
Analýza založená na modelech
Model checking

Adam Rogalewicz

únor 2025

MBA - Základnı́ informace

Kontrolované aktivity:
4 projekty po 10 bodech.
Závěrečná zkouška za 60b (minimum 25b).

Dalšı́ aktivity:
Přednáška - úterý 10:00. Délka 2 hodiny.
Cvičenı́ - 5x za semestr (kombinovaně numerické/počı́tačové)

Vyučujı́cı́:
doc. Rogalewicz, doc. Češka, dr. Fiedor, Ing. Andriushchenko

Adam Rogalewicz (FIT VUT) MBA Únor 2025 2 / 18

MBA - Předběžný plán semestru

Přednášky:
1. týden: Úvod do Model checking (doc. Rogalewicz)
2.-4. týden: Petriho sı́tě (doc. Rogalewicz/doc. Holı́k)
5.-7. týden: Časované automaty (doc. Rogalewicz)
8.-10. týden: Markovovy řetězce (doc. Češka/Ing. Andriushchenko)
11.-13. týden: UML/SysML (dr. Fiedor)

Cvičenı́ a zadánı́ projektů:
1 Petriho sı́tě (kombinované + zadánı́ projektu)
2 Časované automaty (kombinované + zadánı́ projektu)
3 Markovovy řetězce (numerické)
4 Markovovy řetězce (počı́tačové + zadánı́ projektu)
5 Mathlab-Simulink (počı́tačové + zadánı́ projektu)

Adam Rogalewicz (FIT VUT) MBA Únor 2025 3 / 18

Model-based design a analýza

Klasický postup:
Kód v programovacı́m jazyku → analýza a testovánı́
Model-based design:
Model systému → Simulace

→ Testovánı́ (Model-Based testing)
→ Analýza (Model checking)
→ Generovánı́ kódu
→ ...

Možné modelovacı́ jazyky a formalismy:
Konečné automaty/přechodové systémy, vývojové diagramy (flow-charts),
Petriho sı́tě, časované automaty, Markovovy řetězce, UML/SysML,
Mathlab/Simulink, lossy chanel systems, procesnı́ algebry, DEVS, ...

Adam Rogalewicz (FIT VUT) MBA Únor 2025 4 / 18

Model checking

Model checking je automatizovaná technika, která na základě konečně
stavového modelu systému a formálně definované vlastnosti systematicky
ověřı́, zdali tato vlastnost platı́ pro všechny dostupné stavy (resp. vybraný
stav) tohoto modelu. (C. Baier and J.-P. Katoen: Principles of Model Checking)

Vlastnosti popsány různými formalismy (množiny špatných/dobrých
stavů, logiky, automaty, ...)
Obvykle založeno na systematickém prohledávánı́ stavového prostoru.
2007: E.M.Clarke, E.A.Emerson a J. Sifakis – Turingova cena za Model
checking.
... for their role in developing Model-Checking into a highly effective
verification technology that is widely adopted in the hardware and
software industries.

Adam Rogalewicz (FIT VUT) MBA Únor 2025 5 / 18

Fáze model checkingu
1 Modelovánı́:

• Vytvořenı́ modelu ve vybraném modelovacı́m jazyce
• Prvnı́ testy s pomocı́ simulace
• Formalizace požadované vlastnosti

2 Běh: Spuštěnı́ model checkeru pro ověřenı́ vlastnosti na modelu
3 Analýza výsledku:

• Vlastnost splněna → pokračujeme analýzou dalšı́ vlastnosti (je-li třeba)
• Vlastnost porušena → analýza protipřı́kladu pomocı́ simulace → oprava

modelu nebo definice vlastnosti.
• Out of memory → snaha o zmenšenı́ modelu.

Model checking lze zobecnit na nekonečně stavové modely
Obecně nerozhodnutelné (např. Halting problem pro TS)
Rozhodnutelné pro některé modelovacı́ jazyky a některé typy vlastnostı́
Využitı́ řady heuristik

Adam Rogalewicz (FIT VUT) MBA Únor 2025 6 / 18

Typy model checkingu:
Explicitnı́ model checking

• Přı́má práce se stavy modelu
• Škáluje do cca 109 stavů

Symbolický model checking1

• Pracuje se s množinami stavů reprezentovanými vhodnými formalismy
(logiky, automaty, intervaly, upward-closed množiny, ...)

