs all the other tools. The second best tool, Z3, fails
on 50 times more examples.
As an addition experiment, we have encoded the check-

Luhn algorithm introduced in Section 1 for the cases with 2
to 12 loops (digits). We ran these tests with the timeout set

953

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

Table 2. Results of Z3-Trau, CVC4, Z3, and Z3Str3 on String-
Number Conversion benchmark.

Z3-Trau CVC4 Z3 Z3Str3

Leetcode

SAT 2501 1659 1993 239
UNSAT 16394 15604 16124 15288

UNKNOWN 0 0 0 623
TIMEOUT 32 1664 810 2337

ERROR 0 0 0 332
INCORRECT 0 0 0 108

PythonLib

SAT 1922 560 1839 206
UNSAT 724 666 724 642

UNKNOWN 0 0 0 45
TIMEOUT 0 1420 83 1710

ERROR 0 0 0 41
INCORRECT 0 0 0 2

JavaScript

SAT 20 3 16 4
UNSAT 0 0 0 0

UNKNOWN 0 9 0 0
TIMEOUT 0 8 4 10

ERROR 0 0 0 6
INCORRECT 0 0 0 0

Total

SAT 4443 2222 3848 449
UNSAT 17118 16270 16848 15930

UNKNOWN 0 9 0 668
TIMEOUT 32 3092 897 4057

ERROR 0 0 0 379
INCORRECT 0 0 0 110

to 120s. The result is summarized in Table 3. In these tests,
Z3-Trau can solve all problems within 1s while CVC4 only
returns a model for cases of 2 to 5 loops and Z3Str3 could
not solve any of these problems (either TIMEOUT, ERROR,
or UNKNOWN). However, Z3 can still solve 5 out of the 11
problems. The behavior of Z3 is not entirely unexpected. All
the problems are satisfiable and the solver may be lucky to
guess the solution quickly.

Table 3. Comparison of Z3-Trau, CVC4, Z3, and Z3Str3 with
checkLuhn problems of 2 to 12 loops.

of Loops Z3-Trau CVC4 Z3 Z3Str3
2 SAT(0.27s) SAT(0.17s) SAT(0.11s) ERROR
3 SAT(0.29s) SAT(6.94s) SAT(0.13s) ERROR
4 SAT(0.37s) SAT(4.92s) SAT(0.24s) ERROR
5 SAT(0.39s) SAT(30.86s) SAT(0.13s) ERROR
6 SAT(0.41s) TIMEOUT TIMEOUT UNKNOWN
7 SAT(0.51s) TIMEOUT TIMEOUT ERROR
8 SAT(0.53s) TIMEOUT TIMEOUT ERROR
9 SAT(0.63s) TIMEOUT SAT(0.31s) ERROR
10 SAT(0.69s) TIMEOUT TIMEOUT TIMEOUT
11 SAT(0.71s) TIMEOUT TIMEOUT ERROR
12 SAT(0.74s) TIMEOUT TIMEOUT ERROR

10 Related Works
To the best of our knowledge, the study of solving string
constraint traces back to 1946, when Quine [32] showed that
the first-order theory of string equality constraints (a.k.a.
word equations) is undecidable. Makanin achieves a mile-
stone [28] by showing that the class of quantifier-free string

equality constraints is decidable. Since then, several works,
e.g., [19, 20, 29ś31, 35, 39], consider the decidability and com-
plexity of different subclasses of string equality constraints.
Satisfiability of string constraints is a challenging prob-

lem. The satisfiability of equality constraints combined with
length constraints of the form |x | = |y | is already opened
for more than 20 years [11]. Numerous decidable fragments
were proposed [3, 5, 7, 12, 13, 27]. Among them, the chain-
free fragment [5] used by our over-approximation module is
the largest known decidable fragment, which allows us to
produce more precise over-approximation and hence solve
many UNSAT instances efficiently.
The strong practical motivation led to the rise of several

string constraints solvers that concentrate on solving practi-
cal problem instances. Several tools handle string constraints
assuming a fixed upper bound on the length of strings and
translate them to boolean satisfiability problems [23, 37, 38].
Our method, on the other hand, allows analyzing constraints
without a length limit and still with some completeness guar-
antees, i.e., within the language defined by PFAs.
More recently, DPLL(T)-based string solvers [2, 4, 8, 9,

13, 21, 41, 42, 46] lift the restriction of strings of bounded
length. They usually support a variety of string constraints,
including all basic string constraints, and sometimes also reg-
ular/rational relations. The typical procedure they used for
solving equality constraints is to split them into simpler sub-
cases, in combination with powerful techniques for Boolean
reasoning to curb the resulting exponential search space. In
contrast, our approach uses a completely different search
strategy. We restrict the solution space to some predefined
pattern and step-wisely enrich the pattern in use.
The most relevant work to ours is the FA-based ap-

proach [2] that projects the solution space of variables to a
generalization of flat automata. The main difference is that
our approach works fully symbolically, which is enabled
through using integer variables as characters and hence
PFAs. The use of integer variables as characters allows our
approach to handle string-number constraints efficiently ś
the values and number of occurrences of those variables can
be directly converted to numbers in a linear formula.

In principle, FA-based solvers can be extended to support
string-number conversion too, but PFA are much more effi-
cient. Extending FA-based approach would require multiple
if-then-else statements (e.g., saying that if a transition labeled
‘0’ is taken, then the corresponding number is 0), which in-
troduces a significant amount of additional predicates that
the DPLL engine needs to evaluate. We have confirmed this
in our preliminary experiment.

