Static Analysis and Verification SAV 2024/2025

Tomáš Vojnar

vojnar@fit.vutbr.cz

Brno University of Technology Faculty of Information Technology Božetechova 2, 612 66 Brno ^ˇ

Temporal Logics : CTL ∗, CTL, LTL

Model of Computation

❖ Informally, Kripke structures are directed graphs whose

- vertices correspond to configurations of the examined system,
- the vertices are labelled by atomic propositions that are true in the appropriate configurations, and
- edges encode possible transitions between the configurations.

❖ Can be generated from the source description of examined systems (or used implicitly as an underlying semantic model of the formulae as well as examined systems).

❖ The generation involves the state explosion problem, or the Kripke structure may be infinite—in the following, we, however, concentrate on finite Kripke structures.

 \triangleleft Let AP be a set of atomic propositions about the configurations of the examined system.

 \clubsuit Formally, a (finite) Kripke structure M over AP is a tuple $M = (S, S_0, R, L)$ where

- \bullet S is a finite set of states,
- $S_0 \subseteq S$ is a set of initial states,
- $R \subseteq S \times S$ is a transition relation, for convenience supposed to be total (i.e. $\forall s \in S \ \exists s' \in S.\ R(s,s')),$
- $L : S \to 2^{AP}$ is a labelling function that labels each state by the set of atomic propositions that are true in it.

 \triangleleft Let AP be a set of atomic propositions about the configurations of the examined system.

 \clubsuit Formally, a (finite) Kripke structure M over AP is a tuple $M = (S, S_0, R, L)$ where

- \bullet S is a finite set of states,
- $S_0 \subseteq S$ is a set of initial states,
- $R \subseteq S \times S$ is a transition relation, for convenience supposed to be total (i.e. $\forall s \in S \ \exists s' \in S.\ R(s,s')),$
- $L : S \to 2^{AP}$ is a labelling function that labels each state by the set of atomic propositions that are true in it.
- ❖ For the example from the previous slide, we have:
	- $AP = \{unlocked(l), cs(P1), cs(P2)\},\$
	- $S = \{s_1, s_2, s_3\},\$
	- $S_0 = \{s_1\},\,$
	- $R = \{(s_1, s_2), (s_2, s_1), (s_1, s_3), (s_3, s_1)\},\$
	- $L = \{(s_1, \{unlocked(l)\}\}, (s_2, \{cs(P1)\}\), (s_3, \{cs(P2)\}\}).$

A path π in a Kripke structure M is an infinite sequence of states $\pi = s_0s_1s_2...$ such that $\forall i \in \mathbb{N}. R(s_i, s_{i+1}).$

 \bullet We denote $\Pi(M, s)$ the set of all paths in M that start at $s \in S$.

• The suffix π^i of a path $\pi = s_0s_1s_2...s_is_{i+1}s_{i+2}...$ is the path $\pi^i = s_is_{i+1}s_{i+2}...$ starting at s_i .

The CTL[∗] Logic

CTL∗*—Basic Idea*

❖ CTL[∗] formulae describe properties of computation trees.

❖ Infinite computation trees are obtained by unwinding ^a Kripke structure from its initial states.

❖ CTL[∗] formulae consist of:

- atomic propositions,
- Boolean connectives,
- path quantifiers,
- temporal operators.

CTL [∗]*—Quantifiers and Operators*

❖ Path quantifiers—describe the branching structure of ^a computation tree:

- \bullet E : for some computation path leading from a state,
- A: for all computation paths leading from a state.
- ❖ Temporal operators—properties of ^a path through ^a computation tree:
	- $X \varphi$ ("next time", \bigcirc): the property φ holds (on the path starting) from the second state of the given path,
	- F φ ("eventually" / "sometimes", \diamond): the property φ holds (on the path starting) from some state of the given path,
	- $\bullet\;\; G\;\varphi$ ("always" / "globally", \Box): the property φ holds from all states of the path,
	- $\bullet \;\;\varphi\; U\;\psi$ ("until"): the property ψ holds from some state of the path, and the property φ holds from all preceding states of the path,
	- $\bullet \;\;\varphi \mathrel{R} \psi$ ("release"): the property ψ holds from all states of the path up to (and including) the first state from where the property φ holds (if such a state exists).

