VYSOKE UCENI 'FAKULTA

TECHNICKE INFORMACNICH
V BRNE TECHNOLOGII

Machine Learning and Recognition —Project
Model for classification of persons
by tface images and voice recordings

Marian Taragel (xtarag01)
May 4, 2025 Martin Horvat (xhorval7)

1 Introduction

The assignment of this project was to create models for classifying people according to images of their
face and recordings of their voice. We were tasked with choosing an appropriate classifier model and
implementing it in a programming language of our choice. Training was carried out on facial images
and voice recordings of 31 people provided in 2 datasets dev and train.

e dev/: 2 images and 2 voice recordings per person

e train/: 6 images and 6 voice recordings per person

We can see that the datasets are very small, so the amount of data that could have been used for
training was rather limited.

2 Model Design

We have developed three models, two for classification of face images and one for classification of voice
recordings.

2.1 Images - Convolutional Neural Network (CNN)

The first image classification model we decided to implement was a Convolutional Neural Network
(CNN).

Data augmentation: Due to the small amount of training data, we increased the amount available
by augmenting selected image sets. The images were augmented by randomly modifying the images
in the following metrics: rotation, vertical shift, horizontal shift, shear, zoom, horizontal flip, and
brightness.

Network architecture: The CNN model is built using Keras Sequential API. It has three blocks
of convolutional layers, where each block uses more filters (32, 64, then 128), followed by batch normal-
ization, max pooling, and dropout to reduce overfitting. After these blocks, the features are flattened
and passed through a dense layer with 256 units, followed by more batch normalization and dropout.
The final output layer uses softmax to produce the probabilities for each class. The maximum proba-
bility class is chosen.

Training data: We have experimented with different combinations of dev and train mixed
together, training only on train etc. We have found that the best results are achieved when we train
the neural network on both the dev and train datasets, adding 20x augmented train data. Given
the hyperparameters in Table 1 we have found that CNN performs subpar, given the limited data.

Parameter Value Meaning

epochs 30 number training epochs

1r le=* learning rate

batch_size 32 training batch size
n_augments 20 number of data augmentations
loss CCE! loss function

opt Adam optimizer

Table 1: Parameters used in Convolutional Neural Network

LCategorical Cross Entropy

2.2 Images - Support Vector Machine (SVM)

The second image classification model that we implemented was the Support Vector Machine (SVM).
Kernel function: We had evaluated multiple kernel functions. According to our evaluation, the
best is linear. The evaluation strategy used for multiclass classification is one-vs-rest.
Training: The loss used for SVM was the Hinge loss. The maximum number of training epochs is
1500 or until the solution converges to tolerance le~2. The penalty for slack variables is 1le~2, which
means that the solution must fit almost all training data. The parameters were found by GridSearchCV.

Parameter Value Meaning

max_iter 1500 maximum number of iterations to be run
tol le~2 tolerance for stopping criteria

C le™2 strength of the regularization

multi_class one-vs-rest determines the multi-class strategy

Table 2: Parameters used in Support Vector Machine

2.3 Voice - Gaussian Mixture Model (GMM)

For voice classification, we decided to implement a Gaussian Mixture Model (GMM) that classifies the
speakers according to their recordings transformed to a Mel-frequency cepstral coefficient representa-
tion.

Preprocessing: Voice recordings have the first and last two seconds removed, as they usually do
not feature the speaker talking. After clipping, the recording is split into a number of windows, each
window that has signal energy under a given threshold, is dropped from the recording. This removes
periods of silence during recording.

Transformation: Preprocessed voice recordings are transformed to their Mel-frequency cepstral
coefficient representation. We have used the functions provided in ikrlib. The transformation has
the following parameters, which are summarized in Table 3.

Parameter Value Meaning

num_gauss 6 number of gaussian distributions

epochs 30 number of training cycles

energy_level 15 signal energy cutoff threshold

window 400 window length for frame (in samples)

noverlap 240 overlapping between frames (in samples)

nfft 512 number of frequency points used to calculate the FFT
nbanks 23 numer of mel filter bank bands

nceps 13 number of MEL cepstral coefficients

Table 3: Parameters used in Gaussian Mixture Model

Training: The EM algorithm is used to train a GMM model for each speaker.

3 Running

The required Python packages are numpy, matplotlib, keras, tensorflow, python-opencv, scipy,
scikit-learn.

The project assumes the following folder structure. Where SRC/ containts the implementations of
individual models, and data/ contains the dev, test and eval datasets.

| | -- image_cnn.py
| |-- image_svm.py
| | -- voice_gmm.py
| -- data/

| |-- dev/

| |-- train/

| |-- eval/

| -- dokumentace.pdf

Figure 1: Expected directory structure.

Before running, we suggest creating a virtual environment with all the necessary packages.

$ virtualenv venv

$ source venv/bin/activate

(venv) $ python3 —m pip install numpy matplotlib keras tensorflow
python—opencv scipy scikit—learn

(venv) $ python3 SRC/image cnn.py

Figure 2: Run image_cnn.py classifier.

4 Model Evaluation

We evaluated the performance of the models by testing their prediction accuracy on the dev dataset.
The best performance, the average performance for 10 runs is summarized Table 4.

Model Best (%) Average (%)>
Image - CNN 70.4 43.3
Image - SVM 66.4 62.8
Voice - GMM 89.4 84.2

Table 4: Model Performance

4.1 Images - Convolutional Neural Network (CNN)

The CNN model achieves variable performance, based on data inputted. It cannot be said that it
performs well and will likely perform poorly on unobserved test data. It is known that CNN’s require
large amounts of data to function well. The provided dataset is very small to train a CNN from scratch
and usually results in an overfit network.

2 Average performance for 10 runs

4.2 Images - Support Vector Machine (SVM)

The SVM model performs relatively well after using grid search to find optimal parameters. It consis-
tently achieves performance of ~62%. The parameters found after training can be seen in Table 2. We
expect to achieve similar performance on the evaluation dataset. Better performance could be achieved
on with different data representation . We note, that a simpler machine learning model achieves better
performance than a large CNN.

4.3 Voice - Gaussian Mixture Model (GMM)

We evaluated the performance of the model by its accuracy in classifying speakers in the dev dataset.
We train the model using the train dataset. The model has an average classification accuracy of ~84%
(mean of 10 model runs). We have found that the number of gaussian distributions (num_gauss),
number of epochs (epochs) and window signal energy cutoff threshold (energy_level) parameters
have the largest impact on classifier performance (in decreasing order). The parameters, which we
have found to work best, can be seen in Table 3.

	Introduction
	Model Design
	Images - Convolutional Neural Network (CNN)
	Images - Support Vector Machine (SVM)
	Voice - Gaussian Mixture Model (GMM)

	Running
	Model Evaluation
	Images - Convolutional Neural Network (CNN)
	Images - Support Vector Machine (SVM)
	Voice - Gaussian Mixture Model (GMM)