PASS [26] uses quantified formulae over arrays with sym-
bolic length to encode string constraints, and a specialized
quantifier elimination to solve them. Though it differs from
our approach significantly and handling the quantification
is expensive, PASS is indeed similar in how finite automata
and string-number conversion constraints are translated to

954

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

formulae. Our translation is in general more efficient be-
cause it uses only linear arithmetics. In contrast, PASS trans-
lates string constraints to formulae with quantifier and array
predicates. We did not compare with PASS empirically. The
authors informed us that PASS is no longer maintained and
is not open-source.
A further direction is automata-based solvers for analyz-

ing string-manipulated programs. ABC [6] and Stranger [44]
soundly over-approximates string constraints using multi-
tape automata [45], and outperforms DPLL(T)-based solvers
when checking single execution traces, according to some
evaluations [22]. People also studied the combination of
automata-based algorithms with with model checking algo-
rithms, in particular, IC3/PDR, for more efficient checking of
the emptiness for automata [21, 43]. However, many kinds of
constraints, including length constraints and word equations,
cannot be entirely handled by automata-based solvers.

11 Conclusion and Future Works
In this paper, we report a novel approach for solving string
constraints with string-number conversion and implemented
it as an open-source tool Z3-Trau. For now, it support basic
string constraints, string-number conversion, and also opera-
tions that can be encoded to them (e.g., contains, prefixOf).
Since Z3-Trau is built inside the SMT solver Z3, we also get
the power of processing formulae in the combination of dif-
ferent theories (e.g., array). Hence our tool can support the
encoding of a wide range of program expressions. There are
several avenues for future works. First, we are planning to in-
tegrate it with the JavaScript symbolic executor cosette [36].
We believe such integration is feasible. We are also planning
to merge Z3-Trau with the main branch of the Z3 solver. For
technical development, we think it would be interesting to
consider the (symbolic) flattening of an even larger set of
string operations, such as the one containing replaceAll
and split.

Acknowledgments
This research was partially supported by the Swedish Foun-
dation for Strategic Research, Ministry of Science and Tech-
nology Project, Taiwan (no. 106-2221-E-001 -009 -MY3), Min-
istry of Education, Youth and Sports of Czech Republic
(project IT4Innovations excellence in scienceśLQ1602 and
project LL1908), and FIT BUT internal grant FIT-S-20-6427.

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi

Diep, Lukás Holík, Ahmed Rezine, and Philipp Rümmer. 2017. Flatten
and conquer: a framework for efficient analysis of string constraints.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 602ś617.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi
Diep, Lukás Holík, Ahmed Rezine, and Philipp Rümmer. 2018. Trau:
SMT solver for string constraints. In 2018 Formal Methods in Computer

Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2,
2018, Nikolaj Bjùrner and Arie Gurfinkel (Eds.). IEEE, 1ś5.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás
Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. 2014. String
Constraints for Verification. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture
Notes in Computer Science), Armin Biere and Roderick Bloem (Eds.),
Vol. 8559. Springer, 150ś166.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás
Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman. 2015. Norn:
An SMT Solver for String Constraints. In Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science),
Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer,
462ś469.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukás Holík,
and Petr Janku. 2019. Chain-Free String Constraints. In Automated
Technology for Verification and Analysis - 17th International Symposium,
ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings (Lecture
Notes in Computer Science), Yu-Fang Chen, Chih-Hong Cheng, and
Javier Esparza (Eds.), Vol. 11781. Springer, 277ś293.

[6] Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav
Gavrilov, Tevfik Bultan, and Fang Yu. 2018. Parameterized model
counting for string and numeric constraints. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM,
400ś410.

[7] Pablo Barceló, Diego Figueira, and Leonid Libkin. 2013. Graph Logics
with Rational Relations. Logical Methods in Computer Science 9, 3
(2013).

[8] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare
Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings
(Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz
Qadeer (Eds.), Vol. 6806. Springer, 171ś177.

[9] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A
string solver with theory-aware heuristics. In 2017 Formal Methods
in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6,
2017, Daryl Stewart and Georg Weissenbacher (Eds.). IEEE, 55ś59.

[10] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz
Kabir, and Vijay Ganesh. 2018. StringFuzz: A Fuzzer for String Solvers.
In Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer
Science), Hana Chockler and Georg Weissenbacher (Eds.), Vol. 10982.
Springer, 45ś51.

[11] J. Richard Büchi and Steven Senger. 1988. Definability in the Existential
Theory of Concatenation and Undecidable Extensions of this Theory.
Math. Log. Q. 34, 4 (1988), 337ś342.

[12] Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin
Wu. 2018. What is decidable about string constraints with the Re-
placeAll function. PACMPL 2, POPL (2018), 3:1ś3:29.

[13] Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and
Zhilin Wu. 2019. Decision procedures for path feasibility of string-
manipulating programs with complex operations. PACMPL 3, POPL
(2019), 49:1ś49:30.

[14] Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka.
2018. The Satisfiability of Word Equations: Decidable and Undecidable
Theories. In Reachability Problems - 12th International Conference, RP
2018, Marseille, France, September 24-26, 2018, Proceedings (Lecture Notes

955

PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

in Computer Science), Igor Potapov and Pierre-Alain Reynier (Eds.),
Vol. 11123. Springer, 15ś29.

[15] Leonardo Mendonça de Moura and Nikolaj Bjùrner. 2008. Z3: An
Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings (Lecture Notes in Computer Science), C. R. Ramakrishnan
and Jakob Rehof (Eds.), Vol. 4963. Springer, 337ś340.

