Static Analysis and Verification

SAV 2024/2025

Tomáš Vojnar

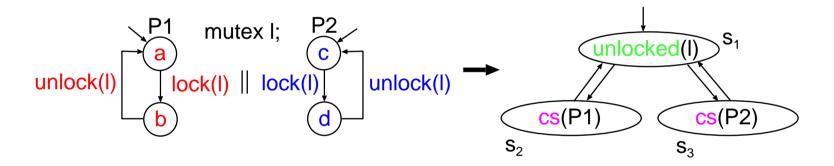
vojnar@fit.vutbr.cz

Brno University of Technology Faculty of Information Technology Božetěchova 2, 612 66 Brno

Temporal Logics: CTL*, CTL, LTL

Model of Computation

- Informally, Kripke structures are directed graphs whose
 - vertices correspond to configurations of the examined system,
 - the vertices are labelled by atomic propositions that are true in the appropriate configurations, and
 - edges encode possible transitions between the configurations.



- * Can be generated from the source description of examined systems (or used implicitly as an underlying semantic model of the formulae as well as examined systems).
- ❖ The generation involves the state explosion problem, or the Kripke structure may be infinite—in the following, we, however, concentrate on finite Kripke structures.

- \clubsuit Let AP be a set of atomic propositions about the configurations of the examined system.
- Formally, a (finite) Kripke structure M over AP is a tuple $M = (S, S_0, R, L)$ where
 - S is a finite set of states,
 - $S_0 \subseteq S$ is a set of initial states,
 - $R \subseteq S \times S$ is a transition relation, for convenience supposed to be total (i.e. $\forall s \in S \ \exists s' \in S. \ R(s,s')$),
 - $L:S \to 2^{AP}$ is a labelling function that labels each state by the set of atomic propositions that are true in it.

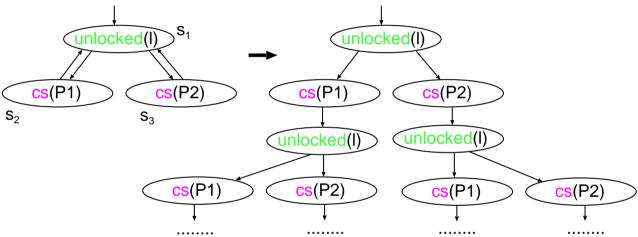
- \clubsuit Let AP be a set of atomic propositions about the configurations of the examined system.
- Formally, a (finite) Kripke structure M over AP is a tuple $M = (S, S_0, R, L)$ where
 - S is a finite set of states,
 - $S_0 \subseteq S$ is a set of initial states,
 - $R \subseteq S \times S$ is a transition relation, for convenience supposed to be total (i.e. $\forall s \in S \ \exists s' \in S. \ R(s,s')$),
 - $L:S \to 2^{AP}$ is a labelling function that labels each state by the set of atomic propositions that are true in it.
- For the example from the previous slide, we have:
 - $AP = \{unlocked(l), cs(P1), cs(P2)\},\$
 - $S = \{s_1, s_2, s_3\},$
 - $S_0 = \{s_1\},$
 - $R = \{(s_1, s_2), (s_2, s_1), (s_1, s_3), (s_3, s_1)\},\$
 - $L = \{(s_1, \{unlocked(l)\}), (s_2, \{cs(P1)\}), (s_3, \{cs(P2)\})\}.$

- **A** path π in a Kripke structure M is an infinite sequence of states $\pi = s_0 s_1 s_2 ...$ such that $\forall i \in \mathbb{N}. R(s_i, s_{i+1})$.
- We denote $\Pi(M, s)$ the set of all paths in M that start at $s \in S$.
- \clubsuit The suffix π^i of a path $\pi = s_0 s_1 s_2 ... s_i s_{i+1} s_{i+2} ...$ is the path $\pi^i = s_i s_{i+1} s_{i+2} ...$ starting at s_i .

