
Graph Algorithms

Zbyněk Křivka
krivka@fit.vut.cz

Brno University of Technology
Faculty of Information Technology

Czech Republic

1 / 253

krivka@fit.vut.cz

Outline
Introduction
Algorithms and Complexity
Graphs
Graph Representation
Breath-First Search
Depth-First Search

Topological sort
Strongly Connected Components

Minimum Spanning Trees
Kruskal Algorithm
Prim Algorithm

Single-Source Shortest Paths
Bellman-Ford Algorithm
Shortest Paths in Directed Acyclic Graphs
Dijkstra Algorithm

All-Pairs Shortest Paths
Flow Networks
Cut in Flow Network
Maximum bipartite matching
Graph Coloring

Edge Graph Coloring
(Vertex) Graph Coloring
Chromatic polynomial

Eulerian tours
Hamiltonian paths and cycles

2 / 253

Introduction

3 / 253

References

Books
I Cormen, Leiserson, Rivest, Stein: Introduction to algorithms.

The MIT Press and McGraw-Hill, 2001.

I Gibbons: Algorithmic Graph Theory. Cambridge University Press,
1985.

Materials
I Lecture slides @ https://www.fit.vutbr.cz/study/courses/GALe/public/

I Text generated from lecture slides

4 / 253

https://www.fit.vutbr.cz/study/courses/GALe/public/

References

Books
I Cormen, Leiserson, Rivest, Stein: Introduction to algorithms.

The MIT Press and McGraw-Hill, 2001.

I Gibbons: Algorithmic Graph Theory. Cambridge University Press,
1985.

Materials
I Lecture slides @ https://www.fit.vutbr.cz/study/courses/GALe/public/

I Text generated from lecture slides

4 / 253

https://www.fit.vutbr.cz/study/courses/GALe/public/

Course Details
I lectures (2/3 + 0/1) – Zbyněk Křivka

I project (25 points) – Ľubica Genčúrová

I midterm test (15 points) – approx. middle of semester

I exam (60 points) — 3 terms, minimum 25 points

I consultations – krivka@fit.vut.cz, igencurova@fit.vut.cz

About the Project

I individual

I implementation of two/more graph algorithms, experiments,
comparison

I own assignment (suggestion of algorithms related to your thesis)

I presentation of your solutions during the last lecture

I implementation programming language - C/C++, Java, Python,
Ruby (anything available at Merlin server or agreed by the teacher)

5 / 253

krivka@fit.vut.cz
igencurova@fit.vut.cz

Course Details
I lectures (2/3 + 0/1) – Zbyněk Křivka

I project (25 points) – Ľubica Genčúrová

I midterm test (15 points) – approx. middle of semester

I exam (60 points) — 3 terms, minimum 25 points

I consultations – krivka@fit.vut.cz, igencurova@fit.vut.cz

About the Project

I individual

I implementation of two/more graph algorithms, experiments,
comparison

I own assignment (suggestion of algorithms related to your thesis)

I presentation of your solutions during the last lecture

I implementation programming language - C/C++, Java, Python,
Ruby (anything available at Merlin server or agreed by the teacher)

5 / 253

krivka@fit.vut.cz
igencurova@fit.vut.cz

Algorithms and Complexity

6 / 253

Basic Notions

I Informally, algorithm is a well-defined procedure (sequence of
computational steps) that transforms some input into the
corresponding output.

I Data structure is a way of storage and organization of data optimized
for access and/or modification.

7 / 253

Requirements on Algorithms

I Finiteness: Algorithm always ends for a valid (correct) input.

I Soundness, Correctness: The result is correct as well.

I Memory and time are limited!

I There is many solutions, we focus on the effective ones.

8 / 253

Algorithm Complexity

Time complexity of algorithm:

I Running time T(n) – function giving the maximum number of
“primitive” steps depending on the size of an input n, i.e. number of
steps in the worst case.

Space complexity of algorithm:

I Memory consumption S(n) – function giving the maximum number of
used memory cells during the computation depending on the size of
an input n. (including algorithm initialization or not?)

In general, n can be a vector (multidimensional).

9 / 253

Θ-notation
Let g(n) be a function. Let f (n) denote, for instance, T(n) or S(n).
I Θ(g(n)) = {f (n) : there exist c1, c2, n0 > 0 such that

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}.
I Θ(g(n)) is a family of functions that can be ”sandwiched” between

c1g(n) and c2g(n), for sufficiently large n.
I Sometimes written as f (n) = Θ(g(n)) instead f (n) ∈ Θ(g(n)).
I We say that g(n) is an asymptotically tight bound for f (n).

Figure: Θ-notation.

I 1
2 n2 − 3n = Θ(n2) – verify its properties for

c1 = 1
14 , c2 = 1

2 , n0 = 7.

10 / 253

O-notation
Let g(n) be a function.
I O(g(n)) = {f (n) : there exist c, n0 > 0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}.
I O(g(n)) is a family of functions f (n) such that f (n)’s value is on or

below cg(n) for all n ≥ n0.
I f (n) = O(g(n)) means some cg(n) is an asymptotic upper bound on

f (n) (but not necessarily tight ≈ worst-case scenario).

Figure: O-notation.

I Θ(g(n)) ⊆ O(g(n)).
I n = O(n2), but n 6= Θ(n2).

11 / 253

Ω-notation
Let g(n) be a function.
I Ω(g(n)) = {f (n) : there exist c, n0 > 0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0}.
I Ω(g(n)) is a family of functions f (n) such that f (n)’s value is on or

above cg(n) for all n ≥ n0.
I f (n) = Ω(g(n)) means some cg(n) is an asymptotic lower bound on

f (n) (but not necessarily tight ≈ best-case scenario).

Figure: Ω-notation.

Theorem 1.
For any f (n), g(n), it holds
f (n) = Θ(g(n)) if and only if (iff)
f (n) = O(g(n)) and f (n) = Ω(g(n)).

12 / 253

o-notation and ω-notation

Let g(n) be a function.

I o(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ n0}.

I upper bound that is NOT asymptotically tight

I ω(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ cg(n) < f (n) for all n ≥ n0}.

I lower bound that is NOT asymptotically tight

I f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n)).

I 2n = o(n2), but 2n2 6= o(n2).

I f (n) = o(g(n)), if

limn→∞
f (n)
g(n) = 0.

I n2/2 = ω(n), but
n2/2 6= ω(n2).

I f (n) = ω(g(n)), if

limn→∞
f (n)
g(n) = ∞.

13 / 253

o-notation and ω-notation

Let g(n) be a function.

I o(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ n0}.

I upper bound that is NOT asymptotically tight

I ω(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ cg(n) < f (n) for all n ≥ n0}.

I lower bound that is NOT asymptotically tight

I f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n)).

I 2n = o(n2), but 2n2 6= o(n2).

I f (n) = o(g(n)), if

limn→∞
f (n)
g(n) = 0.

I n2/2 = ω(n), but
n2/2 6= ω(n2).

I f (n) = ω(g(n)), if

limn→∞
f (n)
g(n) = ∞.

13 / 253

o-notation and ω-notation

Let g(n) be a function.

I o(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ n0}.

I upper bound that is NOT asymptotically tight

I ω(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ cg(n) < f (n) for all n ≥ n0}.

I lower bound that is NOT asymptotically tight

I f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n)).

I 2n = o(n2), but 2n2 6= o(n2).

I f (n) = o(g(n)), if

limn→∞
f (n)
g(n) = 0.

I n2/2 = ω(n), but
n2/2 6= ω(n2).

I f (n) = ω(g(n)), if

limn→∞
f (n)
g(n) = ∞.

13 / 253

o-notation and ω-notation

Let g(n) be a function.

I o(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ n0}.

I upper bound that is NOT asymptotically tight

I ω(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ cg(n) < f (n) for all n ≥ n0}.

I lower bound that is NOT asymptotically tight

I f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n)).

I 2n = o(n2), but 2n2 6= o(n2).

I f (n) = o(g(n)), if

limn→∞
f (n)
g(n) = 0.

I n2/2 = ω(n), but
n2/2 6= ω(n2).

I f (n) = ω(g(n)), if

limn→∞
f (n)
g(n) = ∞.

13 / 253

o-notation and ω-notation

Let g(n) be a function.

I o(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ n0}.

I upper bound that is NOT asymptotically tight

I ω(g(n)) = {f (n) : for every c > 0 there exist n0 > 0 such that
0 ≤ cg(n) < f (n) for all n ≥ n0}.

I lower bound that is NOT asymptotically tight

I f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n)).

I 2n = o(n2), but 2n2 6= o(n2).

I f (n) = o(g(n)), if

limn→∞
f (n)
g(n) = 0.

I n2/2 = ω(n), but
n2/2 6= ω(n2).

I f (n) = ω(g(n)), if

limn→∞
f (n)
g(n) = ∞.

13 / 253

Properties

Let f (n), g(n), and h(n) be (asymptotically positive) functions.

I Transitivity
f (n) = X(g(n)) and g(n) = X(h(n)) imply f (n) = X(h(n)),
for X ∈ {Θ, O, Ω, o, ω}.

I Reflexivity
f (n) = X(f (n)), for X ∈ {Θ, O, Ω}.

I Symmetry
f (n) = Θ(g(n)) iff g(n) = Θ(f (n)).

I Transpose symmetry
f (n) = O(g(n)) iff g(n) = Ω(f (n)).
f (n) = o(g(n)) iff g(n) = ω(f (n)).

I Not always comparable
n and n1+sin(n) are incomparable.

14 / 253

Properties

Let f (n), g(n), and h(n) be (asymptotically positive) functions.

I Transitivity
f (n) = X(g(n)) and g(n) = X(h(n)) imply f (n) = X(h(n)),
for X ∈ {Θ, O, Ω, o, ω}.

I Reflexivity
f (n) = X(f (n)), for X ∈ {Θ, O, Ω}.

I Symmetry
f (n) = Θ(g(n)) iff g(n) = Θ(f (n)).

I Transpose symmetry
f (n) = O(g(n)) iff g(n) = Ω(f (n)).
f (n) = o(g(n)) iff g(n) = ω(f (n)).

I Not always comparable
n and n1+sin(n) are incomparable.

14 / 253

Properties

Let f (n), g(n), and h(n) be (asymptotically positive) functions.

I Transitivity
f (n) = X(g(n)) and g(n) = X(h(n)) imply f (n) = X(h(n)),
for X ∈ {Θ, O, Ω, o, ω}.

I Reflexivity
f (n) = X(f (n)), for X ∈ {Θ, O, Ω}.

I Symmetry
f (n) = Θ(g(n)) iff g(n) = Θ(f (n)).

I Transpose symmetry
f (n) = O(g(n)) iff g(n) = Ω(f (n)).
f (n) = o(g(n)) iff g(n) = ω(f (n)).

I Not always comparable
n and n1+sin(n) are incomparable.

14 / 253

Properties

Let f (n), g(n), and h(n) be (asymptotically positive) functions.

I Transitivity
f (n) = X(g(n)) and g(n) = X(h(n)) imply f (n) = X(h(n)),
for X ∈ {Θ, O, Ω, o, ω}.

I Reflexivity
f (n) = X(f (n)), for X ∈ {Θ, O, Ω}.

I Symmetry
f (n) = Θ(g(n)) iff g(n) = Θ(f (n)).

I Transpose symmetry
f (n) = O(g(n)) iff g(n) = Ω(f (n)).
f (n) = o(g(n)) iff g(n) = ω(f (n)).

I Not always comparable
n and n1+sin(n) are incomparable.

14 / 253

Properties

Let f (n), g(n), and h(n) be (asymptotically positive) functions.

I Transitivity
f (n) = X(g(n)) and g(n) = X(h(n)) imply f (n) = X(h(n)),
for X ∈ {Θ, O, Ω, o, ω}.

I Reflexivity
f (n) = X(f (n)), for X ∈ {Θ, O, Ω}.

I Symmetry
f (n) = Θ(g(n)) iff g(n) = Θ(f (n)).

I Transpose symmetry
f (n) = O(g(n)) iff g(n) = Ω(f (n)).
f (n) = o(g(n)) iff g(n) = ω(f (n)).

I Not always comparable
n and n1+sin(n) are incomparable.

14 / 253

Graphs

15 / 253

Graph Theory: The Beginning

I Leonhard Euler, The Königsberg bridges problem, 1736.

I Problem: Is it possible to cross all bridges, but everyone just once?

I https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Figure: Map of bridges and its logical representation.

16 / 253

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Definitions
Directed graph (digraph) G is a pair

G = (V, E) ,

where
I V is a finite set of vertices (nodes) and
I E ⊆ V2 is a set of edges (arrows, arcs).

An edge (u, u) is called a self-loop.
If (u, v) is an edge, we say that (u, v) is incident from u and incident to v,
that is v is adjacent to u.

1 2 3

4 5 6

Figure: Digraph

17 / 253

A graph G′ = (V′, E′) is a subgraph of G = (V, E), if

I V′ ⊆ V and E′ ⊆ E.

Let V′′ ⊆ V. Subgraph induced by V′′ is graph G′′ = (V′′, E′′), where

I E′′ = {(u, v) ∈ E : u, v ∈ V′′}.

Let E′′′ ⊆ E. Factor subgraph of G is graph G′′′ = (V, E′′′).

1 2 3

4 5 6

1 2 3

6

Figure: A graph and its subgraph induced by {1, 2, 3, 6}.

18 / 253

Definitions
Undirected graph G is a pair

G = (V, E) ,

where
I V is a finite set of vertices and
I E ⊆ (V

2) is a set of edges.

Note
An edge is a set {u, v}, where u, v ∈ V and u 6= v. Self-loops are
forbidden.
Convention: {u, v}, (u, v), and (v, u) denote the same edge.

1 2 3

4 5 6

Figure: Undirected Graph

19 / 253

I Degree of vertex u in an undirected graph is the number of adjacent
vertices, denoted by d(u).

I d(1) = d(2) = d(5) = 2, d(3) = d(6) = 1, d(4) = 0.

I If d(u) = 0, u is called isolated vertex.

1 2 3

4 5 6

Figure: Undirected graph

20 / 253

I Out-degree of vertex u is the number of outcoming edges, denoted as
deg−(u).

I In-degree of vertex u is the number of incoming edges, denoted as
deg+(u).

I Degree of vertex u is the sum of its in-degree and out-degree, denoted
as deg(u).

I deg−(2) = 3, deg+(2) = 2, deg(2) = 5.

1 2 3

4 5 6

Figure: Digraph

21 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions
I A path p = 〈v0, v1, v2, . . . , vk〉 is a connected sequence of vertices

where (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

I The length of p equals to the number of edges in p.

I If the length is 0, we consider a trivial path from u to u by following
no edge (for every vertex u).

I If there is p from u to u′, we say that u′ is reachable from u by p,

denoted as u
p
 u′.

I A path is tour if all edges in the path are distinct.

I A path is simple if all vertices in the path are distinct.

1 2 3

4 5 6

I Give some examples of a path
and simple path.

I Give an example of unconnected
sequence.

22 / 253

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle (closed path), if k ≥ 1 and
v0 = vk.

I For undirected graph, let k ≥ 3.

I Closed simple path is called simple cycle.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

23 / 253

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle (closed path), if k ≥ 1 and
v0 = vk.

I For undirected graph, let k ≥ 3.