CTL∗*—The Syntax*

 \triangleleft Let AP be a non-empty set of atomic propositions.

❖ The syntax of state formulae, which are true in ^a specific state, is given by the following rules:

- If $p \in AP$, then p is a state formula.
- If φ and ψ are state formulae, then $\neg \varphi$, $\varphi \vee \psi$, $\varphi \wedge \psi$ are state formulae.
- If φ is a path formula, then $E \varphi$ and $A \varphi$ are state formulae.

❖ The syntax of path formulae, which are true along ^a specific path, is given by the following rules:

- If φ is a state formula, then φ is a path formula too.
- If φ and ψ are path formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R\psi$ are path formulae.

❖ CTL[∗] is the set of state formulae generated by the above rules.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 $\bullet \bullet$ For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

•
$$
M, s \models p
$$
 iff $p \in L(s)$.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- $M, s \models p$ iff $p \in L(s)$.
- $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- $M, s \models p$ iff $p \in L(s)$.
- $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
- $M, s \models \varphi_1 \vee \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- $M, s \models p$ iff $p \in L(s)$.
- $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
- $M, s \models \varphi_1 \vee \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
- $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- $M, s \models p$ iff $p \in L(s)$.
- $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
- $M, s \models \varphi_1 \vee \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
- $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
- $M, s \models E \psi_1$ iff $\exists \pi \in \Pi(M, s)$. $M, \pi \models \psi_1$.

 \bullet Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.

 \bullet For a *state formula* φ over AP , we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.

 \clubsuit For a *path formula* φ over AP , we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M .

 \bullet Let $s \in S$, π be a path in M , φ_1, φ_2 be state formulae over AP , $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- $M, s \models p$ iff $p \in L(s)$.
- $M, s \models \neg \varphi_1$ iff $M, s \not\models \varphi_1$.
- $M, s \models \varphi_1 \vee \varphi_2$ iff $M, s \models \varphi_1$ or $M, s \models \varphi_2$.
- $M, s \models \varphi_1 \land \varphi_2$ iff $M, s \models \varphi_1$ and $M, s \models \varphi_2$.
- $M, s \models E \psi_1$ iff $\exists \pi \in \Pi(M, s)$. $M, \pi \models \psi_1$.
- $M, s \models A \psi_1$ iff $\forall \pi \in \Pi(M, s)$. $M, \pi \models \psi_1$.

Continued from the previous slide...

• $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $\bullet \quad M, \pi \models F\ \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $\bullet \quad M, \pi \models F\ \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1$ iff $\forall i \geq 0$. $M, \pi^i \models \psi_1$.

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $\bullet \quad M, \pi \models F\ \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1$ iff $\forall i \geq 0$. $M, \pi^i \models \psi_1$.
- \bullet $M, \pi \models \psi_1 ~ U ~ \psi_2$ iff ∃ $i \geq 0.~ M, \pi^i \models \psi_2$ and $\forall 0 \leq j < i.~ M, \pi^j \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $\bullet \quad M, \pi \models F\ \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1$ iff $\forall i \geq 0$. $M, \pi^i \models \psi_1$.
- \bullet $M, \pi \models \psi_1 ~ U ~ \psi_2$ iff ∃ $i \geq 0.~ M, \pi^i \models \psi_2$ and $\forall 0 \leq j < i.~ M, \pi^j \models \psi_1.$
- $M, \pi \models \psi_1 \; R \; \psi_2$ iff $\forall i \geq 0$. $(\forall 0 \leq j \leq i \ldots M, \pi^j \not\models \psi_1) \Rightarrow M, \pi^i \models \psi_2$.

Continued from the previous slide...