[16] ECMA ECMAScript, European Computer Manufacturers Association,
et al. 2019. Ecmascript language specification. https://www.ecma-
international.org/ecma-262/

[17] Ting Gan, Mingshuai Chen, Liyun Dai, Bican Xia, and Naijun Zhan.
2015. Decidability of the Reachability for a Family of Linear Vector
Fields. In Automated Technology for Verification and Analysis - 13th
International Symposium, ATVA 2015, Shanghai, China, October 12-15,
2015, Proceedings (Lecture Notes in Computer Science), Bernd Finkbeiner,
Geguang Pu, and Lijun Zhang (Eds.), Vol. 9364. Springer, 482ś499.

[18] Ting Gan, Mingshuai Chen, Yangjia Li, Bican Xia, and Naijun Zhan.
2018. Reachability Analysis for Solvable Dynamical Systems. IEEE
Trans. Automat. Contr. 63, 7 (2018), 2003ś2018.

[19] Vijay Ganesh and Murphy Berzish. 2016. Undecidability of a The-
ory of Strings, Linear Arithmetic over Length, and String-Number
Conversion. CoRR abs/1605.09442 (2016). arXiv:1605.09442 http:
//arxiv.org/abs/1605.09442

[20] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C.
Rinard. 2012. Word Equations with Length Constraints: What’s Decid-
able?. In Hardware and Software: Verification and Testing - 8th Interna-
tional Haifa Verification Conference, HVC 2012, Haifa, Israel, November
6-8, 2012. Revised Selected Papers (Lecture Notes in Computer Science),
Armin Biere, Amir Nahir, and Tanja E. J. Vos (Eds.), Vol. 7857. Springer,
209ś226.

[21] Lukás Holík, Petr Janku, Anthony W. Lin, Philipp Rümmer, and Tomás
Vojnar. 2018. String constraints with concatenation and transducers
solved efficiently. PACMPL 2, POPL (2018), 4:1ś4:32.

[22] Scott Kausler and Elena Sherman. 2014. Evaluation of string constraint
solvers in the context of symbolic execution. In ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE ’14, Vasteras,
Sweden - September 15 - 19, 2014, Ivica Crnkovic, Marsha Chechik, and
Paul Grünbacher (Eds.). ACM, 259ś270.

[23] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and
Michael D. Ernst. 2009. HAMPI: a solver for string constraints. In
Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009,
Gregg Rothermel and Laura K. Dillon (Eds.). ACM, 105ś116.

[24] Zachary Kincaid, Jason Breck, John Cyphert, and Thomas W. Reps.
2019. Closed forms for numerical loops. PACMPL 3, POPL (2019),
55:1ś55:29.

[25] Leetcode. 2019. LeetCode. https://leetcode.com/
[26] Guodong Li and Indradeep Ghosh. 2013. PASS: String Solving with Pa-

rameterized Array and Interval Automaton. In Hardware and Software:
Verification and Testing - 9th International Haifa Verification Conference,
HVC 2013, Haifa, Israel, November 5-7, 2013, Proceedings (Lecture Notes
in Computer Science), Valeria Bertacco and Axel Legay (Eds.), Vol. 8244.
Springer, 15ś31.

[27] AnthonyWidjaja Lin and Pablo Barceló. 2016. String solvingwithword
equations and transducers: towards a logic for analysing mutation XSS.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.).
ACM, 123ś136.

[28] Gennadiy Semenovich Makanin. 1977. The problem of solvability of
equations in a free semigroup. Matematicheskii Sbornik 145, 2 (1977),

147ś236.
[29] Yuri Matiyasevich. 2008. Computation Paradigms in Light of Hilbert’s

Tenth Problem. In New Computational Paradigms: Changing Concep-
tions of What is Computable, S. Barry Cooper, Benedikt Löwe, and
Andrea Sorbi (Eds.). Springer New York, New York, NY, 59ś85.

[30] Wojciech Plandowski. 1999. Satisfiability of Word Equations with
Constants is in PSPACE. In 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA.
IEEE Computer Society, 495ś500.

[31] Wojciech Plandowski. 2006. An efficient algorithm for solving word
equations. In Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, Seattle, WA, USA, May 21-23, 2006, Jon M. Kleinberg
(Ed.). ACM, 467ś476.

[32] Willard Van Orman Quine. 1946. Concatenation as a Basis for Arith-
metic. J. Symb. Log. 11, 4 (1946), 105ś114.

[33] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
2019. High-Level Abstractions for Simplifying Extended String Con-
straints in SMT. In Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Pro-
ceedings, Part II (Lecture Notes in Computer Science), Isil Dillig and
Serdar Tasiran (Eds.), Vol. 11562. Springer, 23ś42.

[34] Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley,
Tianyi Liang, and Cesare Tinelli. 2017. Scaling Up DPLL(T) String
Solvers Using Context-Dependent Simplification. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Ger-
many, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Com-
puter Science), Rupak Majumdar and Viktor Kuncak (Eds.), Vol. 10427.
Springer, 453ś474.

[35] John Michael Robson and Volker Diekert. 1999. On Quadratic Word
Equations. In STACS 99, 16th Annual Symposium on Theoretical Aspects
of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings (Lec-
ture Notes in Computer Science), Christoph Meinel and Sophie Tison
(Eds.), Vol. 1563. Springer, 217ś226.

[36] José Fragoso Santos, Petar Maksimovic, Théotime Grohens, Julian
Dolby, and Philippa Gardner. 2018. Symbolic Execution for JavaScript.
In Proceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming, PPDP 2018, Frankfurt am Main,
Germany, September 03-05, 2018, David Sabel and Peter Thiemann
(Eds.). ACM, 11:1ś11:14.

