
SUR 2024/2025 Project
Login: XSYNAK03

1. Project Summary

The goal of this project is to develop a system capable of identifying 31 individuals

based on face images and voice recordings. Two independent pipelines were implemented

and improved: one for image-based recognition, and one for speaker recognition using

audio signals.

2 Data Split

Training Data: train/1 to train/31

Testing Data: dev/1 to dev/31

2. Image Recognition System

At first, a basic SVM classifier was implemented using raw pixel values from grayscale

images, with dimensionality reduction performed via PCA. This base had around 19 %

accuracy.

3. Improvements tested

Feature Extraction

We experimented with several types of image feature extractions to find the one

performing the best:

Feature Type Description Accuracy

Raw Pixels Flattened grayscale 128×128 images. 19%

HOG (Histogram of Oriented

Gradients)

Gradient orientation histograms, tuned

via grid search.
63–75%

HOG + LBP + Raw Pixels
Concatenation of multiple descriptors,

overfitted.
45%

LBP Local Binary Pattern histograms. 48%

We akso tested several parameters for HOG with the best configuration being:

orientations=9

pixels_per_cell=(8, 8)

cells_per_block=(2, 2)

block_norm='L2-Hys'

Data Augmentation

To help the model generalize better and become better at dealing with slight

variations, data augmentation techniques were applied to the training images.

Without augmentation: ~63.2% accuracy

With augmentation: Horizontal flip and 10 degree rotations increased accuracy

to ~75.8%. More adcanced augmentations were also tested(scaling, noise

injection, contrast jitter) but did not yield better results.

Classifiers Compared

Several classifiers were tested:

Classifier Accuracy

Linear SVM ~75.8%

RBF SVM ~75.8%

KNN (k=35) ~61.6%

Random Forest ~54.2%

MLP ~45.2%

Linear SVM with C=0.01 was chosen for performance and speed.

Dimensionality Reduction

Features were standardized using StandardScaler

PCA tested for 25–300 components

Best result at 100 components giving slight improvement

4 Final Image Pipeline

The final image recognition system is based on a Histogram of Oriented Gradients (HOG)

feature extraction followed by PCA dimensionality reduction and a Linear Support

Vector Machine (SVM) classifier.

Pipeline Overview

1. Load images from train/ and dev folders.

2. Preprocess: resize each image to 128×128 and convert to grayscale.

3. Augment training images with horizontal flips and 10 degree rotations.

4. Extract HOG features, capturing the structure and edge orientations in the

face.

5. Normalize features using StandardScaler and reduce dimensionality using PCA.

6. Train a Linear SVM.

7. Evaluate model on the dev set.

Final Accuracy: ~77%

5. Voice Recognition System

The first base system used MFCC features and trained 1-component GMMs per speaker

using diagonal covariance matrices. No normalization or parameter tuning was applied

initially. This simple setup achieved ~35% accuracy.

Iprovements tested

GMM Classifier parameters

Different number of GMM components and full/diagonal covariences were tested notable

being:

Configuration Accuracy

Diagonal, M=1 ~35%

Full, M=1 ~54%

Full, M=10 ~60%

Full matrices significantly improved performance. Best result was with M = 10 (tested

1-30) components.

MFCC Parameter Tuning

To improve the model’s representational power, we conducted extensive testing with

over 70 different MFCC configurations. The following parameters were varied during

tuning:

Window size

Overlap

FFT size

Number of Mel filterbanks

Number of cepstral coefficients

The best-performing configuration was found to be: win = 512, noverlap = 256, nfft =

512, nbanks = 23, and nceps = 16.

This configuration achieved an accuracy of approximately 83%.

CMVN Normalization

To stabilize feature distributions across speakers and sessions, we applied CMVN

(Cepstral Mean and Variance Normalization) after MFCC extraction. The final accuracy

after this was 86%

Additional Improvements Tested

After establishing the strong CMVN + MFCC + GMM baseline, we explored a range of

advanced strategies. However, most offered little or no improvement.

Improvement Description Impact

Delta/Delta-Delta Added time derivatives Decrease

Score Normalization z-score normalization of log-likelihoods No gain

Ensemble GMMs Multiple GMMs per speaker, score averaging No gain

Jackknife Leave-one-session-out cross-validation No gain

UBM + MAP Adaptation Universal Background Model + adaptation Decrease

6. Final Configuration Summary

Component Configuration

GMM M = 10, full covariance

MFCC (512, 256, 512, 23, 16)

CMVN Enabled

Accuracy 86%

The final voice recognition pipeline is implemented using a straightforward GMM-based

classification strategy:

1. Load .wav audio data from train/ and dev/ folders.

2. Extract MFCC features using the mfcc function from IKR_demos_py:

Window size = 512

Overlap = 256

NFFT = 512

23 Mel filterbanks

16 cepstral coefficients

3. Apply Cepstral Mean and Variance Normalization (CMVN) to normalize speaker

variability.

4. For each speaker, train a GMM with 10 components and full covariance matrices.

5. During classification, for each test audio segment:

Compute log-likelihood scores from all 31 GMMs

Choose the speaker with the highest score.

The GMMs are initialized with random means from the data and trained using EM until

convergence or a fixed number of iterations.

Final testing yields a classification accuracy of approximately 86%.

7. How to Run

Requirements:

pip3 install -r requirements.txt

Voice Recognition Model

Usage:

python3 sur_voice_GMM.py

It will train on data in test dir measure accuracy on dev dir and evaluate eval.

Train, dev and eval need to be in the same directory as source files and the results

are saved in results_voice_gmm.txt in the same directory. IKR_demos_py folder also

needs to be at same directory as some functions are sourced from the demo(adjusted for

python3).

Image Recognition Model

Usage:

python3 sur_image_SVM.py

It will train on data in test dir measure accuracy on dev dir and evaluate eval.

Train, dev and eval need to be in the same directory as source files and the results

are saved in results_image_linear.txt in the same directory. Directory structure :

xsynak03/

│

├── src/

│ ├── IKR_demos_py/

│ │ └── ikrlib.py

│ │

│ ├── sur_voice_GMM.py

│ ├── sur_image_SVM.py

│ └── requirements.txt

│

└── documentation.pdf

So eval dev and train need to be placed in src and output will also be in src.