• Krok výpočtu se provádı́ symbolicky pro všechny stavy z (nekonečné)
množiny

• Akcelerace výpočtu (provedenı́ nekonečného množstvı́ stejných kroků v
rámci jednoho kroku výpočtu)

Omezený model checking
• Prohledánı́ všech stavů do omezené hloubky od počátečnı́ konfigurace
• Motivace: velké množstvı́ chyb se projevı́ poměrně brzy od počátku výpočtu
• Negarantuje korektnost modelu

1Poznámka: Strom pokrytı́ P/T Petriho sı́tı́ je technikou symbolického model checkingu.
Adam Rogalewicz (FIT VUT) MBA Únor 2025 7 / 18

Typy vlastnostı́:
Bezpečnost (safety)

• Něco se nesmı́ nikdy stát
• Deadlock, segmentation fault, dva procesy zároveň v kritické sekci
• Porušenı́ vlastnosti → konečný protipřı́klad
• Často lze popsat množinou špatných stavů, nebo pomocı́ temporálnı́ch logik.

Živost (liveness)
• Něco se musı́ vždy stát
• Program vždy zastavı́, nedocházı́ ke stárnutı́, ...
• Porušenı́ vlastnosti → nekonečný protipřı́klad
• Často popisováno pomocı́ temporálnı́ch logik (LTL, CTL, CTL*, TCTL)
• Model checking těchto vlastnostı́ často mnohem obtı́žnějšı́

Adam Rogalewicz (FIT VUT) MBA Únor 2025 8 / 18

Přechodové systémy

Definition 1 (Přechodový systém)
Přechodový systém je n-tice P = (S, Act , →, I, AP, L), kde

S je množina stavů
Act je množina akcı́
→⊆ S × Act × S je přechodová relace
I ⊆ S je množina počátečnı́ch stavů
AP je množina atomických výroků
L : S → 2AP je ohodnocenı́ stavů

P je konečný, pokud množiny S, Act a AP jsou konečné.
Konečný běh systému je sekvence s0α1s1α2 . . . αnsn taková, že
si

αi+1→ si+1 pro každé 0 ≤ i < n.

Nekonečný běh je sekvence s0α1s1α2s2α3 . . . taková, že si
αi+1→ si+1 pro

každé 0 ≤ i .
Běh je počátečnı́, pokud s0 ∈ I.

Adam Rogalewicz (FIT VUT) MBA Únor 2025 9 / 18

pay

selectsoda
beer

coin
insert

select soda select beer

get_beer

get_soda

S = {pay , select , soda, beer}, I = {pay},
Act = {inser coin, get soda, get beer , select beer , select soda}

Podmı́nka 1: Automat vydá nápoj pouze po vloženı́ mince.
K ověřenı́ podmı́nky 1 posloužı́ predikáty AP = {paid , drink} a funkce L:
L(pay) = ∅, L(select) = {paid}, L(soda) = L(beer) = {paid , drink}
Množina špatných stavů je Bad = {s ∈ S|drink ∈ L(s) ∧ paid ̸∈ L(s)}2

Množinu dostupných stavů Reach = {s ∈ S | payα1 . . . αk s je běh}.
Bad ∩ Reach = ∅ → podmı́nka platı́.

2Množinu chybných běhů lze také formálně popsat LTL formulı́ ϕ1 ≡ ♢(drink ∧ ¬paid)
ϕ1 řı́ká, že v budoucnu budeme ve stavu, kde platı́ predikát drink a neplatı́ paid .
Vı́ce o logice LTL v předmětu SAV

Adam Rogalewicz (FIT VUT) MBA Únor 2025 10 / 18

Definition 2 (Přı́mý následnı́k a předchůdce)
Nechť P = (S, Act , →, I, AP, L) je přechodový systém.

Post(s, α) = {s′ ∈ S | s α→ s′}
Pre(s, α) = {s′ ∈ S | s′ α→ s}

Stav s nazýváme koncovým, pokud
⋃

α∈Act Post(s, α) = ∅

Definition 3 (Deterministický přechodový systém)
Nechť P = (S, Act , →, I, AP, L) je přechodový systém.
P je deterministický vzhledem k akcı́m (action-deterministic), pokud

|I| ≤ 1
Pro každé s ∈ S a α ∈ Act : Post(s, α) ≤ 1

P je AP-deterministický pokud
|I| ≤ 1
Pro každé s ∈ S a A ∈ 2AP : (Post(s, α) ∩ {s′ | L(s′) = A}) ≤ 1

Adam Rogalewicz (FIT VUT) MBA Únor 2025 11 / 18

Proloženı́ přechodových systémů

Pro několik přechodových systémů chceme definovat jejich paralelnı́
kompozici P1||P2|| . . . ||Pn.
Nejjednoduššı́ způsob je tzv. proloženı́ systémů, kdy systémy fungujı́
vedle sebe nezávisle na sobě.