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1$ iff $M, \pi \not\models \psi_1$.
- $\bullet\;\;M,\pi \models \psi_1\lor\psi_2$ iff $M,\pi \models \psi_1$ or $M,\pi \models \psi_2.$
- $M, \pi \models \psi_1 \land \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $\bullet \quad M, \pi \models X \; \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $\bullet \quad M, \pi \models F\ \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1$ iff $\forall i \geq 0$. $M, \pi^i \models \psi_1$.
- \bullet $M, \pi \models \psi_1 ~ U ~ \psi_2$ iff ∃ $i \geq 0.~ M, \pi^i \models \psi_2$ and $\forall 0 \leq j < i.~ M, \pi^j \models \psi_1.$
- $M, \pi \models \psi_1 \; R \; \psi_2$ iff $\forall i \geq 0$. $(\forall 0 \leq j \leq i \ldots M, \pi^j \not\models \psi_1) \Rightarrow M, \pi^i \models \psi_2$.

◆ For a (state) CTL* formula φ , we write $M\models\varphi$ iff $\forall s_0\in S_0$. $M,s_0\models\varphi$.

- let $p \in AP$, $true \equiv$ (and $false \equiv \neg true$),
- $\bullet\;\;\varphi \wedge \psi \equiv$
- $F \varphi \equiv$
- $G \varphi \equiv$
- $\bullet\ \varphi\ R\ \psi\equiv$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet\;\;\varphi \wedge \psi \equiv$
- $F \varphi \equiv$
- $G \varphi \equiv$
- $\bullet\ \varphi\ R\ \psi\equiv$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv$
- $G \varphi \equiv$
- $\bullet\ \varphi\ R\ \psi\equiv$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv true U \varphi$,
- $G \varphi \equiv$
- $\bullet\ \varphi\ R\ \psi\equiv$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv true U \varphi$,
- $\bullet\;\; G \;\varphi \equiv \lnot F \; \lnot \varphi,$
- $\bullet\ \varphi\ R\ \psi\equiv$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv true U \varphi$,
- $\bullet\;\; G \;\varphi \equiv \lnot F \; \lnot \varphi,$
- $\bullet \quad \varphi \mathrel R \psi \equiv \neg(\neg \varphi \mathrel U \neg \psi),$
- $A \varphi \equiv$

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv true U \varphi$,
- $\bullet\;\; G \;\varphi \equiv \lnot F \; \lnot \varphi,$
- $\bullet \quad \varphi \mathrel R \psi \equiv \neg(\neg \varphi \mathrel U \neg \psi),$
- $A \varphi \equiv \neg E \neg \varphi$.
CTL [∗]*—Basic Operators*

❖ Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E :

- let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
- $\bullet \quad \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
- $F \varphi \equiv true U \varphi$,
- $\bullet\;\; G \;\varphi \equiv \neg F \; \neg \varphi,$
- $\bullet \quad \varphi \mathrel R \psi \equiv \neg(\neg \varphi \mathrel U \neg \psi),$
- $A \varphi \equiv \neg E \neg \varphi$.
- ❖ Some further connectives may be introduced too, e.g.:
	- $\varphi \Rightarrow \psi \equiv \neg \varphi \vee \psi$,
	- \bullet $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi),$
	- \bullet ...

The CTL Logic

❖ CTL is a sublogic of CTL*—the path formulae are restricted to X $\varphi,$ F $\varphi,$ G $\varphi,$ $\varphi U \psi,$ and $\varphi R\psi$ for φ, ψ being state formulae.

 \bullet CTL is a sublogic of CTL^{*}—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R\psi$ for φ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

• AX and EX ,

Temporal Logics – p.15/26

 \bullet CTL is a sublogic of CTL^{*}—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R\psi$ for φ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

• AF and EF ,

Continued at the next slide...

Temporal Logics – p.15/26

 \bullet CTL is a sublogic of CTL^{*}—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R\psi$ for φ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

Continued at the next slide...

Temporal Logics – p.15/26

 \bullet AU and EU ,

• AU and EU ,

• AR and ER .