I Closed simple path is called simple cycle.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

23 / 253

Definitions

I A subpath s of p = 〈v0, v1, v2, . . . , vk〉 is a contiguous subsequence,
s = 〈vi, vi+1, vi+2, . . . , vj〉, for 0 ≤ i ≤ j ≤ k.

I A path c = 〈v0, v1, v2, . . . , vk〉 is a cycle (closed path), if k ≥ 1 and
v0 = vk.

I For undirected graph, let k ≥ 3.

I Closed simple path is called simple cycle.

1 2 3

4 5 6

I What is 〈1, 2, 4, 5, 4, 1〉?
I What is 〈1, 2, 4, 1〉?
I What is 〈2, 2〉?

23 / 253

1 2 3

4 5 6

I 〈1, 2, 5, 1〉 is an undirected cycle.

I 〈3, 6, 3〉 is not a cycle

, or is it?

I A digraph with no self-loops is simple.

I Acyclic graph contains no cycles.

24 / 253

1 2 3

4 5 6

I 〈1, 2, 5, 1〉 is an undirected cycle.

I 〈3, 6, 3〉 is not a cycle , or is it?

I A digraph with no self-loops is simple.

I Acyclic graph contains no cycles.

24 / 253

1 2 3

4 5 6

I 〈1, 2, 5, 1〉 is an undirected cycle.

I 〈3, 6, 3〉 is not a cycle , or is it?

I A digraph with no self-loops is simple.

I Acyclic graph contains no cycles.

24 / 253

Special Cases of Graphs

Let G = (V, E) be a graph with n vertices.

I Isolated graph Φn: E = ∅. (Null graph if even V = ∅.)

I Complete graph Kn: E = (V
2).

I Regular graph: For every u, v ∈ V, d(u) = d(v).
I Cycle graph: n ≥ 3 and vertices are connected in a closed chain.

25 / 253

Special Cases of Graphs

Let G = (V, E) be a graph with n vertices.

I Isolated graph Φn: E = ∅. (Null graph if even V = ∅.)

I Complete graph Kn: E = (V
2).

I Regular graph: For every u, v ∈ V, d(u) = d(v).
I Cycle graph: n ≥ 3 and vertices are connected in a closed chain.

25 / 253

Special Cases of Graphs

Let G = (V, E) be a graph with n vertices.

I Isolated graph Φn: E = ∅. (Null graph if even V = ∅.)

I Complete graph Kn: E = (V
2).

I Regular graph: For every u, v ∈ V, d(u) = d(v).

I Cycle graph: n ≥ 3 and vertices are connected in a closed chain.

25 / 253

Special Cases of Graphs

Let G = (V, E) be a graph with n vertices.

I Isolated graph Φn: E = ∅. (Null graph if even V = ∅.)

I Complete graph Kn: E = (V
2).

I Regular graph: For every u, v ∈ V, d(u) = d(v).
I Cycle graph: n ≥ 3 and vertices are connected in a closed chain.

25 / 253

Tree, Forest

I An undirected graph is connected if every pair of vertices is connected
by a path.

I An connected, acyclic, undirected graph is a tree.
I Homework: Prove that |E| = |V| − 1.

I In a rooted tree, there is one special vertex called root (with no
parents).

I An acyclic, undirected graph is a forest (several trees).

26 / 253

Bipartite Graph

I Let G = (V, E) be a undirected graph.

I We call G bipartite if the vertex set V can be partitioned into
V = L∪ R,

where L and R are disjoint and all edges in E go between L and R.

I L and R are called parts (disjoint and independent sets).

I Optional additional condition:

Every vertex in V has at least one incident edge.

I Complete bipartite graph Km,n: |L| = m, |R| = n, and |E| = mn.

27 / 253

Bipartite Graph

I Let G = (V, E) be a undirected graph.

I We call G bipartite if the vertex set V can be partitioned into
V = L∪ R,

where L and R are disjoint and all edges in E go between L and R.

I L and R are called parts (disjoint and independent sets).

I Optional additional condition:

Every vertex in V has at least one incident edge.

I Complete bipartite graph Km,n: |L| = m, |R| = n, and |E| = mn.

27 / 253

Bipartite Graph

I Let G = (V, E) be a undirected graph.

I We call G bipartite if the vertex set V can be partitioned into
V = L∪ R,

where L and R are disjoint and all edges in E go between L and R.

I L and R are called parts (disjoint and independent sets).

I Optional additional condition:

Every vertex in V has at least one incident edge.

I Complete bipartite graph Km,n: |L| = m, |R| = n, and |E| = mn.

27 / 253

I Undirected graph is called connected, if there is a path between each
pair of vertices.

I Connected components of an undirected graph correspond to the
equivalence classes by relation “is reachable from”.

1 2 3

4 5 6

A graph with three connected
components:

I {1, 2, 5}
I {3, 6}
I {4}

28 / 253

I Undirected graph is called connected, if there is a path between each
pair of vertices.

I Connected components of an undirected graph correspond to the
equivalence classes by relation “is reachable from”.

1 2 3

4 5 6

A graph with three connected
components:

I {1, 2, 5}
I {3, 6}
I {4}

28 / 253

I Undirected graph is called connected, if there is a path between each
pair of vertices.

I Connected components of an undirected graph correspond to the
equivalence classes by relation “is reachable from”.

1 2 3

4 5 6

A graph with three connected
components:

I {1, 2, 5}
I {3, 6}
I {4}

28 / 253

I Digraph is strongly connected, if there exists a path between each
pair of vertices.

I Strongly connected components of graph are the equivalence classes
of vertices according to the relation “mutually reachable”.

1 2 3

4 5 6

Graph has three strongly connected
components:

I {1, 2, 4, 5}
I {3}
I {6}

29 / 253

I Digraph is strongly connected, if there exists a path between each
pair of vertices.

I Strongly connected components of graph are the equivalence classes
of vertices according to the relation “mutually reachable”.

1 2 3

4 5 6

Graph has three strongly connected
components:

I {1, 2, 4, 5}
I {3}
I {6}

29 / 253

I Digraph is strongly connected, if there exists a path between each
pair of vertices.

I Strongly connected components of graph are the equivalence classes
of vertices according to the relation “mutually reachable”.

1 2 3

4 5 6

Graph has three strongly connected
components:

I {1, 2, 4, 5}
I {3}
I {6}

29 / 253

Graph Representation

30 / 253

Let G = (V, E) be a graph. Denote:

I n = |V|
I m = |E|.

1. Adjacency-list representation
I effective for sparse graphs (m� n2);
I we will use this representation in this talk.

2. Adjacency-matrix representation
I effective for dense graphs (m close to n2);
I when we often need quick answer whether two given vertices are

connected by an edge.

31 / 253

Let G = (V, E) be a graph. Denote:

I n = |V|
I m = |E|.

1. Adjacency-list representation
I effective for sparse graphs (m� n2);
I we will use this representation in this talk.

2. Adjacency-matrix representation
I effective for dense graphs (m close to n2);
I when we often need quick answer whether two given vertices are

connected by an edge.

31 / 253

Adjacency-list representation
G = (V, E) is represented as

I an array Adj[1 . . . n] with n lists, one list for each vertex,

I where Adj[u] stores all vertices v such that (u, v) ∈ E.

1 2 3

4 5 6

1

2

3

4

5

5

42

5

6

2

4

6 6

1 2

3

45

1

2

3

4

5

4

1

5

5 3

2

3 4

2

1

2

2

4

5

I Space complexity: Θ(m + n) (depends linearly on the size of the
graph).

32 / 253

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

33 / 253

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

33 / 253

Weighted graph

I A weighted graph is a (di)graph where there is a value assigned to
every edge using weight function w : E→ R.

I Representation of w(u, v) in adjacency list: extend the list item (a
structure) for v in Adj[u] with value w(u, v).

I Disadvantage: Finding whether an edge (u, v) belongs to E requires
the search of the whole list Adj[u].

33 / 253

Adjacency-matrix representation

Let G = (V, E) be a graph and assume V = {1, 2, . . . , n}. Adjacency
matrix A = (aij) is a matrix of size n× n such that

aij =

{
1 if (i, j) ∈ E,
0 otherwise.

1 2 3

4 5 6

1 2 3 4 5 6

1 0 1 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0 1

34 / 253

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

35 / 253

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

35 / 253

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

35 / 253

1 2

3

45

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

I Space complexity: Θ(n2) (independent of the number of edges).

I Transpose matrix of A = (aij) is a matrix AT = (aT
ij), where aT

ij = aji.

I If A represents an undirected graph, then A = AT. It is enough to
store just one half of A.

I Let G = (V, E) be a weighted graph, then

aij =

{
w(i, j) if (i, j) ∈ E,
nil otherwise,

where nil is a special value, mostly 0 or ∞.

35 / 253

Exercises

1. Given an adjacency-list representation of a directed graph and a
vertex v, how long does it take to compute deg−(v) and deg+(v)?

2. The transpose of a directed graph G = (V, E) is the graph
GT = (V, ET), where ET = {(v, u) ∈ V×V : (u, v) ∈ E}. Thus, GT

is G with all its edges reversed. Describe an efficient algorithm for
computing GT from G for the adjacency-list representation of G.
Analyze the time complexity of your algorithm.

3. The square of a directed graph G = (V, E) is the graph G2 = (V, E2)
such that (u, v) ∈ E2 if and only G contains a path with at most two
edges between u and v. Describe an efficient algorithm for computing
G2 from G for the adjacency-list representation of G. Analyze the
time complexity of your algorithm.

36 / 253

Breath-First Search

37 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.

I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

Breath-First Search (BFS)

I Input: (un)directed graph G = (V, E) and a vertex s ∈ V.

I Searches each vertex reachable from s and determines its distance
(number of edges) from s.

I Creates BFS tree rooted at s containing all vertices reachable from s.
s v is the shortest path in G.

I During the computation, BFS assigns a color representing a state to
each vertex.

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I π[u] denotes a predecessor of u at a path from s.

I d[u] denotes a distance of u from s (the number of edges).

38 / 253

BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

39 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

Q = 〈s〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

s,0

Q = 〈wr〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2

s,0

w,1

Q = 〈rtx〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

s,0

r,1

w,1

Q = 〈txv〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

u,3s,0

r,1

w,1

t,2

Q = 〈xvu〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

u,3

z,3

s,0

r,1

w,1

t,2

x,2

Q = 〈vuz〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

u,3

z,3

s,0

r,1

w,1

t,2

x,2v,2

Q = 〈uz〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

u,3

z,3

s,0

r,1

w,1

t,2

x,2v,2

u,3

Q = 〈z〉

Figure: Note: We use red color to show BLACK vertices.

40 / 253

BFS – Example

r,∞

s,0

t,∞

u,∞

v,∞

w,∞

x,∞

z,∞

s,0

r,1

w,1

t,2

x,2v,2

u,3

z,3

s,0

r,1

w,1

t,2

x,2v,2

u,3

z,3

Q = ∅

Figure: Note: We use red color to show BLACK vertices.

40 / 253

Time Complexity of BFS
BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I In while-loop no vertex is colored to WHITE.

I So line 13 guarantees that each vertex will be enqueued and then
dequeued at most once.

I ENQUEUE and DEQUEUE takes O(1), so the aggregation of all
queue operations takes O(n).

I Since it scans the adjacency list of each vertex only after it is
dequeued, each adjacency list is scanned at most once.

41 / 253

Time Complexity of BFS
BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I In while-loop no vertex is colored to WHITE.

I So line 13 guarantees that each vertex will be enqueued and then
dequeued at most once.

I ENQUEUE and DEQUEUE takes O(1), so the aggregation of all
queue operations takes O(n).

I Since it scans the adjacency list of each vertex only after it is
dequeued, each adjacency list is scanned at most once.

41 / 253

Time Complexity of BFS
BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I In while-loop no vertex is colored to WHITE.

I So line 13 guarantees that each vertex will be enqueued and then
dequeued at most once.

I ENQUEUE and DEQUEUE takes O(1), so the aggregation of all
queue operations takes O(n).

I Since it scans the adjacency list of each vertex only after it is
dequeued, each adjacency list is scanned at most once.

41 / 253

Time Complexity of BFS
BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I In while-loop no vertex is colored to WHITE.

I So line 13 guarantees that each vertex will be enqueued and then
dequeued at most once.

I ENQUEUE and DEQUEUE takes O(1), so the aggregation of all
queue operations takes O(n).

I Since it scans the adjacency list of each vertex only after it is
dequeued, each adjacency list is scanned at most once.

41 / 253

Time Complexity of BFS

BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I Observe that the sum of the lengths of all the adjacency lists is
Θ(m), the total time of scanning is O(m).

I The overhead for initialization is O(n), so the total running time of
BFS is O(m + n). Thus, it is linear in the size of G (adjacency-list
representation).

42 / 253

Time Complexity of BFS

BFS(G, s)
1 for each vertex u ∈ V − {s}
2 do color[u]←WHITE
3 d[u]← ∞
4 π[u]← NIL
5 color[s]← GRAY
6 d[s]← 0
7 π[s]← NIL
8 Q← ∅
9 ENQUEUE(Q, s)

10 while Q 6= ∅
11 do u← DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 do if color[v] =WHITE
14 then color[v]← GRAY
15 d[v]← d[u] + 1
16 π[v]← u
17 ENQUEUE(Q, v)
18 color[u]← BLACK

I Observe that the sum of the lengths of all the adjacency lists is
Θ(m), the total time of scanning is O(m).

I The overhead for initialization is O(n), so the total running time of
BFS is O(m + n). Thus, it is linear in the size of G (adjacency-list
representation).

42 / 253

Shortest paths

I BFS finds the distance to each reachable vertex in G from a given
source vertex s ∈ V. (No weight function yet)

I Define the shortest-path distance δ(s, v) from s to v as the minimum
number of edges in any path from s to v. If there is no path from s to
v, then δ(s, v) = ∞.

I A path of length δ(s, v) from s to v is called a shortest path from s to
v.

43 / 253

Shortest paths

I BFS finds the distance to each reachable vertex in G from a given
source vertex s ∈ V. (No weight function yet)

I Define the shortest-path distance δ(s, v) from s to v as the minimum
number of edges in any path from s to v. If there is no path from s to
v, then δ(s, v) = ∞.

I A path of length δ(s, v) from s to v is called a shortest path from s to
v.

43 / 253

Shortest paths

I BFS finds the distance to each reachable vertex in G from a given
source vertex s ∈ V. (No weight function yet)

I Define the shortest-path distance δ(s, v) from s to v as the minimum
number of edges in any path from s to v. If there is no path from s to
v, then δ(s, v) = ∞.

I A path of length δ(s, v) from s to v is called a shortest path from s to
v.

43 / 253

Lemma 2.
Let G = (V, E) be a (di)graph and s ∈ V be a vertex. Then, for every
edge (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + 1 .

Proof.
I If vertex u is reachable from s, then vertex v is reachable from s as

well. Therefore, the shortest path from s to v is no longer than a
shortest path from s to u followed by edge (u, v). So inequality holds.

I If vertex u is not reachable from s, then δ(s, u) = ∞ and, again, the
inequality holds.

44 / 253

Lemma 2.
Let G = (V, E) be a (di)graph and s ∈ V be a vertex. Then, for every
edge (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + 1 .