[37] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen
McCamant, and Dawn Song. 2010. A Symbolic Execution Framework
for JavaScript. In 31st IEEE Symposium on Security and Privacy, S&P
2010, 16-19 May 2010, Berleley/Oakland, California, USA. IEEE Com-
puter Society, 513ś528.

[38] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song.
2010. FLAX: Systematic Discovery of Client-side Validation Vulnera-
bilities in Rich Web Applications. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2010, San Diego, Califor-
nia, USA, 28th February - 3rd March 2010. The Internet Society.

[39] Klaus U. Schulz. 1990. Makanin’s Algorithm for Word Equations
- Two Improvements and a Generalization. In Word Equations and
Related Topics, First International Workshop, IWWERT ’90, Tübingen,
Germany, October 1-3, 1990, Proceedings (Lecture Notes in Computer
Science), Klaus U. Schulz (Ed.), Vol. 572. Springer, 85ś150.

[40] Helmut Seidl, Thomas Schwentick, and AncaMuscholl. 2008. Counting
in trees. In Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas] (Texts in Logic and Games), Jörg Flum, Erich Grädel,
and Thomas Wilke (Eds.), Vol. 2. Amsterdam University Press, 575ś
612.

[41] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. [n.d.]. S3: A Sym-
bolic String Solver for Vulnerability Detection in Web Applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,
Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 1232ś1243.

956

Efficient Handling of String-Number Conversion PLDI ’20, June 15ś20, 2020, London, UK

[42] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive
Reasoning over Recursively-Defined Strings. In Computer Aided Verifi-
cation - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Sci-
ence), Swarat Chaudhuri and Azadeh Farzan (Eds.), Vol. 9779. Springer,
218ś240.

[43] Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-
Hong R. Jiang. 2016. String Analysis via Automata Manipulation with
Logic Circuit Representation. In Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I (Lecture Notes in Computer Science), Swarat
Chaudhuri and Azadeh Farzan (Eds.), Vol. 9779. Springer, 241ś260.

[44] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: An
Automata-Based String Analysis Tool for PHP. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings (Lecture Notes in Computer Science), Javier

Esparza and Rupak Majumdar (Eds.), Vol. 6015. Springer, 154ś157.
[45] Fang Yu, Ching-Yuan Shueh, Chun-Han Lin, Yu-Fang Chen, Bow-Yaw

Wang, and Tevfik Bultan. 2016. Optimal sanitization synthesis for web
application vulnerability repair. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016, Andreas Zeller and Abhik Roychoudhury
(Eds.). ACM, 189ś200.

[46] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy
Berzish, Julian Dolby, and Xiangyu Zhang. 2017. Z3str2: an efficient
solver for strings, regular expressions, and length constraints. Formal
Methods Syst. Des. 50, 2-3 (2017), 249ś288.

[47] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a z3-
based string solver for web application analysis. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, Bertrand Meyer,
Luciano Baresi, and Mira Mezini (Eds.). ACM, 114ś124.

957

Solving String Constraints with
Approximate Parikh Image

Petr Jank̊u(B) and Lenka Turoňová

Faculty of Information Technology, Brno University of Technology, Brno, Czech
Republic

{ijanku,ituronova}@fit.vutbr.cz

Abstract. In this paper, we propose a refined version of the Parikh
image abstraction of finite automata to resolve string length constraints.
We integrate this abstraction into the string solver SLOTH, where on top
of handling length constraints, our abstraction is also used to speed-up
solving other types of constraints. The experimental results show that
our extension of SLOTH has good results on simple benchmarks as well
as on complex benchmarks that are real-word combinations of transducer
and concatenation constraints.

1 Introduction

Strings are a fundamental data type in many programming languages, especially
owing to the rapidly growing popularity of scripting languages (e.g. JavaScript,
Python, PHP, and Ruby) wherein programmers tend to make heavy use of string
variables. String manipulations could easily lead to unexpected programming
errors, e.g., cross-site scripting (a.k.a. XSS), which are ranked among the top
three classes of web application security vulnerabilities by OWASP [11]. Some
renowned companies like Google, Facebook, Adobe and Mozilla pay to whoever
(hackers) finds a web application vulnerability such as cross-site scripting and
SQL injection in their web applications 1, e.g., Google pays up to $10,000.

In recent years, there have been significant efforts on developing solvers for
string constraints. Many rule-based solvers (such as Z3str2 [15], CVC4 [8], S3P
[12]) are quite fast for the class of simple examples that they can handle. They
are sound but do not guarantee termination. Other tools for dealing with string
constraints (such as Norn [1], Sloth [6], Ostrich [4]) are based on automata.
They use decision procedures which work with fragments of logic over string
constraints that are rich enough to be usable in real-world web applications.

This work has been supported by the Czech Science Foundation (project No. 17-
12465S), the IT4Innovations Excellence in Science (project No. LQ1602), and the FIT
BUT internal projects FIT-S-17-4014 and FEKT/FIT-J-19-5906.
We thank you to Lukáš Hoĺık for all the support and encouragement he gave us and
also the time he spent with us during discussions.
1 For more information, see https://www.netsparker.com/blog/web-security/google-

increase-reward-vulnerability-program-xss/.

c© Springer Nature Switzerland AG 2020
R. Moreno-Dı́az et al. (Eds.): EUROCAST 2019, LNCS 12013, pp. 491–498, 2020.
https://doi.org/10.1007/978-3-030-45093-9_59

492 P. Jank̊u and L. Turoňová

They are sound and complete. Sloth was the first solver that can handle string
constraints including transducers, however, unlike Norn and Ostrich it is not
able to handle length constraints yet. Moreover, these tools are not efficient on
simple benchmarks as the rule-based solvers above.