• AU and EU ,

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

- $AX \varphi \equiv$
- $EF \varphi \equiv$
- $AG \varphi \equiv$
- $AF \varphi \equiv$
- $A[\varphi U \psi] \equiv$
- $A[\varphi \, R \, \psi] \equiv$
- $E[\varphi \, R \, \psi] \equiv$

• AU and EU ,

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

- $AX \varphi \equiv \neg EX \neg \varphi,$
- $EF \varphi \equiv$
- $AG \varphi \equiv$
- $AF \varphi \equiv$
- $A[\varphi U \psi] \equiv$
- $A[\varphi \, R \, \psi] \equiv$
- $E[\varphi \, R \, \psi] \equiv$

• AU and EU ,

• AR and ER . $A[p R q] q$ p q q **q** E[p R q] **q** q p) (9) () (0) (p q

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

.....

- $AX \varphi \equiv \neg EX \neg \varphi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv$
- $AG \varphi \equiv$
- $AF \varphi \equiv$

• $A[\varphi U \psi] \equiv$

.....

.....

-
- $E[\varphi \, R \, \psi] \equiv$

• AU and EU ,

.....

.....

• AR and ER . $A[p R q] q$ p q q **q** E[p R q] **q** p) (9) () (0) (p q

.....

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

.....

- $AX \varphi \equiv \neg EX \neg \varphi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv$
- $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi \; R \; \psi] \equiv$
- $AF \varphi \equiv$

• $A[\varphi U \psi] \equiv$

.....

q

.....

-
-

• AU and EU ,

.....

.....

• AR and ER . $A[p R q] q$ p q q **q** E[p R q] **q** p) (9) () (0) (p q

.....

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

.....

- $AX \varphi \equiv \neg EX \neg \varphi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv$
- $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi \; R \; \psi] \equiv$
- $AF \varphi \equiv \neg EG \neg \varphi,$

• $A[\varphi U \psi] \equiv$

.....

q

.....

-
-

• AU and EU ,

• AR and ER . $A[p R q]$ p q q **q** E[p R q] **q** q p) (9) () (0) (p q

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

- $AX \varphi \equiv \neg EX \neg \varphi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv$
- $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi \; R \; \psi] \equiv$
- $AF \varphi \equiv \neg EG \neg \varphi,$

 \bullet $A[\varphi U \psi] \equiv \neg E[\neg \psi U (\neg \varphi \wedge \neg \psi)] \wedge AF\psi,$

-
-

• AU and EU ,

.....

q

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

.....

p q

.....

- $AX \varphi \equiv \neg EX \neg \varphi,$
-
- $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi \; R \; \psi] \equiv$
- $AF \varphi \equiv \neg EG \neg \varphi,$
- \bullet $A[\varphi U \psi] \equiv \neg E[\neg \psi U (\neg \varphi \wedge \neg \psi)] \wedge AF\psi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv \neg E[\neg \varphi U \neg \psi],$

q

.....

.....

.....

p) (9) () (0) (p

• AU and EU ,

.....

q

p) (9) () (0) (p

.....

.....

 \bullet There are 3 basic CTL modal operators— EX, EG , and EU :

.....

p q

.....

- $AX \varphi \equiv \neg EX \neg \varphi,$
-
-
- $AF \varphi \equiv \neg EG \neg \varphi,$
- \bullet $A[\varphi U \psi] \equiv \neg E[\neg \psi U (\neg \varphi \wedge \neg \psi)] \wedge AF\psi,$
- $EF \varphi \equiv E[true U \varphi],$ $A[\varphi R \psi] \equiv \neg E[\neg \varphi U \neg \psi],$

q

.....

.....

• $AG \varphi \equiv \neg EF \neg \varphi,$ • $E[\varphi \; R \; \psi] \equiv \neg A[\neg \varphi \; U \; \neg \psi].$

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$.

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$.

 $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$.

 $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$

• It is possible to get to a state where $Start$ holds, but $Ready$ does not.

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. $EF (Start \wedge \neg Ready)$

- ❖ Some examples of CTL formulae:
	- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
	- It is possible to get to a state where $Start$ holds, but $Ready$ does not. $EF (Start \wedge \neg Ready)$
	- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold).

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. $EF (Start \wedge \neg Ready)$
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)

- ❖ Some examples of CTL formulae:
	- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
	- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
	- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
	- In any run of the system, $DeviceEnabled$ is true infinitely often.