Proof.
I If vertex u is reachable from s, then vertex v is reachable from s as

well. Therefore, the shortest path from s to v is no longer than a
shortest path from s to u followed by edge (u, v). So inequality holds.

I If vertex u is not reachable from s, then δ(s, u) = ∞ and, again, the
inequality holds.

44 / 253

Lemma 3.
Let G = (V, E) be a (di)graph and assume that BFS is executed on G
from vertex s ∈ V. Then, when BFS finishes, then d[v] ≥ δ(s, v) for every
v ∈ V.

Proof.
I By induction on the number of Enqueue operations. Induction

Hypothesis (IH): Assume that d[v] ≥ δ(s, v) for every v ∈ V.

I Induction Basis (IB): d[s] = 0 = δ(s, s) and d[v] = ∞ ≥ δ(s, v),
v ∈ V− {s}.

I Let v is WHITE vertex discovered during the exploration from u. By
IH, we have d[u] ≥ δ(s, u). By line 15 of BFS, IH, and the previous
lemma,

d[v] = d[u] + 1 ≥ δ(s, u) + 1 ≥ δ(s, v) .

Since v is GREY now (and enqueued) and lines 14–17 are executed
only for WHITE vertices, v cannot be enqueued again and its d[v]
value remains unchanged.

45 / 253

Lemma 3.
Let G = (V, E) be a (di)graph and assume that BFS is executed on G
from vertex s ∈ V. Then, when BFS finishes, then d[v] ≥ δ(s, v) for every
v ∈ V.

Proof.
I By induction on the number of Enqueue operations. Induction

Hypothesis (IH): Assume that d[v] ≥ δ(s, v) for every v ∈ V.

I Induction Basis (IB): d[s] = 0 = δ(s, s) and d[v] = ∞ ≥ δ(s, v),
v ∈ V− {s}.

I Let v is WHITE vertex discovered during the exploration from u. By
IH, we have d[u] ≥ δ(s, u). By line 15 of BFS, IH, and the previous
lemma,

d[v] = d[u] + 1 ≥ δ(s, u) + 1 ≥ δ(s, v) .

Since v is GREY now (and enqueued) and lines 14–17 are executed
only for WHITE vertices, v cannot be enqueued again and its d[v]
value remains unchanged.

45 / 253

Lemma 3.
Let G = (V, E) be a (di)graph and assume that BFS is executed on G
from vertex s ∈ V. Then, when BFS finishes, then d[v] ≥ δ(s, v) for every
v ∈ V.

Proof.
I By induction on the number of Enqueue operations. Induction

Hypothesis (IH): Assume that d[v] ≥ δ(s, v) for every v ∈ V.

I Induction Basis (IB): d[s] = 0 = δ(s, s) and d[v] = ∞ ≥ δ(s, v),
v ∈ V− {s}.

I Let v is WHITE vertex discovered during the exploration from u. By
IH, we have d[u] ≥ δ(s, u). By line 15 of BFS, IH, and the previous
lemma,

d[v] = d[u] + 1 ≥ δ(s, u) + 1 ≥ δ(s, v) .

Since v is GREY now (and enqueued) and lines 14–17 are executed
only for WHITE vertices, v cannot be enqueued again and its d[v]
value remains unchanged.

45 / 253

Lemma 4.
During the execution of BFS on G = (V, E), let queue Q contains vertices
〈v1, v2, . . . , vr〉, where v1 is the front item of Q (leader) and vr is the last
item of Q. Then, d[vr] ≤ d[v1] + 1 and d[vi] ≤ d[vi+1] for
i = 1, 2, . . . , r− 1.

Proof.
I By induction on the number of queue operations. First, Q = 〈s〉, so

lemma holds. It holds after execution of both queue operations:

I v1 is removed so v2 is new leader (if Q is emptied, it holds trivially).
By IH, d[v1] ≤ d[v2]. But then, d[vr] ≤ d[v1] + 1 ≤ d[v2] + 1 and the
rest of inequalities is unchanged.

I vr+1 is inserted into Q (line 17). In that time, u (whose adjacency list
is being explored) is already removed from Q. By IH, d[u] ≤ d[v1].
So, d[vr+1] = d[u] + 1 ≤ d[v1] + 1. Therefore,
d[vr] ≤IH d[u] + 1 = d[vr+1]. The rest of inequalities is unchanged.

46 / 253

Lemma 4.
During the execution of BFS on G = (V, E), let queue Q contains vertices
〈v1, v2, . . . , vr〉, where v1 is the front item of Q (leader) and vr is the last
item of Q. Then, d[vr] ≤ d[v1] + 1 and d[vi] ≤ d[vi+1] for
i = 1, 2, . . . , r− 1.

Proof.
I By induction on the number of queue operations. First, Q = 〈s〉, so

lemma holds. It holds after execution of both queue operations:

I v1 is removed so v2 is new leader (if Q is emptied, it holds trivially).
By IH, d[v1] ≤ d[v2]. But then, d[vr] ≤ d[v1] + 1 ≤ d[v2] + 1 and the
rest of inequalities is unchanged.

I vr+1 is inserted into Q (line 17). In that time, u (whose adjacency list
is being explored) is already removed from Q. By IH, d[u] ≤ d[v1].
So, d[vr+1] = d[u] + 1 ≤ d[v1] + 1. Therefore,
d[vr] ≤IH d[u] + 1 = d[vr+1]. The rest of inequalities is unchanged.

46 / 253

Lemma 4.
During the execution of BFS on G = (V, E), let queue Q contains vertices
〈v1, v2, . . . , vr〉, where v1 is the front item of Q (leader) and vr is the last
item of Q. Then, d[vr] ≤ d[v1] + 1 and d[vi] ≤ d[vi+1] for
i = 1, 2, . . . , r− 1.

Proof.
I By induction on the number of queue operations. First, Q = 〈s〉, so

lemma holds. It holds after execution of both queue operations:

I v1 is removed so v2 is new leader (if Q is emptied, it holds trivially).
By IH, d[v1] ≤ d[v2]. But then, d[vr] ≤ d[v1] + 1 ≤ d[v2] + 1 and the
rest of inequalities is unchanged.

I vr+1 is inserted into Q (line 17). In that time, u (whose adjacency list
is being explored) is already removed from Q. By IH, d[u] ≤ d[v1].
So, d[vr+1] = d[u] + 1 ≤ d[v1] + 1. Therefore,
d[vr] ≤IH d[u] + 1 = d[vr+1]. The rest of inequalities is unchanged.

46 / 253

Corollary 5.

Let vertices vi and vj are stored in the queue during the computation of
BFS such that vi is inserted before vj. Then, d[vi] ≤ d[vj] in the moment
of insertion of vj into the queue.

Proof.
By the previous lemma and the property that every vertex obtains final
value of d at most once during the computation of BFS.

47 / 253

Theorem 6 (Correctness of BFS).

Let G = (V, E) be (di)graph and s ∈ V. Then, BFS(G, s) explores all
vertices v ∈ V reachable from s and after it is finished d[v] = δ(s, v) for all
v ∈ V. In addition, for every vertex v 6= s reachable from s one of the
shortest paths from s to v is a shortest path from s to π[v] followed by
edge (π[v], v).

Proof.
I By contradiction. Let v is a vertex with minimal δ(s, v) such that

d[v] 6= δ(s, v). Obviously, v 6= s.

I Lemma 3 states that d[v] ≥ δ(s, v), therefore d[v] > δ(s, v). In
addition, v must be reachable from s, otherwise δ(s, v) = ∞ ≥ d[v].

I Let u be a vertex preceding v on a shortest path from s to v; that is,
δ(s, v) = δ(s, u) + 1. Since δ(s, u) < δ(s, v) and with respect to the
choice of v, d[u] = δ(s, u).

I Altogether, d[v] > δ(s, v) = δ(s, u) + 1 = d[u] + 1.

48 / 253

Theorem 6 (Correctness of BFS).

Let G = (V, E) be (di)graph and s ∈ V. Then, BFS(G, s) explores all
vertices v ∈ V reachable from s and after it is finished d[v] = δ(s, v) for all
v ∈ V. In addition, for every vertex v 6= s reachable from s one of the
shortest paths from s to v is a shortest path from s to π[v] followed by
edge (π[v], v).

Proof.
I By contradiction. Let v is a vertex with minimal δ(s, v) such that

d[v] 6= δ(s, v). Obviously, v 6= s.

I Lemma 3 states that d[v] ≥ δ(s, v), therefore d[v] > δ(s, v). In
addition, v must be reachable from s, otherwise δ(s, v) = ∞ ≥ d[v].

I Let u be a vertex preceding v on a shortest path from s to v; that is,
δ(s, v) = δ(s, u) + 1. Since δ(s, u) < δ(s, v) and with respect to the
choice of v, d[u] = δ(s, u).

I Altogether, d[v] > δ(s, v) = δ(s, u) + 1 = d[u] + 1.

48 / 253

Theorem 6 (Correctness of BFS).

Let G = (V, E) be (di)graph and s ∈ V. Then, BFS(G, s) explores all
vertices v ∈ V reachable from s and after it is finished d[v] = δ(s, v) for all
v ∈ V. In addition, for every vertex v 6= s reachable from s one of the
shortest paths from s to v is a shortest path from s to π[v] followed by
edge (π[v], v).

Proof.
I By contradiction. Let v is a vertex with minimal δ(s, v) such that

d[v] 6= δ(s, v). Obviously, v 6= s.

I Lemma 3 states that d[v] ≥ δ(s, v), therefore d[v] > δ(s, v). In
addition, v must be reachable from s, otherwise δ(s, v) = ∞ ≥ d[v].

I Let u be a vertex preceding v on a shortest path from s to v; that is,
δ(s, v) = δ(s, u) + 1. Since δ(s, u) < δ(s, v) and with respect to the
choice of v, d[u] = δ(s, u).

I Altogether, d[v] > δ(s, v) = δ(s, u) + 1 = d[u] + 1.

48 / 253

Theorem 6 (Correctness of BFS).

Let G = (V, E) be (di)graph and s ∈ V. Then, BFS(G, s) explores all
vertices v ∈ V reachable from s and after it is finished d[v] = δ(s, v) for all
v ∈ V. In addition, for every vertex v 6= s reachable from s one of the
shortest paths from s to v is a shortest path from s to π[v] followed by
edge (π[v], v).

Proof.
I By contradiction. Let v is a vertex with minimal δ(s, v) such that

d[v] 6= δ(s, v). Obviously, v 6= s.

I Lemma 3 states that d[v] ≥ δ(s, v), therefore d[v] > δ(s, v). In
addition, v must be reachable from s, otherwise δ(s, v) = ∞ ≥ d[v].

I Let u be a vertex preceding v on a shortest path from s to v; that is,
δ(s, v) = δ(s, u) + 1. Since δ(s, u) < δ(s, v) and with respect to the
choice of v, d[u] = δ(s, u).

I Altogether, d[v] > δ(s, v) = δ(s, u) + 1 = d[u] + 1.

48 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Proof (cont.).

I Consider BFS in the moment when we dequeue u from Q (line 11),
i.e. v is either WHITE, GREY, or BLACK.

I v is WHITE, then line 15 sets d[v] = d[u] + 1 – contradiction.

I v is BLACK, then v is already dequeued from Q and by Corollary 5,
d[v] ≤ d[u] – contradiction.

I v is GREY, then v is greyed during picking another vertex w that was
dequeued from Q before u. In addition, d[v] = d[w] + 1. By Corollary
5, d[w] ≤ d[u], i.e. d[v] ≤ d[u] + 1 – contradiction.

I Therefore, d[v] = δ(s, v) for all v ∈ V. Furthermore, all vertices
reachable from s must be visited, otherwise its d value is infinity.

I Finally, observe that if π[v] = u, then d[v] = d[u] + 1; that is, a
shortest path from s to v can be obtained by addition of edge
(π[v], v) to the end of a shortest path from s to π[v].

49 / 253

Breadth-First Search Tree (BFS Tree)

I Let π be an array of predecessors computed by BFS(G, s) for some
G = (V, E) and s ∈ V.

I Predecessor subgraph of G is defined as Gπ = (Vπ, Eπ), where

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s} and

I Eπ = {(π[v], v) : v ∈ Vπ − {s}}.
I Gπ is BFS tree, if Vπ contains only vertices reachable from s and for

all v ∈ Vπ, there exists the only path from s to v that is the shortest
path.

I Since Gπ is connected and |Eπ| = |Vπ| − 1, Gπ is a tree.

50 / 253

Breadth-First Search Tree (BFS Tree)

I Let π be an array of predecessors computed by BFS(G, s) for some
G = (V, E) and s ∈ V.

I Predecessor subgraph of G is defined as Gπ = (Vπ, Eπ), where

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s} and

I Eπ = {(π[v], v) : v ∈ Vπ − {s}}.

I Gπ is BFS tree, if Vπ contains only vertices reachable from s and for
all v ∈ Vπ, there exists the only path from s to v that is the shortest
path.

I Since Gπ is connected and |Eπ| = |Vπ| − 1, Gπ is a tree.

50 / 253

Breadth-First Search Tree (BFS Tree)

I Let π be an array of predecessors computed by BFS(G, s) for some
G = (V, E) and s ∈ V.

I Predecessor subgraph of G is defined as Gπ = (Vπ, Eπ), where

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s} and

I Eπ = {(π[v], v) : v ∈ Vπ − {s}}.
I Gπ is BFS tree, if Vπ contains only vertices reachable from s and for

all v ∈ Vπ, there exists the only path from s to v that is the shortest
path.

I Since Gπ is connected and |Eπ| = |Vπ| − 1, Gπ is a tree.

50 / 253

Lemma 7.
Let G be (di)graph. Procedure BFS constructs π such that Gπ is BFS
tree.

Proof.
I Line 16 of BFS sets π[v] = u iff (u, v) ∈ E and δ(s, v) < ∞.

I Vπ contains only vertices reachable from s.

I Since Gπ is tree, Gπ contains only one path from s to each other
vertex.

I By inductive application of Theorem 6, each such path is a shortest
one.

51 / 253

Lemma 7.
Let G be (di)graph. Procedure BFS constructs π such that Gπ is BFS
tree.

Proof.
I Line 16 of BFS sets π[v] = u iff (u, v) ∈ E and δ(s, v) < ∞.

I Vπ contains only vertices reachable from s.

I Since Gπ is tree, Gπ contains only one path from s to each other
vertex.

I By inductive application of Theorem 6, each such path is a shortest
one.

51 / 253

Lemma 7.
Let G be (di)graph. Procedure BFS constructs π such that Gπ is BFS
tree.

Proof.
I Line 16 of BFS sets π[v] = u iff (u, v) ∈ E and δ(s, v) < ∞.

I Vπ contains only vertices reachable from s.

I Since Gπ is tree, Gπ contains only one path from s to each other
vertex.

I By inductive application of Theorem 6, each such path is a shortest
one.

51 / 253

Lemma 7.
Let G be (di)graph. Procedure BFS constructs π such that Gπ is BFS
tree.

Proof.
I Line 16 of BFS sets π[v] = u iff (u, v) ∈ E and δ(s, v) < ∞.

I Vπ contains only vertices reachable from s.

I Since Gπ is tree, Gπ contains only one path from s to each other
vertex.

I By inductive application of Theorem 6, each such path is a shortest
one.

51 / 253

How to print the shortest path from s to v?