Example 1. The following JavaScript snippet is an adaptation of an example
from [2,7]:

var x = goog.string.htmlEscape(name);

var y = goog.string.escapeString(x);

nameElem.innerHTML = ’<button onclick= "viewPerson(\’’ + y +

’\’)">’ + x + ’</button >’;

This is a typical example of string manipulation in a web application. The code
attempts to first sanitise the value of name using the sanitization functions
htmlEscape and escapeString from the Closure Library [5]. The author of this
code accidentally swapped the order of the two first lines. Due to this subtle
mistake, the code is vulnerable to XSS, because the variable y may be assigned
an unsafe value. To detect such mistakes, we have to first translate the program
and the safety property to a string constraint, which is satisfiable if and only if y
can be assigned an unsafe value. However, if we would add the length constraints
(e.g. x.length == 2*y.lenght;) to the code, none of Sloth, Ostrich, or
Norn would be able to handle them.

The length constraints are quite common in programs like this. Hence, in this
paper, we present how to extend the method of SLOTH to be able to cope with
them. Our decision procedure is based on the computation of Parikh images for
automata representing constraint functions. Parikh image maps each symbol to
the number of occurrences in the string regardless to its position.

For one nonderministic finite automaton, one can easily computate the Parikh
image by standard automata procedures. However, to compute an exact Parikh
image for a whole formula of contraints is demanding. The existing solution pro-
poses first to compute the product of the automata representing the subformulea
and then compute the Parikh image of their product. Unfortunately, the exact
computation of the Parikh images is computationally far too expensive. Even
more importantly, the resulting semilinear expressions become exponential to
the number of automata.

We therefore propose a decision procedure which computes an over-approxi-
mation of the exact solution that is sufficiently close to the exact solution. We
first compute the membership Parikh images of the automata representing the
string constraints. Then we use concatenation and substitution to compute the
over-approximation of the Parikh image of the whole formula. However, we will
not get the same result as with the previous approach since the Parikh image
forgets the ordering of the symbols in the world. This causes that we could
accept even words that are not accepted by the first approach. But even though
our method does not provide accurate results, it is able to handle the lenght
constraints and solve also real-world cases.

Solving String Constraints with Approximate Parikh Image 493

Outline. Our paper is organized as follow. In Sect. 1, we introduce relevant
notions from logic and automata theory. Section 3 presents an introduction to
a string language. Section 4 explains the notion of Parikh image and operations
on Parikh images. Section 5 presents the main decision procedure. In Sect. 6, the
experimental results are presented.

2 Preliminaries

Bit Vector. Let B = {0, 1} be a set of Boolean values and V a finite set of bit
variables. Bit vectors are defined as functions b : V → B. In this paper, bit
vectors are described by conjunctions of literals over V . We will denote the set
of all bit vectors over V by P(V) and a set of all formulae over V by FV .

Further, let k ≥ 1, and let V 〈k〉 = V ×[k] where [k] denotes the set {1, . . . , k}.
Given a word w = bk

1 . . . bk
m ∈ P(V 〈k〉)∗ over bit vectors, we denote by bk

j [i] ×
{i} = bk

j ∩ (V × {i}), 1 ≤ j ≤ m where bk
j [i] ∈ P(V) the j-th bit vector of

the i-th track. Further, w[i] ∈ P(V)∗ such that w[i] = bk
1 [i] . . . bk

m[i] is the word
which keeps the content of the i-th track of w only. For a bit vector b ∈ P(V),
we denote by {b} the set of variables in the vector.

Automata and Transducers. A succinct nondeterministic finite automaton
(NFA) over bit variables V is a tuple A = (V,Q,Δ, q0, F) where Q is a finite set
of states, Δ ⊆ Q × FV × Q is transition relation, q0 ∈ Q is an initial state, and
F ⊆ Q is a finite set of final states. A accepts a word w iff there is a sequence
q0b

k
1q1 . . . bk

mqm where bk
i ∈ P(V) for every 1 ≤ i ≤ m such that (qi, ϕi, qi−1) ∈ Δ

for every 1 ≤ i ≤ m where bk
i |= ϕi, qm ∈ F , and w = bk

1 . . . bk
m ∈ P(V)∗, m ≥ 0,

where each bk
i , 1 ≤ i ≤ m, is a bit vector encoding the i-th letter of w. The

language of A is the set L(A) of accepted words.
A k-track succinct finite automaton over V is an automaton R〈k〉 = (V 〈k〉, Q,

Δ, I, F), k ≥ 1. The relation R(R〈k〉) ⊆ (P(V)∗)k recognised by R contains a
k-tuple of words (x1, . . . , xk) over P(V) iff there is a word w ∈ L(R) such that
xi = w[i] for each 1 ≤ i ≤ k. A finite transducer (FT) R is a 2-track automaton.

Strings and Languages. We assume a finite alphabet Σ. Σ∗ represents a set of
finite words over Σ, where the empty word is denoted by ε. Let x and y be finite
words in Σ∗. The concatenation of x and y is denoted by x◦y. We denote by |x|
the length of a word x ∈ Σ∗. A language is a subset of Σ∗. The concatenation of
languages L, L′ is the language L◦L′ = x ◦ x′|x ∈ L ∧ x′ ∈ L′, and the iteration
L∗ of L is the smallest language closed under ◦ and containing L and ε.