Definition 4 (Proloženı́ přechodových systémů)
Nechť P1 = (S1, Act1, →1, I1, AP1, L1) a P2 = (S2, Act2, →2, I2, AP2, L2) jsou
dva přechodové systémy. Jejich proloženı́m P1|||P2 je přechodový systém
definovaný následovně:
P1|||P2 = (S1 × S2, Act1 ∪ Act2, →, I1 × I2, AP1 ∪ AP2, L), kde

< s1, s2 >
α→< s′

1, s′
2 > pokud s1

α→ s′
1 a s2 = s′

2 nebo s1 = s′
1 a s2

α→ s′
2

L(< s1, s2 >) = L1(s1) ∪ L2(s2)

Adam Rogalewicz (FIT VUT) MBA Únor 2025 12 / 18

TrLight1 TrLight2

TrLight1|||TrLight2

red

green

red

green

<red,red>

<red,green>

<green,green>

<green,red>

Podmı́nka 1: semafory nemohou být oba zároveň na volno
Sestrojı́me proloženı́ TrLight1|||TrLight2
Lze využı́t predikáty AP={bad} a L(< green, green >) = {Bad} a pro
s ̸=< green, green >: L(s) = ∅
Ověřı́me, že nenı́ dostupný stav označený predikátem bad3

→ podmı́nka neplatı́, nutno dodat synchronizaci mezi semafory.

3Chybné běhy popisuje LTL formule ϕ1 ≡ ♢bad
Adam Rogalewicz (FIT VUT) MBA Únor 2025 13 / 18

TrLight1 TrLight2 TrLight1|||TrLight2
red

green

red

green

<red,red>

<red,green>

<green,green>

<green,red>

Podmı́nka 1: semafory nemohou být oba zároveň na volno
Sestrojı́me proloženı́ TrLight1|||TrLight2
Lze využı́t predikáty AP={bad} a L(< green, green >) = {Bad} a pro
s ̸=< green, green >: L(s) = ∅
Ověřı́me, že nenı́ dostupný stav označený predikátem bad3

→ podmı́nka neplatı́, nutno dodat synchronizaci mezi semafory.

3Chybné běhy popisuje LTL formule ϕ1 ≡ ♢bad
Adam Rogalewicz (FIT VUT) MBA Únor 2025 13 / 18

Handshake

Jednou z možnostı́ komunikace mezi paralelnı́mi komponentami je tzv.
handshake, neboli synchronizace na společných akcı́ch.

Definition 5 (Handshake)
Nechť P1 = (S1, Act1, →1, I1, AP1, L1) a P2 = (S2, Act2, →2, I2, AP2, L2) jsou
dva přechodové systémy a H ⊆ Act1 ∩ Act2 je množina synchronizačnı́ch
akcı́. Přechodový systém P1||HP2 je definovaný následovně:
P1||HP2 = (S1 × S2, Act1 ∪ Act2, →, I1 × I2, AP1 ∪ AP2, L), kde

α ∈ H :< s1, s2 >
α→< s′

1, s′
2 > pokud s1

α→ s′
1 a s2

α→ s′
2

α ̸∈ H :< s1, s2 >
α→< s′

1, s′
2 > pokud s1

α→ s′
1 a s2 = s′

2
nebo s1 = s′

1 a s2
α→ s′

2

L(< s1, s2 >) = L1(s1) ∪ L2(s2)

Poznámka: P1||∅P2 = P1|||P2
P1||P2 = P1||Act1∩Act2P2

Adam Rogalewicz (FIT VUT) MBA Únor 2025 14 / 18

TrLight1 TrLight2 Arbiter
red

green

requestrelease

red

green

requestrelease

open

close

requestrelease

(TrLight1|||TrLight2)||Arbiter

request

release
request

release

<red,red,open>

<red,green,close><green,red,close>

Podmı́nka 1: semafory nemohou být společně na volno:
Ověřı́me, že stav < green, green, > nenı́ dostupný

→ podmı́nka platı́
Podmı́nka 2: pokud jsou oba semafory na stůj, tak arbiter musı́ být ve stavu
”open”:

Ověřı́me, že stav < red , red , close > nenı́ dostupný
→ podmı́nka platı́

Adam Rogalewicz (FIT VUT) MBA Únor 2025 15 / 18

TrLight1 TrLight2 Arbiter
red

green

requestrelease

red

green

requestrelease

open

close

requestrelease

(TrLight1|||TrLight2)||Arbiter

request

release
request

release

<red,red,open>

<red,green,close><green,red,close>

Podmı́nka 1: semafory nemohou být společně na volno:
Ověřı́me, že stav < green, green, > nenı́ dostupný

→ podmı́nka platı́
Podmı́nka 2: pokud jsou oba semafory na stůj, tak arbiter musı́ být ve stavu
”open”:

Ověřı́me, že stav < red , red , close > nenı́ dostupný
→ podmı́nka platı́

Adam Rogalewicz (FIT VUT) MBA Únor 2025 15 / 18

(TrLight1|||TrLight2)||Arbiter

request

release
request

release

<red,red,open>

<red,green,close><green,red,close>

Podmı́nka 3: (fairness) V jakémkoliv stavu platı́, že v budoucnu se na každém
ze semaforů objevı́ ”volno”

Nelze popsat množinou špatných stavů → nutno použı́t temporálnı́ logiku.
Využijeme predikáty AP = {volno1, volno2} a označenı́ stavů:
L(< green, red , >) = {volno1}, L(< red , green, >) = {volno2},
L(green, green,) = {volno1, volno2}, pro ostatnı́ stavy L(s) = ∅
Ověřı́me platnost LTL formule ϕ3 ≡ (□♢volno1) ∧ (□♢volno2)

→ podmı́nka neplatı́, napřı́klad existuje nekonečný běh,
(< red , red , open >→< green, red , close >→)ω.

Ověřenı́ platnosti LTL formule lze provést pomocı́ jejich
automatizovaného převodu na automaty nad nekonečnými slovy,
průnikem s modelem systému a testem na prázdnost. 4

4LTL model checking, viz předmět SAV.
Adam Rogalewicz (FIT VUT) MBA Únor 2025 16 / 18

(TrLight1|||TrLight2)||Arbiter

request

release
request

release

<red,red,open>

<red,green,close><green,red,close>

Podmı́nka 3: (fairness) V jakémkoliv stavu platı́, že v budoucnu se na každém
ze semaforů objevı́ ”volno”

Nelze popsat množinou špatných stavů → nutno použı́t temporálnı́ logiku.
Využijeme predikáty AP = {volno1, volno2} a označenı́ stavů:
L(< green, red , >) = {volno1}, L(< red , green, >) = {volno2},
L(green, green,) = {volno1, volno2}, pro ostatnı́ stavy L(s) = ∅
Ověřı́me platnost LTL formule ϕ3 ≡ (□♢volno1) ∧ (□♢volno2)

→ podmı́nka neplatı́, napřı́klad existuje nekonečný běh,
(< red , red , open >→< green, red , close >→)ω.

Ověřenı́ platnosti LTL formule lze provést pomocı́ jejich
automatizovaného převodu na automaty nad nekonečnými slovy,
průnikem s modelem systému a testem na prázdnost. 4

4LTL model checking, viz předmět SAV.
Adam Rogalewicz (FIT VUT) MBA Únor 2025 16 / 18

Exploze stavového prostoru

Při vytvářenı́ modelu P1||P2 je počet stavů |S| = |S1|.|S2|
Pro P1|| . . . ||P10 kde každý z procesů má 10 stavů je stavový prostor 1010

Problém pro explicitnı́ model checking konečně stavových systémů
Obecně problém pro jakoukoliv analýzu a testovánı́ paralelnı́ch programů.
Problém stavové exploze vzniká též při determinizaci (nejen) konečných
automatů—|Sdet | = 2|S|.
Petriho sı́tě: model který umožňuje efektivnějšı́ reprezentaci stavového
prostoru a méně trpı́ na explozi stavového prostoru.

Adam Rogalewicz (FIT VUT) MBA Únor 2025 17 / 18

Jakákoliv verifikačnı́ metoda s využitı́m technik založených na modelech je
pouze tak dobrá jak dobrý je vlastnı́ model systému.

Poznámka: Toto platı́ pro jakoukoliv model-based techniku (simulace,
testovánı́, ...)

Adam Rogalewicz (FIT VUT) MBA Únor 2025 18 / 18