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled

- ❖ Some examples of CTL formulae:
	- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
	- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
	- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
	- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
	- From any state, the system can be restarted (i.e. get to a $Restart$ state).

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again.

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again. $Reset \wedge AXAG \neg Reset$

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again. $Reset \wedge AXAG \neg Reset$
- The $Reset$ signal is initially set, but once it is unset, it is never set again.

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again. $Reset \wedge AXAG \neg Reset$
- The $Reset$ signal is initially set, but once it is unset, it is never set again. $\text{Reset} \land \text{AG } (\neg \text{Reset} \Rightarrow \text{AG } \neg \text{Reset})$

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again. $Reset \wedge AXAG \neg Reset$
- The $Reset$ signal is initially set, but once it is unset, it is never set again. $\text{Reset} \land \text{AG } (\neg \text{Reset} \Rightarrow \text{AG } \neg \text{Reset})$
- The $AccConn$ signal can be set only after the $StartAcc$ signal arrives.

- Mutual exclusion of two processes using propositions $cs(P1)$ (process $P1$ is in the critical section) and $cs(P2)$. $\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$
- It is possible to get to a state where $Start$ holds, but $Ready$ does not. EF (Start $\wedge \neg Ready$)
- Whenever a request occurs (i.e. $\text{Re}q$ holds), then it will eventually be acknowledged (i.e. Ack will hold). AG (Req \Rightarrow AF Ack)
- In any run of the system, $DeviceEnabled$ is true infinitely often. AG AF DeviceEnabled
- From any state, the system can be restarted (i.e. get to a $Restart$ state). AG EF Restart
- The $Reset$ signal is initially set, and from the next state on, it is never set again. $Reset \wedge AXAG \neg Reset$
- The $Reset$ signal is initially set, but once it is unset, it is never set again. $\text{Reset} \land \text{AG } (\neg \text{Reset} \Rightarrow \text{AG } \neg \text{Reset})$
- The $AccConn$ signal can be set only after the $StartAcc$ signal arrives. $A[StartAcc R (\neg AccConn)]$

CTL Model Checking

The Basic Idea

❖ The CTL model checking question to be answered: Given ^a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP and a CTL formula φ over AP, does $M \models \varphi$ hold?

❖ A very basic approach to answer the CTL model checking question by the so-called explicit-state model checking:

- For every subformula ψ of φ , label by ψ all those states s of M in which φ holds $(i.e., M, s \models \psi).$
- Perform the labelling from the inner-most subformulae (i.e. the most nested ones) going to the outer ones exploiting the already computed labels (with atomic propositions corresponding to the original labels of M).
- Check whether each state in S_0 gets labelled by φ .

 $\bullet\bullet$ It is enough to consider the basic operators of CTL, i.e. the below syntax for $p\in AP$: $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid EX \varphi \mid E[\varphi U \varphi] \mid EG \varphi.$

 $Label(\neg \varphi)$, $Label(\varphi_1 \lor \varphi_2)$

Label($\varphi_1 \vee \varphi_2$) for all $s \in S$ such that $\varphi_1 \in Label(s)$ or $\varphi_2 \in Label(s)$ do $Label(s) := Label(s) \cup {\varphi_1 \vee \varphi_2}$


```
Label(EX\varphi)
for all s_2 \in S such that \varphi \in Label(s_2) do
   for all s_1 \in S such that R(s_1, s_2) do
      Label(s_1) := Label(s_1) \cup \{EX\varphi\}
```

Label($E[\varphi_1 U \varphi_2]$)

❖ The idea:

- Label first states already labelled by φ_2 .
- Look at predecessors of states labelled with φ_1 U φ_2 , and if they are labelled with φ_1 , label them with φ_1 U φ_2 as well.

- \clubsuit Based on the following observation: Let $M = (S, S_0, R, L)$ be a Kripke structure, $S' = \{s \in S \mid M, s \models \varphi\}$, and $R' = R \cap (S' \times S')$. For any $s \in S, M, s \models EG\varphi$ iff
	- 1. $s \in S'$ and
	- 2. there exists a path in the oriented graph $G^{\prime}=(S^{\prime},R^{\prime})$ that leads from s to some node t in a nontrivial SCC C of G^{\prime} .