3 String Language

Let X be a set of variables and x, y be string variables ranging over Σ∗. A string
formula over string terms {tstr}∗ is a Boolean combination of word equations x =

494 P. Jank̊u and L. Turoňová

tstr whose right-hand side tstr might contain the concatenation operator, regular
constraints P , rational constraints R and arithmetic inequalities:

ϕ ::= x = tstr | P(x) | R(x, y) | tar ≥ tar | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

tstr ::= x | ε | tstr ◦ tstr

tar ::= k | |tstr | | tar + tar

In the grammar, x ranges over string variables, R ⊆ (Σ∗)2 is assumed to be
a binary rational relation on words of Σ∗, and P ⊆ Σ∗ is a regular language. We
will represent regular languages by succinct automata and tranducers denoted
as R and A, respectively. The arithmetic terms tar are linear functions over
term lengths and integers, and arithmetic constraints are inequalities of arith-
metic terms. The set of word variables appearing in a term is defined as follows:
Vars(ε) = ∅, Vars(c) = ∅, Vars(u) = {u} and Vars(t1 ◦ t2) = Vars(t1)∪Vars(t2).

To simplify the representation, we do not consider mixed string terms tstr
that contain, besides variables of X, also symbols of Σ. This is without loss of
generality since a mixed term can be encoded as a conjunction of the pure terms
over X obtained by replacing every occurrence of a letter a ∈ Σ by a fresh variable
x, and adding a regular membership constraint Aa(x) with L(Aa) = {a}.

Semantics. A formula ϕ is interpreted over an assignment ι : Xϕ → Σ∗ of
its variables Xϕ to strings over Σ∗. ι is extended to string terms by ι(ts1

◦
ts2

) = ι(ts1
) ◦ ι(ts2

) and to arithmetic terms by ι(|ts|) = |ι(ts)|, ι(k) = k and
ι(ti +t′i) = ι(ti)+ι(t′i). We formalize the satisfaction relation for word equations,
regular constraints, rational constraints, and arithmetic inequalities, assuming
the standard meaning of Boolean connectives:

x = tstr iff ι(x) = ι(tstr)
ι(P(x)) = � iff ι(x) ∈ P

ι(R(x, y)) = � iff (ι(x), ι(y)) ∈ R
ι(ti1 ≤ ti2) = � iff ι(ti1) ≤ ι(ti2)

The truth value of Boolean combinations of formulae under ι is defined as usual.
If ι(ϕ) = � then ι is a solution of ϕ, written ι |= ϕ. The formula ϕ is satisfiable
iff it has a solution, otherwise it is unsatisfiable.

The unrestricted string logic is undecidable, e.g., one can easily encode Post
Correspondence Problem (PCP) as the problem of checking satisfiability of the
constraint R(x, x) for a rational transducer R [10]. Therefore, we restrict the
formulae to be in so-called straight-line form. The definition of straight-line frag-
ment as well as a linear-time algorithm for checking whether a formula ϕ falls
into the straight-line fragment is defined in [9].

4 Parikh Image

The Parikh image of a string abstracts from the ordering in the string. Partic-
ularly, the Parikh image of a string x maps each symbol a to the number of its

Solving String Constraints with Approximate Parikh Image 495

occurrences in the string x (regardless to their position). Parikh image of a given
language is then the set of Parikh images of the words of the language.

In this chapter, we present a construction of the Parikh image of a given
NFA A = (V,Q,Δ, q0, F). The algorithm is modified version of the algorithm
from [13] which computes the Parikh image for a given context-free grammar G.
This algorithm contains a small mistake that has been fixed by Barner in a 2006
Master’s thesis [3]. Since for every regular grammar there exists a corresponding
NFA, we can easily customize the algorithm for NFA such that one can compute
an existential Presburger formula φA which characterizes the Parikh image of
the language L(A) recognized by A in the following way.

Let us define a variable #ϕ for each ϕ ∈ FV , yt for each t ∈ Δ, and uq for
each q ∈ Q, respectively. The free variables of φA are variables #ϕ and we write
Free(φA) for the set of all free variables in the formula φA. The formula φA is
the conjunction of the following three kinds of formulae:

– uq +
∑

t=(q′,ϕ,q)∈Δ yt−
∑

t=(q,ϕ,q′)∈Δ yt = 0 for each q ∈ Q, where the variable

uq is restricted as follows: uq0
= 1, uqF

∈ {0,−1} for qF ∈ F , and uq = 0 for
all other q ∈ Q \ ({q0} ∪ F).

– yt ≥ 0 for each t ∈ Δ since the variable yt cannot be assigned a negative
value.

– #ϕ =
∑

t=(q,ϕ,q′)∈Δ yt for each ϕ ∈ F to ensure that the value xϕ are consis-
tent with the yt.

– To express the connectedness of the automaton, we use an additional variable
zq for each q ∈ Q which reflects the distance of q from q0 in a spanning tree
on the subgraph of A induced by those t ∈ Δ with yt ≥ 0. To this end, we
add for each q ∈ Q a formulae zq = 1∧yt ≥ 0 if q is an initial state, otherwise
(zq = 0 ∧ ∧

t∈Δ+
q

yt = 0) ∨ ∨
t∈Δ+

q
(yt ≥ 0 ∧ zq′ ≥ 0 ∧ zq = zq′ + 1) where

Δ+
q = {(q′, ϕ, q) ∈ Δ} is a set of ingoing transitions.