The CTL* Logic

CTL*—Basic Idea

- ❖ CTL* formulae describe properties of computation trees.
- Infinite computation trees are obtained by unwinding a Kripke structure from its initial states.



- ❖ CTL* formulae consist of:
 - atomic propositions,
 - Boolean connectives,
 - path quantifiers,
 - temporal operators.

CTL*—Quantifiers and Operators

- Path quantifiers—describe the branching structure of a computation tree:
 - *E*: for some computation path leading from a state,
 - A: for all computation paths leading from a state.
- ❖ Temporal operators—properties of a path through a computation tree:
 - $X \varphi$ ("next time", \bigcirc): the property φ holds (on the path starting) from the second state of the given path,
 - $F \varphi$ ("eventually" / "sometimes", \diamondsuit): the property φ holds (on the path starting) from some state of the given path,
 - $G \varphi$ ("always" / "globally", \square): the property φ holds from all states of the path,
 - $\varphi \ U \ \psi$ ("until"): the property ψ holds from some state of the path, and the property φ holds from all preceding states of the path,
 - $\varphi R \psi$ ("release"): the property ψ holds from all states of the path up to (and including) the first state from where the property φ holds (if such a state exists).

CTL*—The Syntax

- \clubsuit Let AP be a non-empty set of atomic propositions.
- ❖ The syntax of state formulae, which are true in a specific state, is given by the following rules:
 - If $p \in AP$, then p is a state formula.
 - If φ and ψ are state formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$ are state formulae.
 - If φ is a path formula, then $E \varphi$ and $A \varphi$ are state formulae.
- ❖ The syntax of path formulae, which are true along a specific path, is given by the following rules:
 - If φ is a state formula, then φ is a path formula too.
 - If φ and ψ are path formulae, then $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R \psi$ are path formulae.
- ❖ CTL* is the set of state formulae generated by the above rules.

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1, φ_2 be state formulae over AP, $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1, φ_2 be state formulae over AP, $p \in AP$, and ψ_1, ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s).$

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1 , φ_2 be state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s)$.
 - $M, s \models \neg \varphi_1 \text{ iff } M, s \not\models \varphi_1.$

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1 , φ_2 be state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s).$
 - $M, s \models \neg \varphi_1 \text{ iff } M, s \not\models \varphi_1.$
 - $M, s \models \varphi_1 \vee \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ or } M, s \models \varphi_2.$

- \clubsuit Let a Kripke structure $M=(S,S_0,R,L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1 , φ_2 be state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s).$
 - $M, s \models \neg \varphi_1 \text{ iff } M, s \not\models \varphi_1.$
 - $M, s \models \varphi_1 \vee \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ or } M, s \models \varphi_2.$
 - $M, s \models \varphi_1 \land \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ and } M, s \models \varphi_2.$

- \clubsuit Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \bullet For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1 , φ_2 be state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s).$
 - $M, s \models \neg \varphi_1 \text{ iff } M, s \not\models \varphi_1.$
 - $M, s \models \varphi_1 \vee \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ or } M, s \models \varphi_2.$
 - $M, s \models \varphi_1 \land \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ and } M, s \models \varphi_2.$
 - $M, s \models E \psi_1 \text{ iff } \exists \pi \in \Pi(M, s). M, \pi \models \psi_1.$

- Let a Kripke structure $M = (S, S_0, R, L)$ over a set of atomic propositions AP be given.
- \clubsuit For a *state formula* φ over AP, we denote $M, s \models \varphi$ the fact that φ holds at $s \in S$.
- \bullet For a path formula φ over AP, we denote $M, \pi \models \varphi$ the fact that φ holds along a path π in M.
- **\Let** Let $s \in S$, π be a path in M, φ_1 , φ_2 be state formulae over AP, $p \in AP$, and ψ_1 , ψ_2 be path formulae over AP. We define the relation \models inductively as follows:
 - $M, s \models p \text{ iff } p \in L(s).$
 - $M, s \models \neg \varphi_1 \text{ iff } M, s \not\models \varphi_1.$
 - $M, s \models \varphi_1 \vee \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ or } M, s \models \varphi_2.$
 - $M, s \models \varphi_1 \land \varphi_2 \text{ iff } M, s \models \varphi_1 \text{ and } M, s \models \varphi_2.$
 - $M, s \models E \psi_1 \text{ iff } \exists \pi \in \Pi(M, s). \ M, \pi \models \psi_1.$
 - $M, s \models A \psi_1 \text{ iff } \forall \pi \in \Pi(M, s). M, \pi \models \psi_1.$

Continued from the previous slide...