An SCC C is nontrivial iff either it has more than one node or it contains one node with ^a self-loop.

❖ SCCs of a finite oriented graph (V, E) can be computed using the Tarjan's algorithm in time $O(|E|+|V|).$

The LTL Logic

LTL—The Syntax

EXECTL is another sublogic of CTL^{*} that allows only formulae of the form $A \varphi$ in which the only state subformulae are atomic propositions.

❖ This is, LTL formulae φ are built according to the grammar:

- $\varphi ::= A \psi$ (the use of A is often omitted),
- $\bullet \quad \psi ::= p \mid \neg \psi \mid \psi \vee \psi \mid \psi \wedge \psi \mid X \psi \mid F \psi \mid G \psi \mid \psi U \psi \mid \psi R \psi$

where $p \in AP$.

❖ Note that LTL speaks about particular paths in ^a given Kripke structure only—it ignores its branching structure.

❖ Sometimes, existential LTL allowing formulae of the form $E \varphi$ is used too.

LTL—The Syntax

EXECTL is another sublogic of CTL^{*} that allows only formulae of the form $A \varphi$ in which the only state subformulae are atomic propositions.

❖ This is, LTL formulae φ are built according to the grammar:

- $\varphi ::= A \psi$ (the use of A is often omitted),
- ϕ $\psi ::= p \mid \neg \psi \mid \psi \vee \psi \mid \psi \wedge \psi \mid X \psi \mid F \psi \mid G \psi \mid \psi U \psi \mid \psi R \psi$

where $p \in AP$.

❖ Note that LTL speaks about particular paths in ^a given Kripke structure only—it ignores its branching structure.

❖ Sometimes, existential LTL allowing formulae of the form $E \varphi$ is used too.

❖ Note also that while CTL cannot express fairness assumptions (in CTL model checking, they are handled by ^a special extension of the model checking algorithm), LTL can express fairness assumptions by formulae of the following form:

- weak fairness: $(F G E nabled) \Rightarrow (G F F ired)$, i.e. $\Diamond \Box E nabled \Rightarrow \Box \Diamond F ired$,
- strong fairness: $(G \ F \ Enabled) \Rightarrow (G \ F \ Fired),$ i.e. $\Box \Diamond \ Enabled \Rightarrow \Box \Diamond \ Fired.$

LTL, CTL, and CTL ∗

❖ LTL and CTL have an incomparable power:

- CTL cannot express, e.g., the LTL formula A $(FG$ $p)$,
- LTL cannot express, e.g., the CTL formula AG (EF p).

LTL, CTL, and CTL ∗

❖ LTL and CTL have an incomparable power:

- CTL cannot express, e.g., the LTL formula A $(FG$ $p)$,
- LTL cannot express, e.g., the CTL formula AG (EF p).

❖ CTL [∗] is strictly more powerful than both LTL and CTL:

• the disjunction of the above formulae, i.e. $(A \; (FG \; p)) \; \vee \; (AG \; (EF \; p))$, is not expressible in CTL nor LTL.

LTL, CTL, and CTL ∗

❖ LTL and CTL have an incomparable power:

- CTL cannot express, e.g., the LTL formula A $(FG$ $p)$,
- LTL cannot express, e.g., the CTL formula AG (EF p).
- ❖ CTL [∗] is strictly more powerful than both LTL and CTL:
	- the disjunction of the above formulae, i.e. $(A \; (FG \; p)) \; \vee \; (AG \; (EF \; p))$, is not expressible in CTL nor LTL.

❖ To complete the picture, here are the complexities of the appropriate model checking algorithms (we will discuss LTL model checking later on):

- CTL: linear in $|M|$ and linear in $|\varphi|$.
- LTL and CTL^{*}: linear in $|M|$ and PSPACE-complete in $|\varphi|$

where $|M|=|S|+|R|$ and $|\varphi|$ is the number of subformulae of $\varphi.$

❖ Finally, as an example of ^a logic more general than CTL ∗, we can mention modal μ -calculus based on least/greatest fixpoint operators on sets of states (basically allowing one to define new, specialised modalities).