PRINT-PATH(G, s, v)
1 if v = s
2 then print s
3 else if π[v] = NIL
4 then print “No path from ” s “ to ” v “!”
5 else PRINT-PATH(G, s, π[v])
6 print v

Its time complexity is O(n).

52 / 253

Exercises

1. Given an example of a directed graph G = (V, E), a source vertex
s ∈ V, and a set of tree edges Eπ ⊆ E such that for each vertex
v ∈ V, the unique simple path in the graph (V, Eπ) from s to v is a
shortest path in G, yet Eπ cannot be produced by running BFS(G, s),
no matter how the vertices are ordered in each adjacency list.

2. Give an efficient algorithm to compute whether the given undirected
graph is bipartite.

3. The diameter of a tree T = (V, E) is defined as maxu,v∈Vδ(u, v), that
is, the largest of all shortest-path distances in the tree. Give an
efficient algorithm to compute the diameter of a tree, and analyze the
running time of your algorithm.

53 / 253

Depth-First Search

54 / 253

Depth-First Search (DFS)

I Input: (un)directed graph G = (V, E).

I On contrary to BFS, DFS visits all vertices.

I It colors the vertices with WHITE, GREY, and BLACK color as well.

I The array of predecessors π is in use.

I Creates a DFS forest that contains all vertices such that
Gπ = (V, Eπ), where

Eπ = {(π[v], v) : v ∈ V, π[v] 6= nil} .

55 / 253

Depth-First Search (DFS)

I Input: (un)directed graph G = (V, E).
I On contrary to BFS, DFS visits all vertices.

I It colors the vertices with WHITE, GREY, and BLACK color as well.

I The array of predecessors π is in use.

I Creates a DFS forest that contains all vertices such that
Gπ = (V, Eπ), where

Eπ = {(π[v], v) : v ∈ V, π[v] 6= nil} .

55 / 253

Depth-First Search (DFS)

I Input: (un)directed graph G = (V, E).
I On contrary to BFS, DFS visits all vertices.

I It colors the vertices with WHITE, GREY, and BLACK color as well.

I The array of predecessors π is in use.

I Creates a DFS forest that contains all vertices such that
Gπ = (V, Eπ), where

Eπ = {(π[v], v) : v ∈ V, π[v] 6= nil} .

55 / 253

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I d[u] is a timestamp of the first vertex discover (color changed to

GREY).

I f [u] is a timestamp of the finishing time of vertex u (color changed to
BLACK).

I 1 ≤ d[u] < f [u] ≤ 2n.

I color[u] = WHITE before time d[u].
I color[u] = GREY between time d[u] and f [u].
I color[u] = BLACK after time f [u].
I time is a global variable (ticks after each color change).

56 / 253

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I d[u] is a timestamp of the first vertex discover (color changed to

GREY).

I f [u] is a timestamp of the finishing time of vertex u (color changed to
BLACK).

I 1 ≤ d[u] < f [u] ≤ 2n.

I color[u] = WHITE before time d[u].
I color[u] = GREY between time d[u] and f [u].
I color[u] = BLACK after time f [u].
I time is a global variable (ticks after each color change).

56 / 253

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I d[u] is a timestamp of the first vertex discover (color changed to

GREY).

I f [u] is a timestamp of the finishing time of vertex u (color changed to
BLACK).

I 1 ≤ d[u] < f [u] ≤ 2n.

I color[u] = WHITE before time d[u].
I color[u] = GREY between time d[u] and f [u].
I color[u] = BLACK after time f [u].

I time is a global variable (ticks after each color change).

56 / 253

I Graph representation – Adjacency-list representation.

I color[u] ∈ {WHITE, GREY, BLACK}.
I d[u] is a timestamp of the first vertex discover (color changed to

GREY).

I f [u] is a timestamp of the finishing time of vertex u (color changed to
BLACK).

I 1 ≤ d[u] < f [u] ≤ 2n.

I color[u] = WHITE before time d[u].
I color[u] = GREY between time d[u] and f [u].
I color[u] = BLACK after time f [u].
I time is a global variable (ticks after each color change).

56 / 253

DFS(G)
1 for each vertex u ∈ V
2 color[u]←WHITE
3 π[u]← NIL
4 time← 0
5 for each vertex u ∈ V
6 if color[u] = WHITE
7 then DFS-VISIT(G, u)

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

57 / 253

DFS(G)
1 for each vertex u ∈ V
2 color[u]←WHITE
3 π[u]← NIL
4 time← 0
5 for each vertex u ∈ V
6 if color[u] = WHITE
7 then DFS-VISIT(G, u)

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

57 / 253

DFS – Example

1/ / /

/ / /

1/

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

1/ / /

/ / /

1/ 2/

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

1/ / /

/ / /

1/ 2/

3/

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B

1/ / /

/ / /

1/ 2/

3/4/

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B

1/ / /

/ / /

1/ 2/

3/4/4/5

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B

1/ / /

/ / /

1/ 2/

3/4/4/5 3/6

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B

1/ / /

/ / /

1/ 2/

3/4/4/5 3/6

2/7

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

1/ / /

/ / /

1/ 2/

3/4/4/5 3/6

2/71/8

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

C

1/ / /

/ / /

1/ 2/

3/4/

9/

4/5 3/6

2/71/8

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

C

1/ / /

/ / /

1/ 2/

3/4/

9/

4/5 3/6

2/71/8

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

C

B

1/ / /

/ / /

1/ 2/

3/4/

9/

10/4/5 3/6

2/71/8

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

C

B

1/ / /

/ / /

1/ 2/

3/4/

9/

10/4/5 3/6

2/71/8

10/11

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

DFS – Example

B
F

C

B

1/ / /

/ / /

1/ 2/

3/4/

9/

10/4/5 3/6

2/71/8

10/11

9/12

Figure: Vertex u is labeled by d[u]/f [u]. B, F, and C denote Back, Forward, and
Cross edge, respectively.

58 / 253

Time Complexity of Dfs

DFS(G)
1 for each vertex u ∈ V
2 color[u]←WHITE
3 π[u]← NIL
4 time← 0
5 for each vertex u ∈ V
6 if color[u] = WHITE
7 then DFS-VISIT(G, u)

I Loops at lines 1–3 and 5–7 without Dfs-Visit calls take Θ(n).

59 / 253

Time Complexity of Dfs-Visit

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

I Dfs-Visit is called only for white vertices and Dfs-Visit
immediately changes their color to GREY. So, Dfs-Visit is called
exactly once for each vertex v ∈ V.

I For each vertex v, the loop on lines 4–7 iterates |Adj[v]|-times.
I Since ∑v∈V |Adj[v]| = Θ(m), the total cost of lines 4–7 is Θ(m).
I Therefore, the running time is Θ(m + n).

60 / 253

Time Complexity of Dfs-Visit

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

I Dfs-Visit is called only for white vertices and Dfs-Visit
immediately changes their color to GREY. So, Dfs-Visit is called
exactly once for each vertex v ∈ V.

I For each vertex v, the loop on lines 4–7 iterates |Adj[v]|-times.

I Since ∑v∈V |Adj[v]| = Θ(m), the total cost of lines 4–7 is Θ(m).
I Therefore, the running time is Θ(m + n).

60 / 253

Time Complexity of Dfs-Visit

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

I Dfs-Visit is called only for white vertices and Dfs-Visit
immediately changes their color to GREY. So, Dfs-Visit is called
exactly once for each vertex v ∈ V.

I For each vertex v, the loop on lines 4–7 iterates |Adj[v]|-times.
I Since ∑v∈V |Adj[v]| = Θ(m), the total cost of lines 4–7 is Θ(m).

I Therefore, the running time is Θ(m + n).

60 / 253

Time Complexity of Dfs-Visit

DFS-VISIT(G, u)
1 color[u]← GREY
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 if color[v] = WHITE
6 then π[v]← u
7 DFS-VISIT(G, v)
8 color[u]← BLACK
9 time← time + 1
10 f [u]← time

I Dfs-Visit is called only for white vertices and Dfs-Visit
immediately changes their color to GREY. So, Dfs-Visit is called
exactly once for each vertex v ∈ V.

I For each vertex v, the loop on lines 4–7 iterates |Adj[v]|-times.
I Since ∑v∈V |Adj[v]| = Θ(m), the total cost of lines 4–7 is Θ(m).
I Therefore, the running time is Θ(m + n).

60 / 253

Parenthesis Theorem
In any DFS of a graph G = (V, E), for any two vertices u and v, exactly
one of the following conditions holds:
I intervals [d[u], f [u]] and [d[v], f [v]] are disjoint, and neither u nor v is

descendant of the other in DFS forest,
I interval [d[u], f [u]] is contained within the interval [d[v], f [v]] and u is

a descendant of v in a DFS tree, or
I interval [d[v], f [v]] is contained within the interval [d[u], f [u]] and v is

a descendant of u in a DFS tree.

Proof for d[u] < d[v] (Homework: prove case d[v] < d[u]).

I Subcase d[v] < f [u]: Then, v was discovered while u was still GREY.
Since v was discovered later than u, v is finished before u. Hence,
f [v] < f [u].

I Subcase f [u] < d[v]: Then, from the definition d[u] < f [u] and
d[v] < f [v], so both intervals are disjoint. Moreover, neither vertex
was discovered while the other was GREY, and so neither vertex is a
descendant of the other.

61 / 253

Parenthesis Theorem
In any DFS of a graph G = (V, E), for any two vertices u and v, exactly
one of the following conditions holds:
I intervals [d[u], f [u]] and [d[v], f [v]] are disjoint, and neither u nor v is

descendant of the other in DFS forest,
I interval [d[u], f [u]] is contained within the interval [d[v], f [v]] and u is

a descendant of v in a DFS tree, or
I interval [d[v], f [v]] is contained within the interval [d[u], f [u]] and v is

a descendant of u in a DFS tree.

Proof for d[u] < d[v] (Homework: prove case d[v] < d[u]).

I Subcase d[v] < f [u]: Then, v was discovered while u was still GREY.
Since v was discovered later than u, v is finished before u. Hence,
f [v] < f [u].

I Subcase f [u] < d[v]: Then, from the definition d[u] < f [u] and
d[v] < f [v], so both intervals are disjoint. Moreover, neither vertex
was discovered while the other was GREY, and so neither vertex is a
descendant of the other.

61 / 253

Parenthesis Theorem
In any DFS of a graph G = (V, E), for any two vertices u and v, exactly
one of the following conditions holds:
I intervals [d[u], f [u]] and [d[v], f [v]] are disjoint, and neither u nor v is

descendant of the other in DFS forest,
I interval [d[u], f [u]] is contained within the interval [d[v], f [v]] and u is

a descendant of v in a DFS tree, or
I interval [d[v], f [v]] is contained within the interval [d[u], f [u]] and v is

a descendant of u in a DFS tree.

Proof for d[u] < d[v] (Homework: prove case d[v] < d[u]).

I Subcase d[v] < f [u]: Then, v was discovered while u was still GREY.
Since v was discovered later than u, v is finished before u. Hence,
f [v] < f [u].

I Subcase f [u] < d[v]: Then, from the definition d[u] < f [u] and
d[v] < f [v], so both intervals are disjoint. Moreover, neither vertex
was discovered while the other was GREY, and so neither vertex is a
descendant of the other.

61 / 253

Corollary 8.

Vertex v is descendant of vertex u in DFS forest of G = (V, E) iff

d[u] < d[v] < f [v] < f [u] .

62 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

White Path Theorem
In DFS forest of graph G = (V, E), vertex v is descendant of vertex u iff in
time d[u] there is a path from u to v from WHITE vertices only.

Proof.

⇒: Let v be descendant of u. Let w be a vertex on the path from u to v
in the DFS forest. Since w is descendant of u and by the previous
corollary, it holds that d[u] < d[w]. So, w is WHITE in time d[u].

⇐: Let v be the nearest vertex of u reachable from u in time d[u] by
some WHITE path such that v is not a descendant of u in DFS forest.

I Let w be predecessor of v on the WHITE path. Then, w is
descendant of u and, by the previous corollary, f [w] ≤ f [u] (w can
coincide with u).

I Since v must be discovered after u but before finishing w, we have
d[u] < d[v] < f [w] ≤ f [u].

I Parenthesis Theorem says that interval [d[v], f [v]] is completely
included in interval [d[u], f [u]]. And by the previous corollary, v is
descendant of u.

63 / 253

Edge Classification

1. Tree edges are edges in DFS forest Gπ. (u, v) is a tree edge if v was
firstly discovered by exploring edge (u, v). These edges are
highlighted using red color in the figures.

2. Back edges are edges (u, v) connecting u to its predecessor v in DFS
forest. Self-loop is always back edge.

3. Forward edges are non-tree edges (u, v) connecting u to its
descendant v in DFS forest.

4. Cross edges are all other edges.

64 / 253

Edge Classification – Example

3/6 2/9 1/10 11/16

4/5 7/8 12/13 14/15

65 / 253

Edge Classification – Example

B

C

F

C

C

C

B

3/6 2/9 1/10 11/16

4/5 7/8 12/13 14/15

65 / 253

Drawing a Graph

We can draw every graph such that tree and forward edges lead
downwards and back edges lead upwards.

B C

F
C

C

C

B

3/6

2/9

1/10 11/16

4/5

7/8

12/13 14/15

66 / 253

DFS and Edge Classification

Let (u, v) be an edge. Then, using a color of v during DFS computation,
we can classify (u, v) as follows:

1. WHITE indicates a tree edge,

2. GREY indicates a back edge, and

3. BLACK indicates a forward or cross edge:
I (u, v) is a forward edge, if d[u] < d[v].
I (u, v) is a cross edge, if d[u] > d[v].

67 / 253

DFS and Edge Classification

Let (u, v) be an edge. Then, using a color of v during DFS computation,
we can classify (u, v) as follows:

1. WHITE indicates a tree edge,

2. GREY indicates a back edge, and

3. BLACK indicates a forward or cross edge:
I (u, v) is a forward edge, if d[u] < d[v].
I (u, v) is a cross edge, if d[u] > d[v].

67 / 253

DFS and Edge Classification

Let (u, v) be an edge. Then, using a color of v during DFS computation,
we can classify (u, v) as follows:

1. WHITE indicates a tree edge,

2. GREY indicates a back edge, and

3. BLACK indicates a forward or cross edge:
I (u, v) is a forward edge, if d[u] < d[v].
I (u, v) is a cross edge, if d[u] > d[v].

67 / 253

Edge Classification in Undirected Graph

Theorem 9.
During the DFS computation of undirected graph G, each edge is either a
tree edge or a back edge.

Proof.
I Let (u, v) is an arbitrary edge of G and let d[u] < d[v].

I Then, v becomes BLACK while u is still GREY.

I If (u, v) is firstly explored in the direction from u to v, then v is
WHITE – otherwise we would have explored (u, v) in the other
direction (from v to u). Thus, (u, v) is a tree edge.

I If (u, v) is firstly explored in the direction from v to u, u is still GREY
– since u is still GREY at the time the edge is explored for the first
time, then (u, v) is a back edge.

68 / 253

Edge Classification in Undirected Graph

Theorem 9.
During the DFS computation of undirected graph G, each edge is either a
tree edge or a back edge.

Proof.
I Let (u, v) is an arbitrary edge of G and let d[u] < d[v].
I Then, v becomes BLACK while u is still GREY.