• $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $M, \pi \models F \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $M, \pi \models F \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1 \text{ iff } \forall i \geq 0. M, \pi^i \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $M, \pi \models F \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1 \text{ iff } \forall i \geq 0. M, \pi^i \models \psi_1.$
- $M, \pi \models \psi_1 \ U \ \psi_2 \ \text{iff} \ \exists i \geq 0. \ M, \pi^i \models \psi_2 \ \text{and} \ \forall 0 \leq j < i. \ M, \pi^j \models \psi_1.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2 \text{ iff } M, \pi \models \psi_1 \text{ and } M, \pi \models \psi_2.$
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $M, \pi \models F \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1 \text{ iff } \forall i \geq 0. M, \pi^i \models \psi_1.$
- $M, \pi \models \psi_1 \ U \ \psi_2 \ \text{iff} \ \exists i \geq 0. \ M, \pi^i \models \psi_2 \ \text{and} \ \forall 0 \leq j < i. \ M, \pi^j \models \psi_1.$
- $M, \pi \models \psi_1 \ R \ \psi_2 \ \text{iff} \ \forall i \geq 0. \ (\forall 0 \leq j < i. \ M, \pi^j \not\models \psi_1) \Rightarrow M, \pi^i \models \psi_2.$

- $M, \pi \models \varphi_1$ iff $M, s_0 \models \varphi_1$ where s_0 is the first state of π .
- $M, \pi \models \neg \psi_1 \text{ iff } M, \pi \not\models \psi_1.$
- $M, \pi \models \psi_1 \vee \psi_2$ iff $M, \pi \models \psi_1$ or $M, \pi \models \psi_2$.
- $M, \pi \models \psi_1 \wedge \psi_2$ iff $M, \pi \models \psi_1$ and $M, \pi \models \psi_2$.
- $M, \pi \models X \psi_1 \text{ iff } M, \pi^1 \models \psi_1.$
- $M, \pi \models F \psi_1 \text{ iff } \exists i \geq 0. \ M, \pi^i \models \psi_1.$
- $M, \pi \models G \psi_1 \text{ iff } \forall i \geq 0. M, \pi^i \models \psi_1.$
- $M, \pi \models \psi_1 \ U \ \psi_2 \ \text{iff} \ \exists i \geq 0. \ M, \pi^i \models \psi_2 \ \text{and} \ \forall 0 \leq j < i. \ M, \pi^j \models \psi_1.$
- $M, \pi \models \psi_1 \ R \ \psi_2 \ \text{iff} \ \forall i \geq 0. \ (\forall 0 \leq j < i. \ M, \pi^j \not\models \psi_1) \Rightarrow M, \pi^i \models \psi_2.$
- \clubsuit For a (state) CTL* formula φ , we write $M \models \varphi$ iff $\forall s_0 \in S_0$. $M, s_0 \models \varphi$.

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv$
 - $F \varphi \equiv$
 - $G \varphi \equiv$
 - $\varphi R \psi \equiv$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv$
 - $F \varphi \equiv$
 - $G \varphi \equiv$
 - $\varphi R \psi \equiv$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv$
 - $G \varphi \equiv$
 - $\varphi R \psi \equiv$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv true U \varphi$,
 - $G \varphi \equiv$
 - $\varphi R \psi \equiv$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv true U \varphi$,
 - $G \varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv true U \varphi$,
 - $G \varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi),$
 - $A \varphi \equiv$

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv true U \varphi$,
 - $G \varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi),$
 - $A \varphi \equiv \neg E \neg \varphi$.

