Speaker Recognition

Oldřich Plchot Speech@FIT, Brno University of Technology, Czech Republic iplchot@fit.vutbr.cz

> ZRE Brno 5th May, 2025

Agenda

- Speaker recognition applications
 - Why we need speaker recognition
 - Different application domains
- Background and theory
 - Feature extraction
 - Gaussian Mixture Modelling, i-vectors
 - Modelling of embeddings, PLDA
 - Current trends in speaker verification
- Evaluation metrics
- Score calibration and normalization
- Conclusions

Speech processing, use of speaker representations

Security and defense

Forensic Looking for suspect in quantity of audio Waiting online for suspect

Access Control

Physical facilities Computer networks & websites

Transaction Authentication

Telephone banking Remote purchases

Speech Data Management

Voice mail browsing Search in audio archives

Personalization

Voice-web/device customization Intelligent answering machine

Biometrics

- **Biometric**: a human generated signal or attribute for authenticating a person's identity
- Voice biometric can be combined with other forms to reach highest security
 - Voice +
 - Finger print
 - Face, Iris

• Voice is popular biometric

- Natural signal to produce
- Does not require a specialized input device
- Can be obtained remotely, without speaker assistance

Speaker Recognition Tasks

Verification

Is this Homer's voice?

Segmentation and Clustering

Where are speaker changes? Which segments are from the same speaker?

Different applications are suited for different approaches

Text-dependent

- Recognition system knows text spoken by person
- Example: fixed or prompted phrases
- Used for applications with strong control over user
- Knowledge of spoken text can improve system performance

Text-independent

- Recognition system does not know text spoken by person
- Example: User selected phrases, conversational speech
- Used for applications with less or no control over user
- More flexible system but more difficult problem

Agenda

- Speaker recognition applications
 - Why we need speaker recognition
 - Different application domains
- Background and theory
 - Feature extraction principles
 - Gaussian Mixture Modelling, i-vectors
 - Modelling of embeddings, PLDA

- Evaluation metrics
- Score calibration and normalization
- Conclusions

Speaker detection decision approaches have roots in signal detection theory

- 2 class Hypothesis test
 - H0: the speaker is **<u>not</u>** the target speaker
 - H1: the speaker is the target speaker
- Statistic computed on test utterance S as likelihood ratio

 $\Lambda = \log \frac{\text{Likelihood S came from speaker model}}{\text{Likelihood S came from speaker model}}$

Likelihood **S** did <u>**not**</u> come from speaker model

Phases of Speaker Detection System

Two distinct phases to any speaker detection system

Speaker Recognition

FIT

Features for Speaker Recognition

Humans use several levels of perceptual cues for speaker lacksquarerecognition

Hierarchy of Perceptual Cues

Low-level cues (physical traits)

High-level cues		
(learned traits)	Semantics, idiolect, pronunciations, idiosyncrasies	Socio-economic status, education, place of birth
	Prosodics, rhythm, speed intonation, volume modulation	Personality type, parental influence
	Acoustic aspects of speech, nasal, deep, breathy, rough	Anatomical structure of vocal apparatus
(physical traits)		

Difficult to automatically extract Easy to automatically extract

There are no exclusive speaker identity clues \bullet

• Desirable attributes of features for an automatic system (Wolf 72)

Practical

Robust

- Occur naturally and frequently in speech
- Easily measurable
- Not change over time or be affected by speaker health
- Not be affected by reasonable background noise nor depend on specific transmission characteristics

Secure

- Not be subject to mimicry
- No features have all these attributes
- Features derived from spectrum of speech have proven to be the most effective in automatic systems
 - Mel-filter bank outputs, MFCCs and other variants, raw signal processed by trained CNN (transformers)

MAP adaptation – How to create speaker model

- UBM model 2 Gaussians
- Speaker model adapted from UBM
- Adapted only parameters seen in target training data
- Only means adapted
- $\mu_{tgt} = \gamma \ \mu_{trn} + (1 \gamma) \ \mu_{ubm}; \ \gamma = n/(n+r)$
- n ... number of target training data
- r ... relevance factor for speaker id. usually 10-19

The largest challenge to practical use of speaker detection systems is channel/session variability

- Variability refers to changes in channel between training and successive detection attempts
- Channel/session effects encompasses several factors
 - The microphones

Carbon-button, electret, hands-free, array, ...

- The acoustic environment Office, car, airport, street, restaurant, ...
- The transmission channel
 Landline, cellular, VoIP,...
- Speaker emotion state

Calm, nervous, stress, drunk, ill, ...

