BRNO FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

SUR project 2024/25

Samuel Simtn (xsimun04), Daniel Zarsky (xzarsk04)

4.4.2025

Contents

(1. Introductionl
[2. Face recognition|
2.1 Data Augmentation| o Lo
P2 CNN . . .o
[2.2.1 Model Tuning|.
[2.2.2 Layer Details| oo
[2.2.3 Training and Regularization|
2.3 Experiments and evaluation| o000

[3. Voice recognition|
I;ill J&I (:llitf:(:t lll gi -----------------------------------

3.2 Experiments and evaluation|

[4. Combinig scores|

[6. Installation and Setup|

p.1 Environment Setup|. oL
b.2 Installing Dependencies| L.
5.3 Running the GMM Training|. L.
5.4 Running the CNN Training|
.5 Running combined inference|. L.

1. Introduction

This project was developed as part of the Machine Learning and Recognition course at
BUT FIT. The primary objective is to recognize individuals based on their face images
(in PNG format) and short voice recordings (in WAV format). The training dataset
consists of 31 distinct individuals. Notably, the project constraints prohibit the use of
any pre-trained models or additional external data.

2. Face recognition

2.1 Data Augmentation

Images are randomly rotated within a small range of +5 degrees, as they are generally
upright and not significantly tilted, and no horizontal or vertical flipping is applied to
maintain natural face orientation. To simulate slight variations in face position, images are
shifted horizontally and vertically by up to 10% of their dimensions, and minor changes
in camera distance are represented by random zooming within a 10% range. Additionally,
images are randomly sheared by up to 10% to introduce perspective distortions. To
account for different lighting conditions, the brightness of images is randomly adjusted
within the range [0.8, 1.2], and channel values are shifted by up to 50 units to simulate
variations in color balance. Any empty areas created by these transformations are filled
using the nearest available pixels, ensuring the output images remain valid and visually
coherent.

2.2 CNN

The proposed face recognition model is a sequential convolutional neural network (CNN)
designed specifically for small datasets and low-resolution images. Its architecture consists
of four convolutional layers with ReLLU activation, followed by a flattening layer and a
dense output layer with softmax activation for classification.

2.2.1 Model Tuning

Based on that architecture we decided to utilize tensorflow keras Tuner to find the best
hyperameters for model. With this tuner we are looking for best combination of number
of filters for each convolutional layer and learning rate. We defined the searching space
for Tuner:

e 1st Conv Layer: 32 to 64 filters
e 2st Conv Layer: 16 to 64 filters
e 3st Conv Layer: 128 to 256 filters

e 4st Conv Layer: 128 to 256 filters

e Initial Learning Rate: 103,107,107

As an algorithm for tuning, we chose Hyperland, which uses adaptive resource
allocation and early stopping to quickly find ”"good” models. We run this tuner with a
target to maximise validation accuracy, with a maximum of 20 epochs.

2.2.2 Layer Details

Based from results from tuner we used following model with total 9,197,583 trainable
params:

e 1st Conv Layer: 64 filters, 3 x 3 kernel, input shape (80, 80, 3), ReLU activation,
2 x 2 max pooling.

e 2nd Conv Layer: 48 filters, 3 x 3 kernel, ReLU activation. c
e 3rd Conv Layer: 192 filters, 3 x 3 kernel, ReLLU activation.
e 4th Conv Layer: 256 filters, 3 x 3 kernel, ReLU activation.
e Flatten Layer: Converts feature maps to a vector.

e Output Layer: Dense layer with 31 units, softmax activation.

2.2.3 Training and Regularization
Training is stabilized using:
e Early stopping (monitors validation accuracy, patience 10).

e Learning rate reduction (monitors validation loss, patience 8).

2.3 Experiments and evaluation

Narrowing the augmentation parameters—such as rotation_range=5, width_shift_range=0.1,
height _shift_range=0.1, shear_range=0.1, and zoom _range=0.1—had a positive impact
on model performance. Additionally, reducing the brightness_range from [0.5, 1.5] to
[0.8, 1.2] improved results, and increasing the channel shift_range to 50 also contributed
positively.

We tried these architecture chnages with validation loss achieving 0.9677 accuracy.