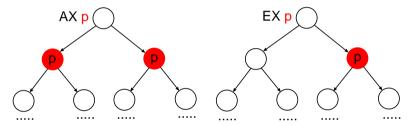
CTL*—Basic Operators

- Provided that $AP \neq \emptyset$, it is easy to see that all CTL* operators can be derived from \vee, \neg, X, U , and E:
 - let $p \in AP$, $true \equiv p \vee \neg p$ (and $false \equiv \neg true$),
 - $\varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)$
 - $F \varphi \equiv true U \varphi$,
 - $G \varphi \equiv \neg F \neg \varphi$,
 - $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi),$
 - $A \varphi \equiv \neg E \neg \varphi$.
- Some further connectives may be introduced too, e.g.:
 - $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$,
 - $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi),$
 - ...

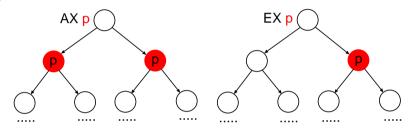
The CTL Logic

TL is a sublogic of CTL*—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R \psi$ for φ , ψ being state formulae.

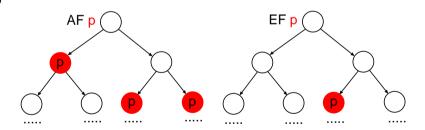
- **TL** is a sublogic of CTL*—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R \psi$ for φ , ψ being state formulae.
- ❖ In effect, there are allowed these 10 modal CTL operators:
 - AX and EX,



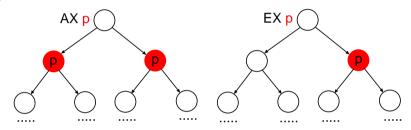
- **TL** is a sublogic of CTL*—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R \psi$ for φ , ψ being state formulae.
- ❖ In effect, there are allowed these 10 modal CTL operators:
 - AX and EX,



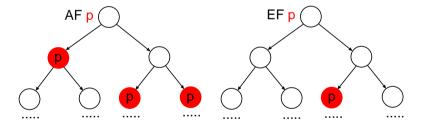
• AF and EF,



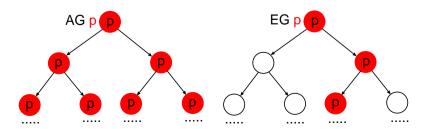
- **TL** is a sublogic of CTL*—the path formulae are restricted to $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, and $\varphi R \psi$ for φ , ψ being state formulae.
- ❖ In effect, there are allowed these 10 modal CTL operators:
 - AX and EX,



• AF and EF,



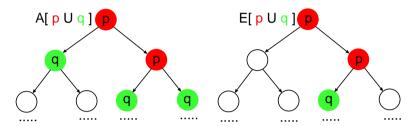
• AG and EG,



Continued at the next slide...

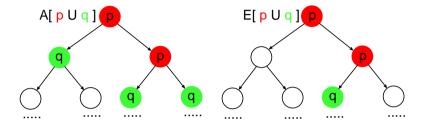
Continued from the previous slide...

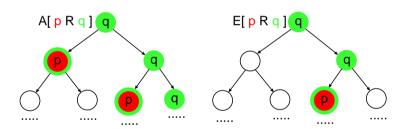
• AU and EU,



Continued from the previous slide...

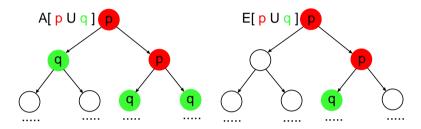
• AU and EU,

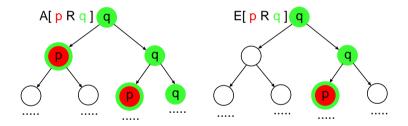




Continued from the previous slide...