Inter-session variability

Inter-session variability compensation

- Eigen-{voice,channel} adaptation compensating for speaker and channel variability, moving the model parameters in the subspace of given variability
- Everything happens in high-dimensional space of GMM mean supervectors...
- Both techniques identify the low-dimensional subspace(s) which are important for modeling
- Use only the notion of representing the recording by fixed-length low-dimensional vector => i-vectors
 - Channel compensation still to be done in the ivector space.

i-vectors / probabilistic PCA

- We maximize the overall likelihood of the data given the subspace model via EM algorithm and find the i-vector extractor matrix
- No labels are needed during training
- During test, we compute the MAP point estimate of x given the fixed extractor

iVectors – low-dimensional recording representation

$ilde{oldsymbol{\mu}} = \mathbf{m} + \mathbf{T}\mathbf{i}$

- The main idea is to transform large utterance-specific GMM supervector into a small subspace while retaining most of the variability
- iVector extractor is model similar to JFA
 - with single subspace T -> easier to train
 - no need for speaker labels -> the subspace can be trained on large amount of unlabeled recordings
- low-dimensional (typically 200-600 dimensions)
- i-vector is information rich
 - contains information about speaker, language, emotion, ... and also channel
 -> needs to be considered by the following classifier.
- We assume standard normal prior for factors **i**.

• Estimate the i-vector -- MAP point estimate of i, for every recording

Dehak, N., et al., Support Vector Machines versus Fast Scoring in the Low-Dimensional Total Variability Space for Speaker Verification, In Proc Interspeech 2009, Brighton, UK, September 2009

Probabilistic Linear Discriminant Analysis (PLDA)

- What would be now the appropriate probabilistic model for verification?
 - i-vector still contains channel information -> our model should consider both speaker and channel variability.
- Such model is known as PLDA and is described by familiar equation:

$$\mathbf{i} = \boldsymbol{\mu} + \mathbf{V}\mathbf{y} + \mathbf{U}\mathbf{x} + \boldsymbol{\epsilon}$$

- This equation now describes directly the variability of observed data – i-vectors (generative embeddings)
- Parameters μ , V, U and diagonal covariance matrix of residual noise vector ϵ can be estimated using EM algorithm.

PLDA continued

- PLDA has nice interpretation in face verification where it was introduced by Simon J.D. Prince
- Each face image i can be constructed by adding
 - (A) mean face μ
 - (B) linear combination of basis V corresponding to between-individual variability (moving from μ in these directions gives us images that look like different people)
 - (D) linear combination of basis U corresponding to within-individual variability (moving from μ in these directions gives us images that look like the same person under different condition e.g. lighting)
 - (C) residual noise vector $\epsilon_{(A)}$

Picture taken from: S.J.D. Prince and J.H. Elder, "Probabilistic linear discriminant analysis for inferences about identity," ICCV, 2007

PLDA based verification

- Verification based on Bayesian model comparison
- Compare likelihoods for two hypothesis:
 - H_s both recordings come from the same speaker
 - H_d recordings come from different speakers

- It is symmetrical problem
- We do not need to train explicitly the speaker model and compare to each test recording which was done before
- Scoring with PLDA is FAST!!

Simplified PLDA model

Labelled training data were required only for the probabilistic "backend" (typically PLDA). This was one of a big advantages of i-vectors over its predecessor (Joint Factor Analysis).

The verification score is a log likelihood ratio of the utterances being generated jointly from the same speaker or independently from different speakers

$$s = \log \frac{l\left(\mathfrak{X}_{e_1} \dots \mathfrak{X}_{e_n}, \mathfrak{X}_{t_1} \dots \mathfrak{X}_{t_m} | H_s\right)}{l\left(\mathfrak{X}_{e_1} \dots \mathfrak{X}_{e_n} | H_s\right) l\left(\mathfrak{X}_{t_1} \dots \mathfrak{X}_{t_m} | H_s\right)}$$

Embeddings for Speaker Recognition

• David Snyder et al., INTERSPEECH 2017

Deep Neural Network Embeddings for Text-Independent Speaker Verification

David Snyder, Daniel Garcia-Romero, Daniel Povey, Sanjeev Khudanpur

Center for Language and Speech Processing & Human Language Technology Center of Excellence, The Johns Hopkins University, USA

{david.ryan.snyder, dpovey}@gmail.com, {dgromero, khudanpur}@jhu.edu

Abstract

This paper investigates replacing i-vectors for text-independent speaker verification with embeddings extracted from a feedforward deep neural network. Long-term speaker characteristics are captured in the network by a temporal pooling layer that aggregates over the input speech. This enables the network model (UBM) that is used to collect sufficient statistics, a large projection matrix to extract i-vectors, and a probabilistic linear discriminant analysis (PLDA) backend to compute a similarity score between i-vectors [2, 3, 4, 5, 6, 7].