3. Voice recognition

3.1 Architecture

This method presents a speaker recognition system based on Mel-Frequency Cepstral
Coefficients (MFCCs) and Gaussian Mixture Models (GMMs). Audio samples recorded

at 16 kHz are converted into 13-dimensional MFCC features, capturing spectral charac-
teristics of speech. For each individual, features from multiple recordings are aggregated
and used to train a GMM using the Expectation-Maximization algorithm. The models
are initialized with random means, uniform weights, and covariance matrices regularized
to prevent singularities. Each speaker is represented by a unique GMM, enabling identifi-
cation through likelihood-based comparison. The employed model uses 12 components
and was trained for 32 iterations.

3.2 Experiments and evaluation

As well as for training convolutional network we used one more file per class from dev
directory. We empirically tested various settings, and observed that using between 8
and 20 GMM components generally produced good results, with 85%+ accuracy. The
best performance, achieving cca 90% accuracy, was observed with 12 to 16 components.
To balance generalization and representational capacity, we selected 12 components, as
this provided sufficient space to capture diverse feature characteristics while avoiding
overfitting.

The number of EM iterations was also chosen empirically. We initially started with
50 iterations and gradually reduced it. Accuracy noticeably dropped below 25 iterations,
so we selected 32 iterations as a conservative yet effective choice. The final accuracy was
90.32%, using the enlarged training set.

4. Combinig scores

Inference script combines audio and visual models using a weighted sum rule, where the
parameter o = 0.35 is set to prioritize the image classifier due to its improved accuracy.
The system first loads a Gaussian Mixture Model (GMM) for speaker identification from
audio data, as well as a pretrained Convolutional Neural Network (CNN) for visual
classification. For each input pair, it computes log-likelihoods from the audio model and
class probabilities from the image model. These predictions are then combined using the
weighted sum rule: combined score = a X sound_score + (1 — a) X image score, where
the image classifier is given more weight to reflect its superior performance based on
experiments we performed. The final class for each input is determined by selecting the
highest combined score, and the results are written to a formatted output file.

5. Installation and Setup

5.1 Environment Setup

Ensure that you have Python 3.10 or higher and pip installed on your system. To create
the Python virtual environment, run the following command in your terminal:

python3 -m venv env

Activate the environment by running:

source env/bin/activate # On Linux/Mac0S
env\Scripts\activate # On Windows
5.2 Installing Dependencies

Install the required dependencies using;:

pip install -r requirements.txt

5.3 Running the GMM Training

We assume your training and validation data are organized in a folder containing subfold-
ers, where each subfolder holds the data for one class. Navigate to the sound directory.
To train the Gaussian Mixture Model (GMM), execute the following command:

python3 train_gmm.py --train_dir your_train_set --eval_dir your_val_data

This script will display evaluation results and save the trained models as gmm_speaker models. joblib,
which can be subsequently used for standalone speaker recognition tasks. By default,
the number of components is set to 12, and the number of expectation-maximization
iterations is set to 32.

5.4 Running the CNN Training

To train the Convolutional Neural Network (CNN) for face recognition, prepare the
training and validation data in the same format as for GMM. Navigate to the image
directory from the root folder Execute the training script with your dataset paths:

python3 train_cnn.py --train_dir your_train_data --eval_dir your_val_data

This script will output two files:

e face recognition model.h5: The trained face recognition model, ready for stan-
dalone use.

e class_indices. json: A mapping file that associates model output class indices
to the corresponding identities.

The default number of training epochs is 100, and the default batch size is 16. These
parameters can be adjusted by passing additional arguments to the script if necessary.

5.5 Running combined inference

To run this code, execute the script from the command line and provide the required
arguments. Specify the path to the sound model with -s or —-sound (in .joblib format),
the path to the image model (in .h5 format) with -i or --image, and the path to the data
directory containing audio (.wav) and image (.png) files with -d or --data. Optionally,
you can set the output file path with o or ——output (defaults to output.txt), the alpha
parameter for the sum rule with -a or -—alpha (defaults to 0.5), and the path to the
class indices file with -ci or --class_indices (defaults to ../class_indices.json).
For example:

python script.py -s gmm_speaker_models.joblib -i face_recognition model.hb
-d eval/ -o results.txt -a 0.35 -ci class_indices.json.

	Introduction
	Face recognition
	Data Augmentation
	CNN
	Model Tuning
	Layer Details
	Training and Regularization

	Experiments and evaluation

	Voice recognition
	Architecture
	Experiments and evaluation

	Combinig scores
	Installation and Setup
	Environment Setup
	Installing Dependencies
	Running the GMM Training
	Running the CNN Training
	Running combined inference