I If (u, v) is firstly explored in the direction from u to v, then v is
WHITE – otherwise we would have explored (u, v) in the other
direction (from v to u). Thus, (u, v) is a tree edge.

I If (u, v) is firstly explored in the direction from v to u, u is still GREY
– since u is still GREY at the time the edge is explored for the first
time, then (u, v) is a back edge.

68 / 253

Edge Classification in Undirected Graph

Theorem 9.
During the DFS computation of undirected graph G, each edge is either a
tree edge or a back edge.

Proof.
I Let (u, v) is an arbitrary edge of G and let d[u] < d[v].
I Then, v becomes BLACK while u is still GREY.

I If (u, v) is firstly explored in the direction from u to v, then v is
WHITE – otherwise we would have explored (u, v) in the other
direction (from v to u). Thus, (u, v) is a tree edge.

I If (u, v) is firstly explored in the direction from v to u, u is still GREY
– since u is still GREY at the time the edge is explored for the first
time, then (u, v) is a back edge.

68 / 253

Edge Classification in Undirected Graph

Theorem 9.
During the DFS computation of undirected graph G, each edge is either a
tree edge or a back edge.

Proof.
I Let (u, v) is an arbitrary edge of G and let d[u] < d[v].
I Then, v becomes BLACK while u is still GREY.

I If (u, v) is firstly explored in the direction from u to v, then v is
WHITE – otherwise we would have explored (u, v) in the other
direction (from v to u). Thus, (u, v) is a tree edge.

I If (u, v) is firstly explored in the direction from v to u, u is still GREY
– since u is still GREY at the time the edge is explored for the first
time, then (u, v) is a back edge.

68 / 253

Exercises

1. Give an efficient algorithm to find whether a given directed graph
contains a cycle, and analyze the running time of your algorithm.

2. Let G be an undirected graph. Show how to modify Dfs so that it
assigns to each vertex v an integer label between 1 and k in array cc,
where k is the number of connected components of G, such that
cc[u] = cc[v] if and only if u and v are in the same connected
component.

69 / 253

Topological sort

70 / 253

Topological sort

I An application of DFS

I A topological sort of directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if (u, v) ∈ E, then u
appears before v in the ordering.

I If G contains a cycle, then no linear ordering is possible.

TOPOLOGICAL-SORT(G)
1 L← ∅
2 call DFS(G) to compute finishing times f [v]
3 as each vertex is finished, insert it onto the front of L
4 return the linked list of vertices L

I Time complexity: Dfs is Θ(m + n), add a vertex to the list is
constant, so, in total, Θ(m + n).

71 / 253

Topological sort

I An application of DFS

I A topological sort of directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if (u, v) ∈ E, then u
appears before v in the ordering.

I If G contains a cycle, then no linear ordering is possible.

TOPOLOGICAL-SORT(G)
1 L← ∅
2 call DFS(G) to compute finishing times f [v]
3 as each vertex is finished, insert it onto the front of L
4 return the linked list of vertices L

I Time complexity: Dfs is Θ(m + n), add a vertex to the list is
constant, so, in total, Θ(m + n).

71 / 253

Topological sort

I An application of DFS

I A topological sort of directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if (u, v) ∈ E, then u
appears before v in the ordering.

I If G contains a cycle, then no linear ordering is possible.

TOPOLOGICAL-SORT(G)
1 L← ∅
2 call DFS(G) to compute finishing times f [v]
3 as each vertex is finished, insert it onto the front of L
4 return the linked list of vertices L

I Time complexity: Dfs is Θ(m + n), add a vertex to the list is
constant, so, in total, Θ(m + n).

71 / 253

Topological sort

I An application of DFS

I A topological sort of directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if (u, v) ∈ E, then u
appears before v in the ordering.

I If G contains a cycle, then no linear ordering is possible.

TOPOLOGICAL-SORT(G)
1 L← ∅
2 call DFS(G) to compute finishing times f [v]
3 as each vertex is finished, insert it onto the front of L
4 return the linked list of vertices L

I Time complexity: Dfs is Θ(m + n), add a vertex to the list is
constant, so, in total, Θ(m + n).

71 / 253

Topological sort

I An application of DFS

I A topological sort of directed acyclic graph (DAG) G = (V, E) is a
linear ordering of all its vertices such that if (u, v) ∈ E, then u
appears before v in the ordering.

I If G contains a cycle, then no linear ordering is possible.

TOPOLOGICAL-SORT(G)
1 L← ∅
2 call DFS(G) to compute finishing times f [v]
3 as each vertex is finished, insert it onto the front of L
4 return the linked list of vertices L

I Time complexity: Dfs is Θ(m + n), add a vertex to the list is
constant, so, in total, Θ(m + n).

71 / 253

Topological sort – Example

underpants

pants

belt

shirt

tie

jacket

socks

shoes

watch

11/16

12/15

6/7

1/8

2/5

3/4

17/18

13/14

9/10

72 / 253

Topological sort – Example

underpants pants beltshirt tie jacketsocks shoes watch

11/16 12/15 6/71/8 2/5 3/417/18 13/14 9/10

73 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Lemma 10.
Digraph G is acyclic iff Dfs(G) finds no back edge.

Proof.

⇒: Let (u, v) be a back edge. Then, u is descendant of v in DFS forest;
that is, there is a path from v to u. So edge (u, v) closes a cycle.

⇐: Let G contain a cycle, c. Let us show that then Dfs(G) finds a back
edge.

I Let v be the first vertex of c discovered by Dfs(G) procedure and let
(u, v) be an edge that completes cycle c.

I In time d[v], the edges of cycle c determine WHITE path from v to u.

I By WHITE path theorem, it holds that u is descendant of v in DFS
forest. Therefore, (u, v) is a back edge.

74 / 253

Theorem 11.
Topological-Sort(G) procedure gives topological order for acyclic
digraph G.

Proof.

I Let DFS be executed on an acyclic digraph G = (V, E) such that
DFS determines the values of f [v].

I Now we need to show that if (u, v) ∈ E, then f [v] < f [u].
I Let (u, v) be an edge that is being explored by Dfs(G) procedure.

Then, v cannot be grey, otherwise v would be predecessor of u and
(u, v) would be a back edge – contradiction to the previous lemma.

I If v is WHITE, then v is descendant of u in DFS forest, so f [v] < f [u].
I If v is BLACK, then f [v] is already set. Since u is still in exploration

process (grey), its f [u] is not set yet, so f [v] < f [u].

75 / 253

Theorem 11.
Topological-Sort(G) procedure gives topological order for acyclic
digraph G.

Proof.
I Let DFS be executed on an acyclic digraph G = (V, E) such that

DFS determines the values of f [v].
I Now we need to show that if (u, v) ∈ E, then f [v] < f [u].

I Let (u, v) be an edge that is being explored by Dfs(G) procedure.
Then, v cannot be grey, otherwise v would be predecessor of u and
(u, v) would be a back edge – contradiction to the previous lemma.

I If v is WHITE, then v is descendant of u in DFS forest, so f [v] < f [u].
I If v is BLACK, then f [v] is already set. Since u is still in exploration

process (grey), its f [u] is not set yet, so f [v] < f [u].

75 / 253

Theorem 11.
Topological-Sort(G) procedure gives topological order for acyclic
digraph G.

Proof.
I Let DFS be executed on an acyclic digraph G = (V, E) such that

DFS determines the values of f [v].
I Now we need to show that if (u, v) ∈ E, then f [v] < f [u].
I Let (u, v) be an edge that is being explored by Dfs(G) procedure.

Then, v cannot be grey, otherwise v would be predecessor of u and
(u, v) would be a back edge – contradiction to the previous lemma.

I If v is WHITE, then v is descendant of u in DFS forest, so f [v] < f [u].
I If v is BLACK, then f [v] is already set. Since u is still in exploration

process (grey), its f [u] is not set yet, so f [v] < f [u].

75 / 253

Theorem 11.
Topological-Sort(G) procedure gives topological order for acyclic
digraph G.

Proof.
I Let DFS be executed on an acyclic digraph G = (V, E) such that

DFS determines the values of f [v].
I Now we need to show that if (u, v) ∈ E, then f [v] < f [u].
I Let (u, v) be an edge that is being explored by Dfs(G) procedure.

Then, v cannot be grey, otherwise v would be predecessor of u and
(u, v) would be a back edge – contradiction to the previous lemma.

I If v is WHITE, then v is descendant of u in DFS forest, so f [v] < f [u].

I If v is BLACK, then f [v] is already set. Since u is still in exploration
process (grey), its f [u] is not set yet, so f [v] < f [u].

75 / 253

Theorem 11.
Topological-Sort(G) procedure gives topological order for acyclic
digraph G.

Proof.
I Let DFS be executed on an acyclic digraph G = (V, E) such that

DFS determines the values of f [v].
I Now we need to show that if (u, v) ∈ E, then f [v] < f [u].
I Let (u, v) be an edge that is being explored by Dfs(G) procedure.

Then, v cannot be grey, otherwise v would be predecessor of u and
(u, v) would be a back edge – contradiction to the previous lemma.

I If v is WHITE, then v is descendant of u in DFS forest, so f [v] < f [u].
I If v is BLACK, then f [v] is already set. Since u is still in exploration

process (grey), its f [u] is not set yet, so f [v] < f [u].

75 / 253

Exercises

1. Give a linear-time algorithm that takes as input a directed acyclic
graph G = (V, E) and two vertices s and t, and returns the number of
simple paths from s to t in G.

2. Prove or disprove: If a directed graph G contains cycles, then
Topological-Sort(G) produces a vertex ordering that minimizes
the number of ”bad” edges that are inconsistent with the ordering
produced.

76 / 253

Strongly Connected Components

77 / 253

Strongly Connected Components (SCC)

I An application of DFS

I For digraph G = (V, E), strongly connected component is the
maximal set C ⊆ V such that for every u, v ∈ C, u v (and also
v u).

1 2 3

4 5 6

Graph with 3 SCCs:

I {1, 2, 4, 5}
I {3}
I {6}

78 / 253

Strongly Connected Components (SCC)

I An application of DFS

I For digraph G = (V, E), strongly connected component is the
maximal set C ⊆ V such that for every u, v ∈ C, u v (and also
v u).

1 2 3

4 5 6

Graph with 3 SCCs:

I {1, 2, 4, 5}
I {3}
I {6}

78 / 253

Strongly Connected Components (SCC)

I An application of DFS

I For digraph G = (V, E), strongly connected component is the
maximal set C ⊆ V such that for every u, v ∈ C, u v (and also
v u).

1 2 3

4 5 6

Graph with 3 SCCs:

I {1, 2, 4, 5}
I {3}
I {6}

78 / 253

I The transpose graph of G = (V, E) is GT = (V, ET), where
ET = {(u, v) : (v, u) ∈ E} .

SCC(G)
1 call DFS(G) to compute all f [u]
2 compute GT

3 call modified DFS(GT) such that DFS’s main iteration takes vertices
in the decreasing order according to f [u]

4 output all vertices of each DFS tree computed in line 3
as a new strongly connected component

I Time complexity: Θ(m + n).
I How to create GT from G in the adjacency-lists representation in time

O(m + n)?
I G and GT has the same SCCs – u and v are mutually reachable in G

if and only if they are mutually reachable in GT.

79 / 253

I The transpose graph of G = (V, E) is GT = (V, ET), where
ET = {(u, v) : (v, u) ∈ E} .

SCC(G)
1 call DFS(G) to compute all f [u]
2 compute GT

3 call modified DFS(GT) such that DFS’s main iteration takes vertices
in the decreasing order according to f [u]

4 output all vertices of each DFS tree computed in line 3
as a new strongly connected component

I Time complexity: Θ(m + n).
I How to create GT from G in the adjacency-lists representation in time

O(m + n)?
I G and GT has the same SCCs – u and v are mutually reachable in G

if and only if they are mutually reachable in GT.

79 / 253

I The transpose graph of G = (V, E) is GT = (V, ET), where
ET = {(u, v) : (v, u) ∈ E} .

SCC(G)
1 call DFS(G) to compute all f [u]
2 compute GT

3 call modified DFS(GT) such that DFS’s main iteration takes vertices
in the decreasing order according to f [u]

4 output all vertices of each DFS tree computed in line 3
as a new strongly connected component

I Time complexity: Θ(m + n).

I How to create GT from G in the adjacency-lists representation in time
O(m + n)?

I G and GT has the same SCCs – u and v are mutually reachable in G
if and only if they are mutually reachable in GT.

79 / 253

I The transpose graph of G = (V, E) is GT = (V, ET), where
ET = {(u, v) : (v, u) ∈ E} .

SCC(G)
1 call DFS(G) to compute all f [u]
2 compute GT

3 call modified DFS(GT) such that DFS’s main iteration takes vertices
in the decreasing order according to f [u]

4 output all vertices of each DFS tree computed in line 3
as a new strongly connected component

I Time complexity: Θ(m + n).
I How to create GT from G in the adjacency-lists representation in time

O(m + n)?

I G and GT has the same SCCs – u and v are mutually reachable in G
if and only if they are mutually reachable in GT.

79 / 253

I The transpose graph of G = (V, E) is GT = (V, ET), where
ET = {(u, v) : (v, u) ∈ E} .

SCC(G)
1 call DFS(G) to compute all f [u]
2 compute GT

3 call modified DFS(GT) such that DFS’s main iteration takes vertices
in the decreasing order according to f [u]

4 output all vertices of each DFS tree computed in line 3
as a new strongly connected component

I Time complexity: Θ(m + n).
I How to create GT from G in the adjacency-lists representation in time

O(m + n)?
I G and GT has the same SCCs – u and v are mutually reachable in G

if and only if they are mutually reachable in GT.

79 / 253

SCC – Example

a/13/14 b/11/16 c/1/10 d/8/9

e/12/15 f /3/4 g/2/7 h/5/6

Figure: Result of line 1 of Scc(G). Tree edges are red. Grey background forms
the boundary of SCCs.

80 / 253

SCC – Example

a/13/14 b/11/16 c/1/10 d/8/9

e/12/15 f /3/4 g/2/7 h/5/6

Figure: Graph GT and result of line 3 of Scc(G). b, c, g and h – roots in DFS
forest. Each tree ≈ one SCC.

81 / 253

I The component graph of G = (V, E) is graph Gscc = (Vscc, Escc)
defined as follows:
I Let C1, C2, . . . , Ck be SCCs of G.
I Vscc = {v1, v2, . . . , vk} ⊆ V, Vscc ∩ Ci 6= ∅, i = 1, 2, . . . , k.
I (vi, vj) ∈ Escc, if there exist x ∈ Ci and y ∈ Cj such that (x, y) ∈ E.
I Informally: By contracting all edges incident to the vertices of the

same SCCs, we get GSCC.

abe

fg

cd

h

82 / 253

Properties of Component Graph

Lemma 12.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let u, v ∈ C,
u′, v′ ∈ C′ and u u′ in G. Then, it DOES NOT hold that v′ v.

Proof.
If v′ v, then u u′ v′ and v′ v u; that is, u and v′ are
mutually reachable – contradiction.

I In what follows, consider only times d[u] and f [u] computed by the
first call of DFS procedure.

I If necessary, the values from the second call of DFS are denotes as
d3[u] and f3[u].