Traditionally, the UBM is a Gaussian mixture model (GMM) trained on acoustic features. Recent work has shown

Speaker-discriminative DNNs, x-vectors

7 layers of Time-delay architecture (TDNN), Stats: mean and std, Embeddings: 512 and 300, Softmax output over supervised set of training speakers (few thousands), Trained with samples between 2 and 10 seconds

Peddinti, V., Povey, D., Khudanpur, S., "A time delay neural network architecture for efficient modeling of long temporal contexts" Proc. Interspeech 2015 Snyder, D., Garcia-Romero, D., Povey D., Khudanpur S. "Deep Neural Network Embeddings for Text-Independent Speaker Verification", Interspeech 2017

Longitudinal Analysis

Both SITW and Voices are 16K 2000 GMM-UBM 2006 GMM-EC 2008 JFA 2010 iVectors 2017 x-vectors Effect of in- vs outdomain data 8K vs 16K

Pavel Matějka, et al., *"13 years of speaker recognition research at BUT, with longitudinal analysis of NIST SRE"*, Computer Speech & Language, vol. 63, 2020

SOTA AND CURRENT RESEARCH DIRECTIONS

SOTA approach for feature learning - CNN

X-vectors with variants of large convolutional networks like ResNet, ECAPA-TDNN, RepVGG....

- For coherent domains with large amounts of annotated data such as VoxCeleb
- Voxceleb1-O is essentially solved, EERs << 1%

Attention vs CNN

WavLM main characteristics

Tailored to speaker recognition, diarization, speech separation, a.o. Jointly learns masked speech prediction and denoising. Simulate noisy/overlapped speech as inputs, and predict the pseudo-labels of original speech on the masked region.

Replaces standard positional embeddings with gated relative position bias.

Chen, Sanyuan, et al. "WavLM: Large-scale self-supervised pre-training for full stack speech processing." (Microsoft) 2021

Extracting speaker-related representations from

Attention-based SV backend on top of WavLM

Simple backend with multihead attention

Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." arXiv preprint arXiv:2210.01273 (2022)., SLT 2022

Extracting speaker-related representations from

Transformer models and adapters for SV

- Do we need to finetune the whole SSL network?
- What if there is not enough in-domain data. (Experiments on VoxCeleb and CNCeleb)

Interesting implications for concurrent deployment of many domain-specific models

Peng, Junyi, et al. "Parameter-efficient transfer learning of pre-trained Transformer models for speaker verification using adapters." IEEE-ICASSP 2023

Extracting speaker-related representations from

Not enough labelled data

- Utilize pre-training paradigm that leverages vast amount of unlabeled data (or download the model)
- Pre-trained model can be easily fine-tuned for target application (domain)
- In the end, less labeled data are needed w.r.t. CNN or RNNbased models

Plenty of labelled data

Train large CNN-based supervised embedding extractors Obtain SOTA results, but perhaps lose some robustness

Agenda

- Speaker recognition applications
 - Why we need speaker recognition
 - Different application domains
- Background and theory
 - Feature extraction
 - Gaussian Mixture Modelling
 - Modelling of embeddings, PLDA
 - DNN embeddings
- Evaluation metrics
- Score calibration and normalization
- Conclusions

Evaluation Metric

There are two types of errors
 MISS: incorrectly rejected a target trial
 It was target trial, but system said it is not
 also known as a false reject
 FALSE ALARM: incorrectly accept a non-target trial

It was not target trial, but system said it is also known as a false accept

- The performance of a detection system is measure of the trade-off between these two errors is controlled by adjustment of the decision threshold
- In an evaluation, N_{target} target-trials (test speaker = model speaker) and $N_{non-target}$ non-target trials (test speaker != model speaker) are conducted and error probabilities are estimated at given threshold

Does the system work well ?

- We need some (lots of) data pairs model speaker test speaker (we call these pairs trials).
 - **Target-trials** (test speaker = model speaker)
 - **Non-target-trials** (test speaker ≠ model speaker)
- We run them through the system and record the scores
- We need to set the detection threshold

True accept

True reject

False alarm

Single threshold, two types of error

Probability density

Comparison of different SRE techniques

Additional significant recent improvements obtained with:

- full covariance UBM
- additional iVector pre-processing (LDA dim. reduction, length normalization,...)