• AU and EU,





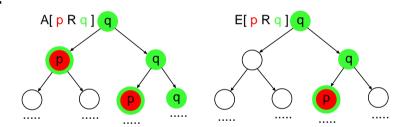
- \clubsuit There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv$
 - $EF \varphi \equiv$
 - $AG \varphi \equiv$
 - $AF \varphi \equiv$

- $A[\varphi \ U \ \psi] \equiv$
- $A[\varphi R \psi] \equiv$
- $E[\varphi R \psi] \equiv$

Continued from the previous slide...

• AU and EU,





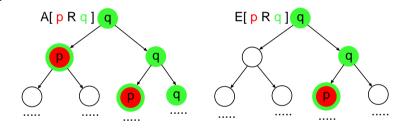
- \clubsuit There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,
 - $EF \varphi \equiv$
 - $AG \varphi \equiv$
 - $AF \varphi \equiv$

- $A[\varphi \ U \ \psi] \equiv$
- $A[\varphi R \psi] \equiv$
- $E[\varphi R \psi] \equiv$

Continued from the previous slide...

• AU and EU,



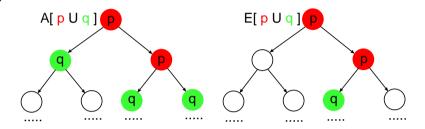


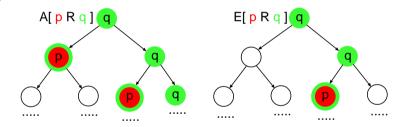
- \clubsuit There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,
 - $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv$
 - $AG \varphi \equiv$
 - $AF \varphi \equiv$

- $A[\varphi \ U \ \psi] \equiv$
- $E[\varphi R \psi] \equiv$

Continued from the previous slide...

• AU and EU,





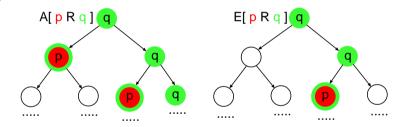
- \bullet There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,
 - $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv$
 - $AG \varphi \equiv \neg EF \neg \varphi$,
 - $AF \varphi \equiv$

- $A[\varphi \ U \ \psi] \equiv$
- $E[\varphi R \psi] \equiv$

Continued from the previous slide...

• AU and EU,



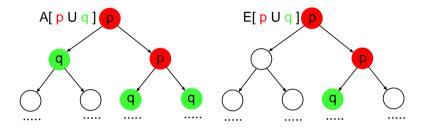


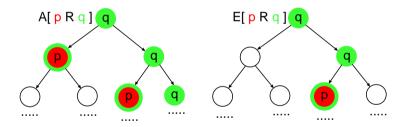
- \bullet There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,
 - $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv$
 - $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi R \psi] \equiv$
 - $AF \varphi \equiv \neg EG \neg \varphi$,

- $A[\varphi \ U \ \psi] \equiv$

Continued from the previous slide...

• AU and EU,



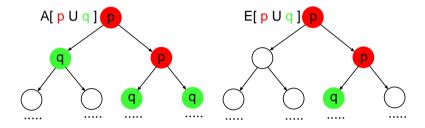


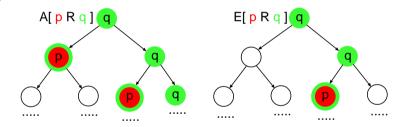
- \bullet There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,
 - $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv$
 - $AG \varphi \equiv \neg EF \neg \varphi$, $E[\varphi R \psi] \equiv$
 - $AF \varphi \equiv \neg EG \neg \varphi$,

- $A[\varphi \ U \ \psi] \equiv \neg E[\neg \psi \ U \ (\neg \varphi \land \neg \psi)] \land AF\psi,$

Continued from the previous slide...