83 / 253

Properties of Component Graph

Lemma 12.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let u, v ∈ C,
u′, v′ ∈ C′ and u u′ in G. Then, it DOES NOT hold that v′ v.

Proof.
If v′ v, then u u′ v′ and v′ v u; that is, u and v′ are
mutually reachable – contradiction.

I In what follows, consider only times d[u] and f [u] computed by the
first call of DFS procedure.

I If necessary, the values from the second call of DFS are denotes as
d3[u] and f3[u].

83 / 253

Properties of Component Graph

Lemma 12.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let u, v ∈ C,
u′, v′ ∈ C′ and u u′ in G. Then, it DOES NOT hold that v′ v.

Proof.
If v′ v, then u u′ v′ and v′ v u; that is, u and v′ are
mutually reachable – contradiction.

I In what follows, consider only times d[u] and f [u] computed by the
first call of DFS procedure.

I If necessary, the values from the second call of DFS are denotes as
d3[u] and f3[u].

83 / 253

I Let U ⊆ V. Then, d(U) = minu∈U{d[u]} and
f (U) = maxu∈U{f [u]}.

Lemma 13.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ E,
u ∈ C, v ∈ C′. Then, f (C) > f (C′).

Proof
I 1) d(C) < d(C′) – let x be the first discovered vertex in C. In time

d[x], all vertices from C∪ C′ are WHITE. For w ∈ C′ there exists a
WHITE path x u→ v w. By WHITE path theorem, all vertices
from C∪ C′ are descendants of x in its DFS tree. Then, collorary
from Parenthesis theorem says that f [x] = f (C) > f (C′).

I 2) d(C) > d(C′) – let y be the first discovered in C′. In time d[y], all
vertices from C′ are WHITE and there exists a WHITE path from y
to every vertex of C′. By WHITE path theorem and corollary of
Parenthesis theorem, we have f [y] = f (C′). In time d[y], all vertices
from C are WHITE. From the previous lemma, there is no path from
C′ to C. Therefore, vertices from C are WHITE in time f [y] too.
That is, f [w] > f [y], w ∈ C, which gives us f (C) > f (C′).

84 / 253

I Let U ⊆ V. Then, d(U) = minu∈U{d[u]} and
f (U) = maxu∈U{f [u]}.

Lemma 13.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ E,
u ∈ C, v ∈ C′. Then, f (C) > f (C′).

Proof
I 1) d(C) < d(C′) – let x be the first discovered vertex in C. In time

d[x], all vertices from C∪ C′ are WHITE. For w ∈ C′ there exists a
WHITE path x u→ v w. By WHITE path theorem, all vertices
from C∪ C′ are descendants of x in its DFS tree. Then, collorary
from Parenthesis theorem says that f [x] = f (C) > f (C′).

I 2) d(C) > d(C′) – let y be the first discovered in C′. In time d[y], all
vertices from C′ are WHITE and there exists a WHITE path from y
to every vertex of C′. By WHITE path theorem and corollary of
Parenthesis theorem, we have f [y] = f (C′). In time d[y], all vertices
from C are WHITE. From the previous lemma, there is no path from
C′ to C. Therefore, vertices from C are WHITE in time f [y] too.
That is, f [w] > f [y], w ∈ C, which gives us f (C) > f (C′).

84 / 253

I Let U ⊆ V. Then, d(U) = minu∈U{d[u]} and
f (U) = maxu∈U{f [u]}.

Lemma 13.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ E,
u ∈ C, v ∈ C′. Then, f (C) > f (C′).

Proof
I 1) d(C) < d(C′) – let x be the first discovered vertex in C. In time

d[x], all vertices from C∪ C′ are WHITE. For w ∈ C′ there exists a
WHITE path x u→ v w. By WHITE path theorem, all vertices
from C∪ C′ are descendants of x in its DFS tree. Then, collorary
from Parenthesis theorem says that f [x] = f (C) > f (C′).

I 2) d(C) > d(C′) – let y be the first discovered in C′. In time d[y], all
vertices from C′ are WHITE and there exists a WHITE path from y
to every vertex of C′. By WHITE path theorem and corollary of
Parenthesis theorem, we have f [y] = f (C′). In time d[y], all vertices
from C are WHITE. From the previous lemma, there is no path from
C′ to C. Therefore, vertices from C are WHITE in time f [y] too.
That is, f [w] > f [y], w ∈ C, which gives us f (C) > f (C′).

84 / 253

I Let U ⊆ V. Then, d(U) = minu∈U{d[u]} and
f (U) = maxu∈U{f [u]}.

Lemma 13.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ E,
u ∈ C, v ∈ C′. Then, f (C) > f (C′).

Proof
I 1) d(C) < d(C′) – let x be the first discovered vertex in C. In time

d[x], all vertices from C∪ C′ are WHITE. For w ∈ C′ there exists a
WHITE path x u→ v w. By WHITE path theorem, all vertices
from C∪ C′ are descendants of x in its DFS tree. Then, collorary
from Parenthesis theorem says that f [x] = f (C) > f (C′).

I 2) d(C) > d(C′) – let y be the first discovered in C′. In time d[y], all
vertices from C′ are WHITE and there exists a WHITE path from y
to every vertex of C′. By WHITE path theorem and corollary of
Parenthesis theorem, we have f [y] = f (C′).

In time d[y], all vertices
from C are WHITE. From the previous lemma, there is no path from
C′ to C. Therefore, vertices from C are WHITE in time f [y] too.
That is, f [w] > f [y], w ∈ C, which gives us f (C) > f (C′).

84 / 253

I Let U ⊆ V. Then, d(U) = minu∈U{d[u]} and
f (U) = maxu∈U{f [u]}.

Lemma 13.
Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ E,
u ∈ C, v ∈ C′. Then, f (C) > f (C′).

Proof
I 1) d(C) < d(C′) – let x be the first discovered vertex in C. In time

d[x], all vertices from C∪ C′ are WHITE. For w ∈ C′ there exists a
WHITE path x u→ v w. By WHITE path theorem, all vertices
from C∪ C′ are descendants of x in its DFS tree. Then, collorary
from Parenthesis theorem says that f [x] = f (C) > f (C′).

I 2) d(C) > d(C′) – let y be the first discovered in C′. In time d[y], all
vertices from C′ are WHITE and there exists a WHITE path from y
to every vertex of C′. By WHITE path theorem and corollary of
Parenthesis theorem, we have f [y] = f (C′). In time d[y], all vertices
from C are WHITE. From the previous lemma, there is no path from
C′ to C. Therefore, vertices from C are WHITE in time f [y] too.
That is, f [w] > f [y], w ∈ C, which gives us f (C) > f (C′).

84 / 253

Corollary 14.

Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ ET,
u ∈ C, v ∈ C′. Then, f (C) < f (C′).

Proof.
(u, v) ∈ ET implies that (v, u) ∈ E. Since SCCs of G and SCCs of GT

coincide, the previous lemma implies f (C) < f (C′).

Closing times of the second DFS

Observe that f3(C) > f3(C′) so (u, v) ∈ ET is a cross edge according to
the classification from the second DFS.

85 / 253

Corollary 14.

Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ ET,
u ∈ C, v ∈ C′. Then, f (C) < f (C′).

Proof.
(u, v) ∈ ET implies that (v, u) ∈ E. Since SCCs of G and SCCs of GT

coincide, the previous lemma implies f (C) < f (C′).

Closing times of the second DFS

Observe that f3(C) > f3(C′) so (u, v) ∈ ET is a cross edge according to
the classification from the second DFS.

85 / 253

Corollary 14.

Let C, C′ be two different SCCs of a digraph G = (V, E). Let (u, v) ∈ ET,
u ∈ C, v ∈ C′. Then, f (C) < f (C′).

Proof.
(u, v) ∈ ET implies that (v, u) ∈ E. Since SCCs of G and SCCs of GT

coincide, the previous lemma implies f (C) < f (C′).

Closing times of the second DFS

Observe that f3(C) > f3(C′) so (u, v) ∈ ET is a cross edge according to
the classification from the second DFS.

85 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof

I By induction on the number of DFS trees found at line 3. IH: First k
trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Theorem 15.
Scc(G) procedure is correct.

Proof
I By induction on the number of DFS trees found at line 3. IH: First k

trees found by line 3 of Scc(G) are SCCs. IB: Trivial for k = 0.

I IS: Assume (k + 1)-th found tree. Let u be its root and let u be in a
SCC C.

I f [u] = f (C) > f (C′) for any SCC C′ (different from C) that is not
visited yet.

I By IH, in time d3[u] all vertices in C are WHITE. By White Path
Theorem, the rest of vertices from C are descendants of u in a DFS
tree.

I By IH and the previous corollary, every edge of GT leads from C to
some already visited SCC.

I So no vertex from another SCC (different from C) is descendant of u
during DFS of GT. Therefore, the vertices of the tree form an SCC.

86 / 253

Exercises

1. How can the number of strongly connected components of a graph
change if a new edge is added?

2. Give an O(n + m)-time algorithm to compute the component graph
of digraph G = (V, E). Make sure that there is at most one edge
between two vertices in the resulting graph (E is not a multiset).

87 / 253

Minimum Spanning Trees

88 / 253

Minimum Spanning Tree (MST)

I The first algorithm by mathematician from Brno, O. Bor̊uvka, 1926
(in Czech).

I Let G = (V, E) be a connected undirected graph with weight function

w : E→ R .

I Goal: Find a subset of edges T ⊆ E such that subgraph (V, T) is
connected, acyclic and

w(T) = ∑
(u,v)∈T

w(u, v)

is minimal.

89 / 253

Minimum Spanning Tree – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

90 / 253

Generic Algorithm

GENERIC-MST(G, w)
1 A← ∅
2 while A does not form a spanning tree
3 do find an edge (u, v) ∈ E that is safe for A
4 A← A ∪ {(u, v)}
5 return A

I Loop invariant: Prior to each iteration, A is a subset of some MST.

I Edge (u, v) ∈ E is safe edge for A, since A∪ {(u, v)} maintains the
invariant.

I Note: Greedy algorithm – making choice that is the best at the
moment.

91 / 253

Definitions

I A cut of G = (V, E) is a pair (S, V− S) of V, S ⊆ V.

I An edge (u, v) ∈ E crosses the cut (S, V− S) if one of endpoints is in
S and the other in V− S.

I A cut respects a set of edges A if no edge from A crosses the cut.

I An edge is a light edge crossing a cut if its weight is the minimum of
any edge crossing the cut.

92 / 253

Definitions

I A cut of G = (V, E) is a pair (S, V− S) of V, S ⊆ V.

I An edge (u, v) ∈ E crosses the cut (S, V− S) if one of endpoints is in
S and the other in V− S.

I A cut respects a set of edges A if no edge from A crosses the cut.

I An edge is a light edge crossing a cut if its weight is the minimum of
any edge crossing the cut.

92 / 253

Definitions

I A cut of G = (V, E) is a pair (S, V− S) of V, S ⊆ V.

I An edge (u, v) ∈ E crosses the cut (S, V− S) if one of endpoints is in
S and the other in V− S.

I A cut respects a set of edges A if no edge from A crosses the cut.

I An edge is a light edge crossing a cut if its weight is the minimum of
any edge crossing the cut.

92 / 253

Definitions

I A cut of G = (V, E) is a pair (S, V− S) of V, S ⊆ V.

I An edge (u, v) ∈ E crosses the cut (S, V− S) if one of endpoints is in
S and the other in V− S.

I A cut respects a set of edges A if no edge from A crosses the cut.

I An edge is a light edge crossing a cut if its weight is the minimum of
any edge crossing the cut.

92 / 253

Theorem 16.
I Let G = (V, E) be a connected, undirected graph with real-valued

weight function w.
I Let A ⊆ E is included in some MST for G.
I Let (S, V− S) be any cut of G that respects A.
I Let (u, v) be a light edge crossing (S, V− S).

Then, edge (u, v) is safe for A.

Proof

I Let T be a MST for G, A ⊆ T, (u, v) /∈ T.

I u v is a path in T, and by adding (u, v) we create a cycle. E.g. let
u ∈ S and v ∈ V− S.

I Let (x, y) lies on u v in T crossing (S, V− S). Since, the cut
respects A, (x, y) /∈ A.

I T′ = (T− {(x, y)})∪ {(u, v)} is a spanning tree of G. Is T′ minimal?

93 / 253

Theorem 16.
I Let G = (V, E) be a connected, undirected graph with real-valued

weight function w.
I Let A ⊆ E is included in some MST for G.
I Let (S, V− S) be any cut of G that respects A.
I Let (u, v) be a light edge crossing (S, V− S).

Then, edge (u, v) is safe for A.

Proof
I Let T be a MST for G, A ⊆ T, (u, v) /∈ T.

I u v is a path in T, and by adding (u, v) we create a cycle. E.g. let
u ∈ S and v ∈ V− S.

I Let (x, y) lies on u v in T crossing (S, V− S). Since, the cut
respects A, (x, y) /∈ A.

I T′ = (T− {(x, y)})∪ {(u, v)} is a spanning tree of G. Is T′ minimal?

93 / 253

Theorem 16.
I Let G = (V, E) be a connected, undirected graph with real-valued

weight function w.
I Let A ⊆ E is included in some MST for G.
I Let (S, V− S) be any cut of G that respects A.
I Let (u, v) be a light edge crossing (S, V− S).

Then, edge (u, v) is safe for A.

Proof
I Let T be a MST for G, A ⊆ T, (u, v) /∈ T.

I u v is a path in T, and by adding (u, v) we create a cycle. E.g. let
u ∈ S and v ∈ V− S.

I Let (x, y) lies on u v in T crossing (S, V− S). Since, the cut
respects A, (x, y) /∈ A.

I T′ = (T− {(x, y)})∪ {(u, v)} is a spanning tree of G. Is T′ minimal?

93 / 253

Theorem 16.
I Let G = (V, E) be a connected, undirected graph with real-valued

weight function w.
I Let A ⊆ E is included in some MST for G.
I Let (S, V− S) be any cut of G that respects A.
I Let (u, v) be a light edge crossing (S, V− S).

Then, edge (u, v) is safe for A.

Proof
I Let T be a MST for G, A ⊆ T, (u, v) /∈ T.

I u v is a path in T, and by adding (u, v) we create a cycle. E.g. let
u ∈ S and v ∈ V− S.

I Let (x, y) lies on u v in T crossing (S, V− S). Since, the cut
respects A, (x, y) /∈ A.

I T′ = (T− {(x, y)})∪ {(u, v)} is a spanning tree of G. Is T′ minimal?

93 / 253

Theorem 16.
I Let G = (V, E) be a connected, undirected graph with real-valued

weight function w.
I Let A ⊆ E is included in some MST for G.
I Let (S, V− S) be any cut of G that respects A.
I Let (u, v) be a light edge crossing (S, V− S).

Then, edge (u, v) is safe for A.

Proof
I Let T be a MST for G, A ⊆ T, (u, v) /∈ T.

I u v is a path in T, and by adding (u, v) we create a cycle. E.g. let
u ∈ S and v ∈ V− S.

I Let (x, y) lies on u v in T crossing (S, V− S). Since, the cut
respects A, (x, y) /∈ A.

I T′ = (T− {(x, y)})∪ {(u, v)} is a spanning tree of G. Is T′ minimal?

93 / 253

Proof.
I (u, v) is light edge crossing (S, V− S) and (x, y) crossing the cut as

well, so w(u, v) ≤ w(x, y).