DET – Detection Error Tradeoff

Agenda

- Speaker recognition applications
 - Why we need speaker recognition
 - Different application domains
- Background and theory
 - Feature extraction
 - Gaussian Mixture Modelling
 - Modelling of embeddings, PLDA
 - DNN embeddings
- Evaluation metrics
- Score calibration and normalization
- Conclusions

Score Calibration

- We want a probabilistic interpretation of scores
 - Performing calibration often results in such scores
- Well calibrated scores have the same meaning on different sets and different systems – we can directly compare the numbers
- Calibration does not change system discriminability it is usually only linear transformation
- Given the calibrated scores, we can set the threshold analytically for the desired operating point (application)

Score presentation

- Generally it is expected that systems produce scores (ideally log likelihood ratios):
 - >0 ... more positive more sure it is the speaker
 - <0 ... more negative more sure it is not the speaker

Scores/system outputs

Scores

• The output of the recognizer is usually a score, which reflects the confidence of the system (ideally for SRE **log-likelihood ratio**).

$$s = \log \frac{p(t|H_s)}{p(t|H_d)}.$$

- Higher value reflects a higher confidence for same-speaker hypothesis and lower value for different-speaker hypothesis.
- Eventually, the score is converted to a hard decision by thresholding.
- Moving the threshold changes the proportion of the two error rates (pmiss, pfa)

Discriminability of the system

Calibrating the scores

- Provided scores are often not very nice LLR
- Calibration task is to transform the scores in such a way that we get LLR and therefore we can set ideal threshold (for given operating point)
- Problems often arise from the dataset shift (typically development data vs target, evaluation data)
- Usually a simple transformation f(s) (monothonic increasing) is enough to calibrate:

 $f(s) = a\,s + b,$

 Parameters a and b can be found by optimizing a cross entropy objective over a supervised development set by the means of logistic regression – discriminative approach

Calibration

• Miss-calibrated system because of different channel, language, noise, reverberation

Detection Cost Function (DCF)

- Defined by NIST as a metric for evaluating the verification systems, which focuses on a particular operation point of interest.
- It is designed to consider the overall costs based on the two types of detection errors.

 $DCF = C_{miss} p(miss | \mathcal{T}, \tau) p(H_s) + C_{fa} p(fa | \mathcal{T}, \tau) p(H_d)$

 $p(H_d) = 1 - p(H_s)$

triplet $\langle C_{\text{miss}}, C_{\text{fa}}, p(H_s) \rangle$ defines the target operating point

	C_{fa}	$C_{\rm miss}$	$p(H_s)$
$\mathrm{DCF}_{\mathrm{old}}$	1	10	0.01
$\mathrm{DCF}_{\mathrm{new}}$	1	1	0.001

Setting for NIST SRE2008 and 2010

Measuring calibration loss

- DCF (actual) is computed from the actual hard decisions.
- Threshold for making decisions is often set by evaluator
- NIST also computes a minimum possible DCF

$$\min \text{DCF} = \min_{\tau} \left[C_{\text{miss}} p(\text{miss}|\mathcal{T}, \tau) p(H_s) + C_{\text{fa}} p(\text{fa}|\mathcal{T}, \tau) p(H_d) \right].$$

- The difference between the act-DCF and min-DCF is referred to as a calibration loss.
- Calibration task is to transform the scores in such a way that we get least errors at the given operating point

Analytically setting the threshold

• If the scores are well-calibrated LLR, user can set the threshold analytically to make an optimal, cost-ffective Bayes decision

 $\langle C_{\rm miss}, C_{\rm fa}, p(H_s) \rangle$ can be absorbed to a single effective prior $P_{\rm tar}$

$$\operatorname{logit} P_{\operatorname{tar}} = \operatorname{logit}(p(H_s)) + \operatorname{log} \frac{C_{\operatorname{miss}}}{C_{\operatorname{fa}}}. \qquad \operatorname{logit}(x) = \operatorname{log} \frac{x}{1-x}$$

Analytical and optimal threshold for the scores (LLRs) is then $\tau = -\text{logit } P_{\text{tar}}$.

Conclusions

- Over the past decade
 - error rates have decreased 5 times or more thanks to advances in channel compensation techniques
 - the new techniques have resulted in massive speed-ups
 - i-vector/x-vectors are extracted for each recording (about 100 times faster than RT)
 - With embeddings, **billions** of verification trials can be tested in few seconds
- DNN embeddings have replaced generative embeddings (i-vectors)
- Use of large SSL models is promising when little annotated training data are available for training DNN embedding extractors
- Channel distortion is still the big issues for correct recognition
 - Calibration and score normalization is necessary for practical systems
- For more details talk to anybody from Speech@FIT

Thanks for your attention and I hope you enjoyed it ;)