• AU and EU,





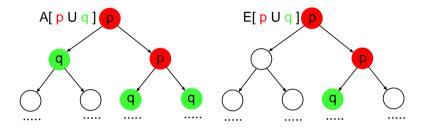
- \bullet There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,

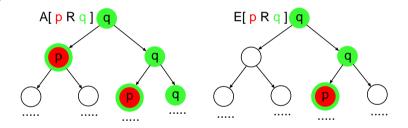
 - $AG \varphi \equiv \neg EF \neg \varphi$,
 - $AF \varphi \equiv \neg EG \neg \varphi$,

- $A[\varphi \ U \ \psi] \equiv \neg E[\neg \psi \ U \ (\neg \varphi \land \neg \psi)] \land AF\psi,$
- $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv \neg E[\neg \varphi \ U \ \neg \psi],$
 - $E[\varphi R \psi] \equiv$

Continued from the previous slide...

• AU and EU,





- ❖ There are 3 basic CTL modal operators—EX, EG, and EU:
 - $AX \varphi \equiv \neg EX \neg \varphi$,

 - $AG \varphi \equiv \neg EF \neg \varphi$,
 - $AF \varphi \equiv \neg EG \neg \varphi$,

- $A[\varphi \ U \ \psi] \equiv \neg E[\neg \psi \ U \ (\neg \varphi \land \neg \psi)] \land AF\psi,$
- $EF \varphi \equiv E[true \ U \ \varphi],$ $A[\varphi \ R \ \psi] \equiv \neg E[\neg \varphi \ U \ \neg \psi],$
 - $E[\varphi \ R \ \psi] \equiv \neg A[\neg \varphi \ U \ \neg \psi].$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

$$\neg EF \ (cs(P1) \ \land \ cs(P2)) \ \equiv \ AG \ (\neg cs(P1) \ \lor \ \neg cs(P2))$$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

• It is possible to get to a state where Start holds, but Ready does not.

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

$$\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))$$

• It is possible to get to a state where Start holds, but Ready does not.

$$EF (Start \land \neg Ready)$$

Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

• In any run of the system, DeviceEnabled is true infinitely often.

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

• In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state).

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold). $AG (Req \Rightarrow AF Ack)$
- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The *Reset* signal is initially set, and from the next state on, it is never set again.

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).
 AG (Req ⇒ AF Ack)
- In any run of the system, DeviceEnabled is true infinitely often. AGAFDeviceEnabled
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The Reset signal is initially set, and from the next state on, it is never set again. $Reset \wedge AX AG \neg Reset$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold). $AG (Req \Rightarrow AF Ack)$
- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The Reset signal is initially set, and from the next state on, it is never set again. $Reset \wedge AX AG \neg Reset$
- The Reset signal is initially set, but once it is unset, it is never set again.

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The Reset signal is initially set, and from the next state on, it is never set again. $Reset \wedge AX AG \neg Reset$
- The Reset signal is initially set, but once it is unset, it is never set again. $Reset \wedge AG (\neg Reset \Rightarrow AG \neg Reset)$

- Some examples of CTL formulae:
 - Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF ($Start \land \neg Ready$)
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold). $AG (Req \Rightarrow AF Ack)$
- In any run of the system, DeviceEnabled is true infinitely often. AGAFDeviceEnabled
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The Reset signal is initially set, and from the next state on, it is never set again. $Reset \wedge AX AG \neg Reset$
- The Reset signal is initially set, but once it is unset, it is never set again. $Reset \wedge AG (\neg Reset \Rightarrow AG \neg Reset)$
- The AccConn signal can be set only after the StartAcc signal arrives.

Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the critical section) and cs(P2).

```
\neg EF (cs(P1) \land cs(P2)) \equiv AG (\neg cs(P1) \lor \neg cs(P2))
```

- It is possible to get to a state where Start holds, but Ready does not. EF $(Start \land \neg Ready)$
- Whenever a request occurs (i.e. Req holds), then it will eventually be acknowledged (i.e. Ack will hold).