I Hence, w(T′) = w(T)−w(x, y) + w(u, v) ≤ w(T).
I T is a MST, therefore w(T) ≤ w(T′).

I Since A ⊆ T and (x, y) /∈ A, A ⊆ T′.
I Finally, A∪ {(u, v)} ⊆ T′. Since T′ is MST as well, (u, v) is safe for

A.

94 / 253

Proof.
I (u, v) is light edge crossing (S, V− S) and (x, y) crossing the cut as

well, so w(u, v) ≤ w(x, y).
I Hence, w(T′) = w(T)−w(x, y) + w(u, v) ≤ w(T).

I T is a MST, therefore w(T) ≤ w(T′).

I Since A ⊆ T and (x, y) /∈ A, A ⊆ T′.
I Finally, A∪ {(u, v)} ⊆ T′. Since T′ is MST as well, (u, v) is safe for

A.

94 / 253

Proof.
I (u, v) is light edge crossing (S, V− S) and (x, y) crossing the cut as

well, so w(u, v) ≤ w(x, y).
I Hence, w(T′) = w(T)−w(x, y) + w(u, v) ≤ w(T).
I T is a MST, therefore w(T) ≤ w(T′).

I Since A ⊆ T and (x, y) /∈ A, A ⊆ T′.
I Finally, A∪ {(u, v)} ⊆ T′. Since T′ is MST as well, (u, v) is safe for

A.

94 / 253

Proof.
I (u, v) is light edge crossing (S, V− S) and (x, y) crossing the cut as

well, so w(u, v) ≤ w(x, y).
I Hence, w(T′) = w(T)−w(x, y) + w(u, v) ≤ w(T).
I T is a MST, therefore w(T) ≤ w(T′).

I Since A ⊆ T and (x, y) /∈ A, A ⊆ T′.

I Finally, A∪ {(u, v)} ⊆ T′. Since T′ is MST as well, (u, v) is safe for
A.

94 / 253

Proof.
I (u, v) is light edge crossing (S, V− S) and (x, y) crossing the cut as

well, so w(u, v) ≤ w(x, y).
I Hence, w(T′) = w(T)−w(x, y) + w(u, v) ≤ w(T).
I T is a MST, therefore w(T) ≤ w(T′).

I Since A ⊆ T and (x, y) /∈ A, A ⊆ T′.
I Finally, A∪ {(u, v)} ⊆ T′. Since T′ is MST as well, (u, v) is safe for

A.

94 / 253

Exercises

1. Give a simple example of a connected graph G = (V, E) such that the
set of edges {(u, v) : there exists a cut (S, V− S) such that (u, v) is
a light edge crossing (S, V− S)} does not form a MST for G.

2. Show that a graph has a unique MST if, for every cut of the graph,
there is a unique light edge crossing the cut. Show that the converse
is not true by giving a counterexample.

95 / 253

Kruskal and Prim (Jarńık) Algorithms – Principle

I Based on the generic greedy algorithm.

I Difference: How to pickup safe edge (line 3 of generic algorithm)?

I Kruskal: Set A forms a forest. Safe edge for A is an edge with the
smallest weight connecting two different connected components.

I Prim (Jarńık): Set A is a tree. Safe edge for A is an edge with the
smallest weight connecting tree A with a (yet) non-tree vertex.

96 / 253

Kruskal and Prim (Jarńık) Algorithms – Principle

I Based on the generic greedy algorithm.

I Difference: How to pickup safe edge (line 3 of generic algorithm)?

I Kruskal: Set A forms a forest. Safe edge for A is an edge with the
smallest weight connecting two different connected components.

I Prim (Jarńık): Set A is a tree. Safe edge for A is an edge with the
smallest weight connecting tree A with a (yet) non-tree vertex.

96 / 253

Kruskal and Prim (Jarńık) Algorithms – Principle

I Based on the generic greedy algorithm.

I Difference: How to pickup safe edge (line 3 of generic algorithm)?

I Kruskal: Set A forms a forest. Safe edge for A is an edge with the
smallest weight connecting two different connected components.

I Prim (Jarńık): Set A is a tree. Safe edge for A is an edge with the
smallest weight connecting tree A with a (yet) non-tree vertex.

96 / 253

Kruskal Algorithm

97 / 253

Disjoint Dynamic Sets
I Set of non-empty sets S = {S1, S2, . . . , Sk}
I Each set Si identified by a representative (some member of Si)
I Use: to represent a vertex membership to a tree in the given forest

(Si ⊆ V)

Operations

I Make-Set(v) creates a disjoint set for v.

I Find-Set(v) returns the representative (pointer) from set containing
v.

I Union(u, v) unites two sets that contain u and v.

Implementation (Data structure)

I Linked-list representation (with weight-union heuristic;
O(m + n log n))

I Rooted trees (with heuristics “union by rank” and “path
compression”; O(mα(n)), where α grows very slowly (α(n) ≤ 4))

98 / 253

Disjoint Dynamic Sets
I Set of non-empty sets S = {S1, S2, . . . , Sk}
I Each set Si identified by a representative (some member of Si)
I Use: to represent a vertex membership to a tree in the given forest

(Si ⊆ V)

Operations

I Make-Set(v) creates a disjoint set for v.

I Find-Set(v) returns the representative (pointer) from set containing
v.

I Union(u, v) unites two sets that contain u and v.

Implementation (Data structure)

I Linked-list representation (with weight-union heuristic;
O(m + n log n))

I Rooted trees (with heuristics “union by rank” and “path
compression”; O(mα(n)), where α grows very slowly (α(n) ≤ 4))

98 / 253

Disjoint Dynamic Sets
I Set of non-empty sets S = {S1, S2, . . . , Sk}
I Each set Si identified by a representative (some member of Si)
I Use: to represent a vertex membership to a tree in the given forest

(Si ⊆ V)

Operations

I Make-Set(v) creates a disjoint set for v.

I Find-Set(v) returns the representative (pointer) from set containing
v.

I Union(u, v) unites two sets that contain u and v.

Implementation (Data structure)

I Linked-list representation (with weight-union heuristic;
O(m + n log n))

I Rooted trees (with heuristics “union by rank” and “path
compression”; O(mα(n)), where α grows very slowly (α(n) ≤ 4))

98 / 253

Kruskal Algorithm

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Make-Set(v) creates a disjoint set for v.

I Find-Set(v) returns a representative vertex from set containing v.

I Union(u, v) combines two disjoint sets containing u and v.

99 / 253

Kruskal Algorithm – Time Complexity

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Line 1: O(1), Line 4: O(m log m). Lines 2-3: n-times Make-Set.
Lines 5-8: O(m)-times Find-Set and Union –
implementation-dependent running time (lines 2-3 and 5-8):

I By a linked-lists with heuristic: O(m + n log n).
I By a rooted trees with 2 heuristics: O((m + n)α(n)).

I G is connected, so m ≥ n− 1. Then, sets operations take O(mα(n)).
Since α(n) = O(log n) = O(log m), sorting outweighs by
O(m log m).

I Notice that m < n2, so log m = O(log n). Therefore, O(m log n).

100 / 253

Kruskal Algorithm – Time Complexity

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Line 1: O(1), Line 4: O(m log m). Lines 2-3: n-times Make-Set.
Lines 5-8: O(m)-times Find-Set and Union –
implementation-dependent running time (lines 2-3 and 5-8):
I By a linked-lists with heuristic: O(m + n log n).

I By a rooted trees with 2 heuristics: O((m + n)α(n)).
I G is connected, so m ≥ n− 1. Then, sets operations take O(mα(n)).

Since α(n) = O(log n) = O(log m), sorting outweighs by
O(m log m).

I Notice that m < n2, so log m = O(log n). Therefore, O(m log n).

100 / 253

Kruskal Algorithm – Time Complexity

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Line 1: O(1), Line 4: O(m log m). Lines 2-3: n-times Make-Set.
Lines 5-8: O(m)-times Find-Set and Union –
implementation-dependent running time (lines 2-3 and 5-8):
I By a linked-lists with heuristic: O(m + n log n).
I By a rooted trees with 2 heuristics: O((m + n)α(n)).

I G is connected, so m ≥ n− 1. Then, sets operations take O(mα(n)).
Since α(n) = O(log n) = O(log m), sorting outweighs by
O(m log m).

I Notice that m < n2, so log m = O(log n). Therefore, O(m log n).

100 / 253

Kruskal Algorithm – Time Complexity

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Line 1: O(1), Line 4: O(m log m). Lines 2-3: n-times Make-Set.
Lines 5-8: O(m)-times Find-Set and Union –
implementation-dependent running time (lines 2-3 and 5-8):
I By a linked-lists with heuristic: O(m + n log n).
I By a rooted trees with 2 heuristics: O((m + n)α(n)).

I G is connected, so m ≥ n− 1. Then, sets operations take O(mα(n)).
Since α(n) = O(log n) = O(log m), sorting outweighs by
O(m log m).

I Notice that m < n2, so log m = O(log n). Therefore, O(m log n).

100 / 253

Kruskal Algorithm – Time Complexity

KRUSKAL-MST(G, w)
1 A← ∅
2 for each vertex v ∈ V
3 do MAKE-SET(v)
4 sort the edges of E into nondescreasing order by weight w
5 for each edge (u, v) ∈ E, taken in the order from step 4
6 do if FIND-SET(u) 6= FIND-SET(v)
7 then A← A ∪ {(u, v)}
8 UNION(u, v)
9 return A

I Line 1: O(1), Line 4: O(m log m). Lines 2-3: n-times Make-Set.
Lines 5-8: O(m)-times Find-Set and Union –
implementation-dependent running time (lines 2-3 and 5-8):
I By a linked-lists with heuristic: O(m + n log n).
I By a rooted trees with 2 heuristics: O((m + n)α(n)).

I G is connected, so m ≥ n− 1. Then, sets operations take O(mα(n)).
Since α(n) = O(log n) = O(log m), sorting outweighs by
O(m log m).

I Notice that m < n2, so log m = O(log n). Therefore, O(m log n).
100 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Kruskal Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

101 / 253

Prim Algorithm

102 / 253

Min-Priority Queue
I Data structure for maintaining a set of elements, each with an

associated key (priority)

I Duality with max-priority queue

I Use: to represent an dynamic set of vertices with given priorities

Operations

I Insert(Q, v) inserts vertex v into queue Q (Q = Q∪ {v}).

I Extract-Min(Q) removes and returns the element of Q with the
smallest key.

I Decrease-Key(Q, v, k) decreases key of vertex v to new value k.

Implementation (Data structure)

I Binary heap in array A[1..n] with A[Parent(i)] ≤ A[i] (each
operation: O(log n))

I Fibonacci heap (Decrease-Key only O(1))

103 / 253

Min-Priority Queue
I Data structure for maintaining a set of elements, each with an

associated key (priority)

I Duality with max-priority queue

I Use: to represent an dynamic set of vertices with given priorities

Operations

I Insert(Q, v) inserts vertex v into queue Q (Q = Q∪ {v}).

I Extract-Min(Q) removes and returns the element of Q with the
smallest key.

I Decrease-Key(Q, v, k) decreases key of vertex v to new value k.

Implementation (Data structure)

I Binary heap in array A[1..n] with A[Parent(i)] ≤ A[i] (each
operation: O(log n))

I Fibonacci heap (Decrease-Key only O(1))

103 / 253

Min-Priority Queue
I Data structure for maintaining a set of elements, each with an

associated key (priority)

I Duality with max-priority queue

I Use: to represent an dynamic set of vertices with given priorities

Operations

I Insert(Q, v) inserts vertex v into queue Q (Q = Q∪ {v}).

I Extract-Min(Q) removes and returns the element of Q with the
smallest key.

I Decrease-Key(Q, v, k) decreases key of vertex v to new value k.

Implementation (Data structure)

I Binary heap in array A[1..n] with A[Parent(i)] ≤ A[i] (each
operation: O(log n))

I Fibonacci heap (Decrease-Key only O(1))

103 / 253

Prim algorithm

PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

Invariant:
I A = {(v, π[v]) : v ∈ V− {r} −Q}.
I If v belongs to a MST, then v ∈ V−Q.
I For all v ∈ Q, if π[v] 6= nil, then key[v] < ∞ and key[v] is the weight

of light edge (v, π[v]) that connects v to some vertex in V−Q.

104 / 253

Prim algorithm – Time Complexity (Binary Heap)
PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

I Lines 1-5: O(n) (no heapify necessary).

I while iterates n-times and each Extract-Min takes O(log n), so
the total complexity of all calls of Extract-Min is O(n log n).

I for iterates O(m)-times (in total), since the sum of length of all
adjacency lists is 2m.

I Line 9 can be done in O(1). Why?

I Line 11 takes O(log n).
I In total, O(n log n + m log n) = O(m log n).

105 / 253

Prim algorithm – Time Complexity (Binary Heap)
PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

I Lines 1-5: O(n) (no heapify necessary).

I while iterates n-times and each Extract-Min takes O(log n), so
the total complexity of all calls of Extract-Min is O(n log n).

I for iterates O(m)-times (in total), since the sum of length of all
adjacency lists is 2m.

I Line 9 can be done in O(1). Why?

I Line 11 takes O(log n).
I In total, O(n log n + m log n) = O(m log n).

105 / 253

Prim algorithm – Time Complexity (Binary Heap)
PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

I Lines 1-5: O(n) (no heapify necessary).

I while iterates n-times and each Extract-Min takes O(log n), so
the total complexity of all calls of Extract-Min is O(n log n).

I for iterates O(m)-times (in total), since the sum of length of all
adjacency lists is 2m.

I Line 9 can be done in O(1). Why?

I Line 11 takes O(log n).
I In total, O(n log n + m log n) = O(m log n).

105 / 253

Prim algorithm – Time Complexity (Binary Heap)
PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

I Lines 1-5: O(n) (no heapify necessary).

I while iterates n-times and each Extract-Min takes O(log n), so
the total complexity of all calls of Extract-Min is O(n log n).

I for iterates O(m)-times (in total), since the sum of length of all
adjacency lists is 2m.

I Line 9 can be done in O(1). Why?

I Line 11 takes O(log n).

I In total, O(n log n + m log n) = O(m log n).

105 / 253

Prim algorithm – Time Complexity (Binary Heap)
PRIM-MST(G, w, r)
1 for each vertex u ∈ V
2 do key[u]← ∞
3 π[u]← NIL
4 key[r]← 0
5 Q← V
6 while Q 6= ∅
7 do u← EXTRACT-MIN(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and w(u, v) < key[v]
10 then π[v]← u
11 DECREASE-KEY(Q, v, w(u, v))

I Lines 1-5: O(n) (no heapify necessary).

I while iterates n-times and each Extract-Min takes O(log n), so
the total complexity of all calls of Extract-Min is O(n log n).

I for iterates O(m)-times (in total), since the sum of length of all
adjacency lists is 2m.

I Line 9 can be done in O(1). Why?

I Line 11 takes O(log n).
I In total, O(n log n + m log n) = O(m log n).

105 / 253

Prim Algorithm – Time Complexity

Implementation of Q by Fibonacci heap:

I Extract-Min operation takes O(log n) amortized time.

I Decrease-Key operation takes only O(1) amortized time.

I Together, we have O(m + n log n).