The resulting existential Presburger formula is then ∃zq1
, . . . , zqn

, uq1
, . . . , uqn

,
yt1 , . . . , ztm

: φA where n is the number of states and m is the number of
transitions of the given automaton. This algorithm can be directly applied to
transducers where the free variables are #ϕ such that ϕ ∈ FV 〈2〉.

4.1 Operations on Parikh Images

In our decision procedure, we will need to use projection of the Parikh image of
transducers and intersection of Parikh images. We have to find a way how to
deal with alphabet predicates of transducers since our version of the intersection
of Parikh images works only with alphabet predicates over a non-indexed set
of bit variables. The intersection of Parikh images is needed since the alphabet
predicates of one automaton can represent a set of symbols which may con-
tains common symbols for more than one automaton. These operations can be
implemented in linear space and time.

496 P. Jank̊u and L. Turoňová

Projection. Let R = (V 〈2〉, Q, Δ, I, F) be a transducer representing a constraint
R(x, y) and let ϕ ∈ FV 〈2〉 be a formula over {bk} ∈ 2V 〈2〉 where bk ∈ P(V 〈2〉).
We write ϕ[x] to denote a alphabet projection of ϕ where ϕ[x] is the subformula
of ϕ such that only contains bits from bk[i] and i is the position of x in R. Given
the Parikh image φR of R, we denote by φR[x] a projection of φR where the
set of free variables is Free(φR[x]) = {#ϕ[x] | #ϕ ∈ Free(φR)}. Further, we need
to introduce the auxiliary function λ that assigns to each variable #ϕ[x] a set
{#ϕ′ | ϕ′[x] = ϕ[x]}. The resulting formula of projection φR has then the form
φR[x] = ∃#ϕ1

, . . . ,#ϕn
: φR ∧ ∧

#ϕ[x]∈Free(φR[x])

(
#ϕ[x] =

∑
#ϕ∈λ(#ϕ[x])

#ϕ

)

where #ϕi
∈ Free(φR) for 1 ≤ i ≤ n.

Intersection. We assume that both Parikh images have alphabet predicates FV

over the same set of bit variables V . Given two Parikh images φ1 and φ2, their
intersection φ� = φ1 �φ2 can be constructed as follows. First, we compute a set
of fresh variables I = {#ϕ1�ϕ2

| #ϕ1
∈ Free(φ1) ∧ #ϕ2

∈ Free(φ2) ∧ ∃b ∈ P(V) :
b |= ϕ1∧ϕ2} representing the number of common symbols for φ1 and φ2. Next, we
define for each Parikh image φi a function τi : Free(φi) → 2I such that τ1(#ϕ1

) =
{#ϕ1�ϕ2

∈ I} and τ2(#ϕ2
) = {#ϕ1�ϕ2

∈ I}. Finally, the intersection is define as
φ� = φ1∧φ2∧∧

#ϕ1
∈Free(φ1)

(
#ϕ1

=
∑

#ϕ′
1
∈τ1(#ϕ1

) #ϕ′
1
)∧∧

#ϕ2
∈Free(φ2)

(
#ϕ2

=
∑

#ϕ′
2
∈τ2(#ϕ2

) #ϕ′
2

)
.

5 Decision Procedure

Our decision procedure is based on computation of the Parikh images of the
automata representing string constraints. Let ϕ := ϕcstr ∧ϕeq ∧ϕar be a formula
in straight-line form where ϕcstr is a conjunction of regular constraints (or their
negation) and rational constraints, ϕeq is a conjunction of word equations of the
form x = y1◦y2◦· · ·◦yn, and ϕar is a conjunction of arithmetic inequalities. The
result of the decision procedure is an existential Presburger formula φϕ which
represents an over-approximation of the Parikh image of ϕ.

We assume that each variable x ∈ Vars(ϕ) is restricted by an automaton or a
transducer. Note that the function Vars(ϕ) denotes a set of variables appearing
in the formula ϕ. We write T to denote a set of Parikh images. The procedure
is divided into three steps as follows.

– Step 1: First, we compute Parikh images of automata and transducers rep-
resenting the constraints from ϕcstr using the algorithm from Sect. 4. We
define a mapping ρcstr : Vars(ϕcstr) → T that maps each string vari-
able x ∈ Vars(ϕcstr) to the over-approximation of its Parikh image. Let
P1(x), . . . , Pn(x) and R1(x, y), . . . , Rm(x, y) be constraints from ϕcstr restrict-
ing x. A formula φx representing the Parikh image of x is then computed using
the algorithm from Sect. 4.1 as φx = φAx

� φA1
� . . . � φAn

� φR1
[x] � . . . �

φRm
[x] where φAi

, 0 ≤ i ≤ n, is the Parikh image of the automaton Ai rep-
resenting Pi(x) and φRj

, 0 ≤ j ≤ m, is the Parikh image of the transducer
Rj representing Rj(x, y).

Solving String Constraints with Approximate Parikh Image 497

– Step 2: We define a mapping ρeq : Vars(ϕeq) → T that maps each string
variable x ∈ Vars(ϕeq) to the over-approximation of its Parikh image as

φx = (
∧k

i=1 ρcstr(yi) ∧ ∧n
j=k+1 ρeq(yj)) � ρcstr(x). We assume that Free(y1) ∩

· · ·∩Free(yn) = ∅. This can be done by adding double negation to the alphabet
predicates which helps to distinguish free variables of individual yi. Parikh
image does not preserve the ordering of the symbols in the string, therefore,
we can reorder the right side of the equation y1 ◦ · · · ◦ yk ◦ · · · ◦ yn such that
∀1 ≤ i ≤ k : yi ∈ ϕcstr and ∀k ≤ j ≤ n : yj ∈ ϕeq. Moreover, the reordering
can be done in such a way that each variable on the right side of the equation
is already defined since ϕ falls into the straight-line fragment.