$$AG (Req \Rightarrow AF Ack)$$

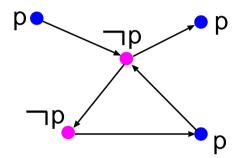
- In any run of the system, DeviceEnabled is true infinitely often. $AG\ AF\ DeviceEnabled$
- From any state, the system can be restarted (i.e. get to a Restart state). $AG\ EF\ Restart$
- The Reset signal is initially set, and from the next state on, it is never set again. $Reset \wedge AX AG \neg Reset$
- The Reset signal is initially set, but once it is unset, it is never set again. $Reset \wedge AG (\neg Reset \Rightarrow AG \neg Reset)$
- The AccConn signal can be set only after the StartAcc signal arrives. $A[StartAcc\ R\ (\neg AccConn)]$

CTL Model Checking

The Basic Idea

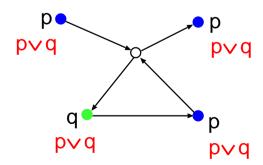
- * The CTL model checking question to be answered: Given a Kripke structure $M=(S,S_0,R,L)$ over a set of atomic propositions AP and a CTL formula φ over AP, does $M\models\varphi$ hold?
- ❖ A very basic approach to answer the CTL model checking question by the so-called explicit-state model checking:
 - For every subformula ψ of φ , label by ψ all those states s of M in which φ holds (i.e., $M, s \models \psi$).
 - Perform the labelling from the inner-most subformulae (i.e. the most nested ones) going to the outer ones exploiting the already computed labels (with atomic propositions corresponding to the original labels of M).
 - Check whether each state in S_0 gets labelled by φ .
- * It is enough to consider the basic operators of CTL, i.e. the below syntax for $p \in AP$: $\varphi := p \mid \neg \varphi \mid \varphi \lor \varphi \mid EX\varphi \mid E[\varphi U\varphi] \mid EG\varphi$.

Label($\neg \varphi$), Label($\varphi_1 \lor \varphi_2$)



Label($\varphi_1 \vee \varphi_2$)

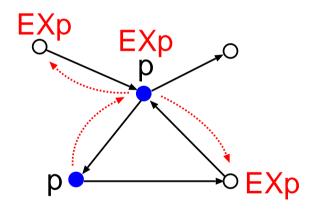
for all $s \in S$ such that $\varphi_1 \in Label(s)$ or $\varphi_2 \in Label(s)$ do $Label(s) := Label(s) \cup \{\varphi_1 \vee \varphi_2\}$



Label($EX\varphi$)

Label($EX\varphi$)

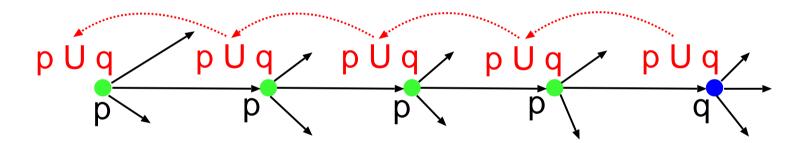
```
for all s_2 \in S such that \varphi \in Label(s_2) do for all s_1 \in S such that R(s_1, s_2) do Label(s_1) := Label(s_1) \cup \{EX\varphi\}
```



Label($E[\varphi_1 \ U \ \varphi_2]$)

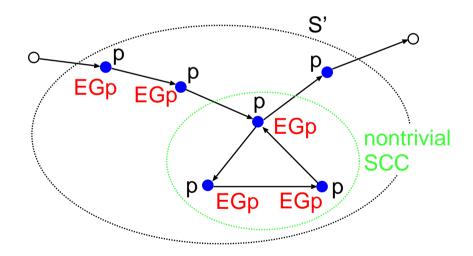
❖ The idea:

- Label first states already labelled by φ_2 .
- Look at predecessors of states labelled with φ_1 U φ_2 , and if they are labelled with φ_1 , label them with φ_1 U φ_2 as well.



Label($EG\varphi$)

- ❖ Based on the following observation: Let $M = (S, S_0, R, L)$ be a Kripke structure, $S' = \{s \in S \mid M, s \models \varphi\}$, and $R' = R \cap (S' \times S')$. For any $s \in S$, $M, s \models EG\varphi$ iff
 - 1. $s \in S'$ and
 - 2. there exists a path in the oriented graph G' = (S', R') that leads from s to some node t in a nontrivial SCC C of G'.