– Step 3: Finally, we build the final formula φϕ using mappings ρcstr and
ρeq. Let Xeq ⊆ Vars(ϕeq) be a set of all variables that are on the left
side of the equations. The resulting formula φϕ is then a conjunction φϕ =
(�x∈Xeq

ρeq(x)) � (�x∈Vars(ϕ)\Xeq
ρcstr(x)).

6 Experiments

We have implemented our decision procedure extending the method of Sloth
[6] as a tool, called PICoSo. Sloth is a decision procedure for the straight-line
fragment and acyclic formulas. It uses succinct alternating finite-state automata
as concise symbolic representation of string constraints. Like Sloth, PICoSo
was implemented in Scala.

Table 1. Performance of PICoSo in compari-
son to Sloth.

Sloth PICoSo

Norn (1027) sat (sec) 314 (545) 313 (566)

unsat (sec) 353 (624) 356 (602)

timeout 0 0

error/un 360 358

SLOG (3392) sat (sec) 922 (5526) 923 (5801)

unsat (sec) 2033 (5950) 2080 (4382)

timeout 437 389

error/un 0 0

SLOG-LEN (394) sat (sec) 0 0

unsat (sec) 266 (659) 296 (773)

timeout 4 15

error/un 124 83

To evaluate its performance,
we compared PICoSo against
Sloth. We performed exper-
iments on benchmarks with diverse
characteristics.

The first set of benchmarks is
obtained from Norn group [1] and
implements string manipulating
functions such as the Hamming
and Levenshtein distances. It con-
sists of small test case that is com-
binations of concatenations, reg-
ular constraints, and length con-
straints. The second set SLOG
[14] is derived from the security analysis of real web applications. It contains
regular constraints, concatenations, and transducer constraints such as Replace
but no length constraints. The last set is obtained from SLOG by selecting 394
examples containing Replace operation. It was extended by RelaceAll opera-
tion and since in practice, it is common to restrict the size of string variables
in web applications, we added length constraints of the form |x| + |y|Rn, where
R ∈ {=, <,>}, n ∈ {4, 8, 12, 16, 20}, and x, y are string variables.

The summary of the experiments is shown in Table 1. All experiments were
executed on a computer with Intel Xeon E5-2630v2 CPU @ 2.60 GHz and 32 GiB

498 P. Jank̊u and L. Turoňová

RAM. The time limit was 30 s was imposed on each test case. The rows indicate
the number of times the solver returned satisfiable/unsatisfiable (sat/unsat), the
number of times the solver ran out of 30-s limit (timeout), and the number of
times the solver either crashed or returned unknown (error/un).

The results show that PICoSo outperforms Sloth on all of unsat examples.
Sloth is however slightly better in case of sat examples due to the addition
computation of the over-approximation of the Parikh image. Sloth timed out
on 441 cases while PICoSo run out of time only in 404 cases. This shows that
our proposed procedure is efficient in solving not only length constraints, but
also other types of constraints.

References

1. Abdulla, P.A., et al.: String constraints for verification. In: CAV 2014, pp. 150–166
(2014)

2. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Proc.
ACM Program. Lang. 9, 30 (2013)

3. Barner, S.: H3 mit gleichheitstheorien. Master’s thesis, Technical University of
Munich, Germany (2006)

4. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3, 49:1–49:30 (2019)

5. G. co. 2015. Google closure library (referred in Nov 2015) (2015). https://
developers.google.com/closure/library/

6. Hoĺık, L., Jank̊u, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 1–32 (2018)

7. Kern, C.: Securing the tangled web. ACM 57, 38–47 (2014)
8. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory

solver for a theory of strings and regular expressions. In: CAV 2014 (2014)
9. Lin, A.W., Barceló, P.: String solving with word equations and transducers:

towards a logic for analysing mutation XSS. In: POPL, pp. 123–136 (2016)
10. Morvan, C.: On rational graphs. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol.

1784, pp. 252–266. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
46432-8 17

11. OWASP: The ten most critical web application security risks (2013). https://www.
owasp.org/images/f/f8/OWASP Top 10 - 2013.pdf

12. Trinh, M., Chu, D., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: CAV 2016, pp. 218–240 (2016)

13. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 25

14. Wang, H.-E., Tsai, T.-L., Lin, C.-H., Yu, F., Jiang, J.-H.R.: String analysis via
automata manipulation with logic circuit representation. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 241–260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 13

15. Zheng, Y., et al.: Z3str2: an efficient solver for strings, regular expressions, and
length constraints. Formal Meth. Syst. Des. 50(2–3), 249–288 (2014)

	Introduction
	Contribution of This Thesis

	Preliminaries
	String Constraints
	String Language
	Decidability and Complexity of Existing Decision Procedures
	Acyclic Form
	Straight-Line Fragment

	Contributions
	String Constraints with Concatenation and Transducers Solved Efficiently
	Chain-Free String Constraints
	Efficient Handling of String-Number Conversion
	Solving String Constraints with Approximate Parikh Image

	Conclusions and Future Directions
	Summary of the Contributions
	Further Directions

	Bibliography
	Papers
	String constraints with concatenation and transducers solved efficiently
	Chain-Free String Constraints
	Efficient handling of string-number conversion
	Solving String Constraints with Approximate Parikh Image