- ❖ An SCC C is nontrivial iff either it has more than one node or it contains one node with a self-loop.
- * SCCs of a finite oriented graph (V, E) can be computed using the Tarjan's algorithm in time O(|E| + |V|).

The LTL Logic

- **TL** is another sublogic of CTL* that allows only formulae of the form $A \varphi$ in which the only state subformulae are atomic propositions.
- \diamond This is, LTL formulae φ are built according to the grammar:
 - $\varphi ::= A \psi$ (the use of A is often omitted),
 - $\psi := p \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X \psi \mid F \psi \mid G \psi \mid \psi U \psi \mid \psi R \psi$

where $p \in AP$.

- ❖ Note that LTL speaks about particular paths in a given Kripke structure only—it ignores its branching structure.
- \clubsuit Sometimes, existential LTL allowing formulae of the form $E \varphi$ is used too.

- **LTL** is another sublogic of CTL* that allows only formulae of the form $A \varphi$ in which the only state subformulae are atomic propositions.
- \diamond This is, LTL formulae φ are built according to the grammar:
 - $\varphi ::= A \psi$ (the use of A is often omitted),
- $\psi ::= p \mid \neg \psi \mid \psi \vee \psi \mid \psi \wedge \psi \mid X \; \psi \mid F \; \psi \mid G \; \psi \mid \psi U \psi \mid \psi R \psi$ where $p \in AP$.
- ❖ Note that LTL speaks about particular paths in a given Kripke structure only—it ignores its branching structure.
- \clubsuit Sometimes, existential LTL allowing formulae of the form $E \varphi$ is used too.
- ❖ Note also that while CTL cannot express fairness assumptions (in CTL model checking, they are handled by a special extension of the model checking algorithm), LTL can express fairness assumptions by formulae of the following form:
 - weak fairness: $(F \ G \ Enabled) \Rightarrow (G \ F \ Fired)$, i.e. $\Diamond \Box \ Enabled \Rightarrow \Box \Diamond \ Fired$,
 - strong fairness: $(G \ F \ Enabled) \Rightarrow (G \ F \ Fired)$, i.e. $\Box \Diamond Enabled \Rightarrow \Box \Diamond Fired$.

LTL, CTL, and CTL*

- ❖ LTL and CTL have an incomparable power:
 - CTL cannot express, e.g., the LTL formula A(FGp),
 - LTL cannot express, e.g., the CTL formula AG (EF p).

LTL, CTL, and CTL*

- ❖ LTL and CTL have an incomparable power:
 - CTL cannot express, e.g., the LTL formula A(FG p),
 - LTL cannot express, e.g., the CTL formula AG(EF p).
- ❖ CTL* is strictly more powerful than both LTL and CTL:
 - the disjunction of the above formulae, i.e. $(A (FG p)) \lor (AG (EF p))$, is not expressible in CTL nor LTL.

LTL, CTL, and CTL*

- ❖ LTL and CTL have an incomparable power:
 - CTL cannot express, e.g., the LTL formula A (FG p),
 - LTL cannot express, e.g., the CTL formula AG(EF p).
- ❖ CTL* is strictly more powerful than both LTL and CTL:
 - the disjunction of the above formulae, i.e. $(A(FGp)) \lor (AG(EFp))$, is not expressible in CTL nor LTL.
- ❖ To complete the picture, here are the complexities of the appropriate model checking algorithms (we will discuss LTL model checking later on):
 - CTL: linear in |M| and linear in $|\varphi|$.
 - LTL and CTL*: linear in |M| and PSPACE-complete in $|\varphi|$

where |M| = |S| + |R| and $|\varphi|$ is the number of subformulae of φ .

• Finally, as an example of a logic more general than CTL*, we can mention modal μ -calculus based on least/greatest fixpoint operators on sets of states (basically allowing one to define new, specialised modalities).