106 / 253

Prim Algorithm – Time Complexity

Implementation of Q by Fibonacci heap:

I Extract-Min operation takes O(log n) amortized time.

I Decrease-Key operation takes only O(1) amortized time.

I Together, we have O(m + n log n).

106 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

f

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

fg

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

fgh

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

fgh

d

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Prim Algorithm – Example

a

b c d

e

fgh

i

4

8 7

9

10
8

11

2

14

1 2

4

7
6

a

b c

i

fgh

d

e

Figure: Gray edges crosses the cut (V−Q, Q).

107 / 253

Exercises

1. Show that for each MST T of G, there is a way to sort the edges of G
in Kruskal’s algorithm so that it returns T.

2. Suppose that we represent the graph G = (V, E) as an adjacency
matrix. Give a simple implementation of Prim’s algorithm for this
case that runs in O(n2) time.

108 / 253

Single-Source Shortest Paths

109 / 253

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

110 / 253

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

110 / 253

Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I The weight of path p = 〈v0, v1, . . . , vk〉 is

w(p) =
k

∑
i=1

w(vi−1, vi)

I The shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p from u to v with
w(p) = δ(u, v).

110 / 253

Shortest Paths – Variants

I Single-source shortest-paths problem

I Single-destination shortest-paths problem – by reversing the direction
of each edge

I Single-pair shortest-path problem – is there faster solution?

I All-pairs shortest-paths problem – single-source from each vertex or
faster?

111 / 253

Subpaths of Shortest Paths

Lemma 17.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

112 / 253

Subpaths of Shortest Paths

Lemma 17.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

112 / 253

Subpaths of Shortest Paths

Lemma 17.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

112 / 253

Subpaths of Shortest Paths

Lemma 17.
Let G = (V, E) be directed graph with weight function w : E→ R. Let
p = 〈v1, v2, . . . , vk〉 be a shortest path from v1 to vk.
For any 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from
vi to vj.
Then, pij is a shortest path from vi to vj.

Proof.

I p is v1
p1i vi

pij
 vj

pjk
 vk, where w(p) = w(p1i) + w(pij) + w(pjk).

I Assume that there is p′ij from vi to vj with w(p′ij) < w(pij).

I Then, v1
p1i vi

p′ij
 vj

pjk
 vk, where w(p1i) + w(p′ij) + w(pjk) < w(p).

Contradiction.

112 / 253

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

113 / 253

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

113 / 253

Negative-weight edges

I If G contains no negative-weight cycles reachable from the source s,
then for all v ∈ V, δ(s, v) remains well defined (even if negative).

I If G contains a negative-weight cycle reachable from s, δ is not well
defined – repeating traverse of the negative-weight cycle.

I If there is negative-weight cycle on some path from s to v, we define
δ(s, v) = −∞.

I Note: There is always the shortest simple path, but not path. The
algorithms work with paths ⇒ problem.

113 / 253

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I Use procedure Print-Path(G, s, v) to print the path from s to v
stored in π

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π

I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

114 / 253

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I Use procedure Print-Path(G, s, v) to print the path from s to v
stored in π

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π
I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

114 / 253

Representing Shortest Paths

I Let G = (V, E) be a graph.

I π[v] is set to a predecessor to v; that is, a vertex or nil.

I Use procedure Print-Path(G, s, v) to print the path from s to v
stored in π

I Predecessor subgraph Gπ = (Vπ, Eπ) induced by π
I Vπ = {v ∈ V : π[v] 6= nil} ∪ {s}
I Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}

I After the algorithm is finished, Gπ is a shortest-paths tree rooted at s
containing shortest paths from s to all other reachable vertices.

114 / 253

Shortest paths are not necessarily unique – Example

s/0

t/3 x/9

z/11y/5

3

5

6

6

3

4
2 271

Figure: Shortest paths.

115 / 253

Shortest paths are not necessarily unique – Example

s/0

t/3 x/9

z/11y/5

3

5

6

6

3

4
2 271

Figure: Shortest paths.

115 / 253

Relaxation

I d[v] – shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v ∈ V
2 do d[v]← ∞
3 π[v]← NIL
4 d[s]← 0

I Time complexity: Θ(n).

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v]← d[u] + w(u, v)
3 π[v]← u

116 / 253

Relaxation

I d[v] – shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v ∈ V
2 do d[v]← ∞
3 π[v]← NIL
4 d[s]← 0

I Time complexity: Θ(n).

RELAX(u, v, w)
1 if d[v] > d[u] + w(u, v)
2 then d[v]← d[u] + w(u, v)
3 π[v]← u

116 / 253

Bellman-Ford Algorithm

117 / 253

Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I If it returns False, G contains negative-weight cycles reachable from
s.

I If it returns True, π contains the shortest paths.

118 / 253

Bellman-Ford – Example

s/0

t/∞ x/∞

z/∞y/∞

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I If (u, v) ∈ E is highlighted, then π[v] = u.
I Edges are relaxed in the following order:

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).
119 / 253

Bellman-Ford – Example

s/0

t/6 x/∞

z/∞y/7

6

7

8 −4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I If (u, v) ∈ E is highlighted, then π[v] = u.
I Edges are relaxed in the following order:

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).
119 / 253

Bellman-Ford – Example

s/0

t/6 x/4

z/2y/7

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I If (u, v) ∈ E is highlighted, then π[v] = u.
I Edges are relaxed in the following order:

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).
119 / 253

Bellman-Ford – Example

s/0

t/2 x/4

z/2y/7

6

7

8
−4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I If (u, v) ∈ E is highlighted, then π[v] = u.
I Edges are relaxed in the following order:

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).
119 / 253

Bellman-Ford – Example

s/0

t/2 x/4

z/− 2y/7

6

7

8 −4

9

2

7

−2

−3

5

Figure: Computation by Bellman-Ford Algorithm.

I If (u, v) ∈ E is highlighted, then π[v] = u.
I Edges are relaxed in the following order:

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y).
119 / 253

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).

I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

120 / 253

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

120 / 253

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

120 / 253

Bellman-Ford Algorithm – Time Complexity

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i← 1 to n− 1
3 do for each edge (u, v) ∈ E
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

I Line 1 takes Θ(n).
I Lines 2-4 take (n− 1)-times Θ(m).

I Lines 5-7 take O(m).

I In total, Θ(mn).

120 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.

I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Lemma 18.
Let G = (V, E) be weighted digraf with source s and weight function
w : E→ R. Assume that G contains no negative cycle reachable from s.
Then after n− 1 iterations of for-cycle (lines 2-4), d[v] = δ(s, v) for all
v ∈ V reachable from s. Note: d[v] = ∞ implies s 6 v.

Proof.
I Let v ∈ V be reachable from s.

I Let p = 〈v0, v1, . . . , vk〉 be a shortest path from s to v; s = v0 and
v = vk.

I p contains at most n− 1 edges, so k ≤ n− 1.

I Each of n− 1 iterations on lines 2-4 relaxes all m edges.

I Amongst the relaxed edges in i-th iteration, there is edge (vi−1, vi)
and then d[vi] = δ(s, vi). (Prove by induction.)

I Therefore, after k-th iteration, d[vk] = δ(s, vk).

121 / 253

Bellman-Ford Algorithm – Correctness

Theorem 19 (Correctness I).

I If G contains no negative cycle reachable from s, the algorithm
returns True and d[v] = δ(s, v) for all v ∈ V.

Proof.

I Let G contains no negative cycle reachable from s.

I When the algorithms is finished, d[v] = δ(s, v) for all v ∈ V (Lemma
18)

I Moreover, d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v). So the
algorithm returns True.

122 / 253

Bellman-Ford Algorithm – Correctness

Theorem 19 (Correctness I).

I If G contains no negative cycle reachable from s, the algorithm
returns True and d[v] = δ(s, v) for all v ∈ V.

Proof.
I Let G contains no negative cycle reachable from s.

I When the algorithms is finished, d[v] = δ(s, v) for all v ∈ V (Lemma
18)

I Moreover, d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v). So the
algorithm returns True.

122 / 253

Bellman-Ford Algorithm – Correctness

Theorem 19 (Correctness I).

I If G contains no negative cycle reachable from s, the algorithm
returns True and d[v] = δ(s, v) for all v ∈ V.

Proof.
I Let G contains no negative cycle reachable from s.

I When the algorithms is finished, d[v] = δ(s, v) for all v ∈ V (Lemma
18)

I Moreover, d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v). So the
algorithm returns True.

122 / 253

Bellman-Ford Algorithm – Correctness

Theorem 19 (Correctness I).

I If G contains no negative cycle reachable from s, the algorithm
returns True and d[v] = δ(s, v) for all v ∈ V.

Proof.
I Let G contains no negative cycle reachable from s.

I When the algorithms is finished, d[v] = δ(s, v) for all v ∈ V (Lemma
18)

I Moreover, d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v). So the
algorithm returns True.

122 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.

I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable
from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Bellman-Ford Algorithm – Correctness

Theorem 20 (Correctness II).

I If G contains a negative-weight cycle reachable from s, the algorithm
returns False.

Proof.
I Let c = 〈v0, v1, . . . , vk〉, v0 = vk, be negative-weight cycle reachable

from s.

I Then, ∑k
i=1 w(vi−1, vi) < 0.

I By contradiction – alg. returns True, so
d[vi] ≤ d[vi−1] + w(vi−1, vi) for i = 1, 2, . . . , k.

I But then ∑k
i=1 d[vi] ≤ ∑k

i=1 d[vi−1] + ∑k
i=1 w(vi−1, vi).

I Since v0 = vk, we have ∑k
i=1 d[vi] = ∑k

i=1 d[vi−1].

I Because for i = 1, 2, . . . , k d[vi] < ∞, we have 0 ≤ ∑k
i=1 w(vi−1, vi).

Contradiction.

123 / 253

Single-Source Shortest Paths in
Directed Acyclic Graphs

124 / 253

Shortest Paths in Directed Acyclic Graphs

I For DAG, there is significantly faster method than Bellman-Ford.

DAG-SHORTEST-PATHS(G, w, s)
1 Topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G, s)
3 for each vertex u, taken in topologically sorted order
4 do for each vertex v ∈ Adj[u]
5 do RELAX(u, v, w)

I Time complexity: Θ(n + m).
I We get a topological order in Θ(n + m).
I Line 2 takes Θ(n).
I Lines 3-5 checks every edge exactly once; that is, the iteration is

executed m-times. Relax takes Θ(1).

125 / 253

Example

r/∞ s/0 t/∞ x/∞ y/∞ z/∞
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/∞ x/∞ y/∞ z/∞
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/2 x/6 y/∞ z/∞
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/2 x/6 y/6 z/4
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/2 x/6x/6 y/5 z/4
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/2 x/6 y/5y/5 z/3
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Example

r/∞ s/0 t/2 x/6 y/5 z/3z/3
5 2 7 −1 −2

6 1

3 4
2

126 / 253

Correctness

Theorem 21.
If a weighted, digraph G = (V, E) has source vertex s and no cycles, then
Dag-Shortest-Paths computes d[v] = δ(s, v) for all v ∈ V.

Proof.

I If v is not reachable from s, then d[v] = δ(s, v) = ∞.

I Suppose there is a shortest path p = 〈v0, v1, . . . , vk〉, where s = v0
and v = vk.

I Because we process the vertices in topological order, we relax edges
on p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk).

I That implies that d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k.

127 / 253

Correctness

Theorem 21.
If a weighted, digraph G = (V, E) has source vertex s and no cycles, then
Dag-Shortest-Paths computes d[v] = δ(s, v) for all v ∈ V.

Proof.
I If v is not reachable from s, then d[v] = δ(s, v) = ∞.

I Suppose there is a shortest path p = 〈v0, v1, . . . , vk〉, where s = v0
and v = vk.

I Because we process the vertices in topological order, we relax edges
on p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk).

I That implies that d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k.

127 / 253

Correctness

Theorem 21.
If a weighted, digraph G = (V, E) has source vertex s and no cycles, then
Dag-Shortest-Paths computes d[v] = δ(s, v) for all v ∈ V.

Proof.
I If v is not reachable from s, then d[v] = δ(s, v) = ∞.

I Suppose there is a shortest path p = 〈v0, v1, . . . , vk〉, where s = v0
and v = vk.

I Because we process the vertices in topological order, we relax edges
on p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk).

I That implies that d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k.

127 / 253

Correctness

Theorem 21.
If a weighted, digraph G = (V, E) has source vertex s and no cycles, then
Dag-Shortest-Paths computes d[v] = δ(s, v) for all v ∈ V.

Proof.
I If v is not reachable from s, then d[v] = δ(s, v) = ∞.

I Suppose there is a shortest path p = 〈v0, v1, . . . , vk〉, where s = v0
and v = vk.

I Because we process the vertices in topological order, we relax edges
on p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk).

I That implies that d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k.

127 / 253

Correctness

Theorem 21.
If a weighted, digraph G = (V, E) has source vertex s and no cycles, then
Dag-Shortest-Paths computes d[v] = δ(s, v) for all v ∈ V.

Proof.
I If v is not reachable from s, then d[v] = δ(s, v) = ∞.

I Suppose there is a shortest path p = 〈v0, v1, . . . , vk〉, where s = v0
and v = vk.

I Because we process the vertices in topological order, we relax edges
on p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk).

I That implies that d[vi] = δ(s, vi) at termination for i = 0, 1, . . . , k.

127 / 253

Dijkstra Algorithm

128 / 253

Dijkstra Algorithm

I Only for weighted, directed graphs without negative edges:

I w(u, v) ≥ 0 for each edge (u, v) ∈ E.

I Can we implement it with lower time complexity than Bellman-Ford
algorithm?

129 / 253

Dijkstra Algorithm

I Only for weighted, directed graphs without negative edges:

I w(u, v) ≥ 0 for each edge (u, v) ∈ E.

I Can we implement it with lower time complexity than Bellman-Ford
algorithm?

129 / 253

Dijkstra Algorithm

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S← ∅
3 Q← V
4 while Q 6= ∅
5 do u←EXTRACT-MIN(Q)
6 S← S ∪ {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)

I S is a set of finished vertices (their shortest distance from s is already
computed).

I Q is a min-priority queue; the vertex with the lowest d-value is at the
beginning of Q.

130 / 253

Dijkstra Algorithm – Example

s/0

t/∞ x/∞

z/∞y/∞

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Dijkstra Algorithm – Example

s/0

t/10 x/∞

z/∞y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Dijkstra Algorithm – Example

s/0

t/8 x/14

z/7y/5y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Dijkstra Algorithm – Example

s/0

t/8 x/13

z/7z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Dijkstra Algorithm – Example

s/0

t/8 x/9

z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Dijkstra Algorithm – Example

s/0

t/8 x/9

z/7y/5

10

5

1

9

2
7

23 46

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to
set S.

131 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.

I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for
all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u.

132 / 253

Correctness

Theorem 22.
Dijkstra algorithm on weighted digraph G = (V, E) without
negative-weight edges and with source s finishes with d[v] = δ(s, v) for all
v ∈ V.

Proof.
I Invariant: In the beginning of each while-iteration, d[v] = δ(s, v) for

all v ∈ S.

I It holds for S = ∅.

I Let u be first vertex such that d[u] 6= δ(s, u) in the moment of its
inclusion into S.

I Then, necessarily u 6= s, because s is included as the first into S and
d[s] = δ(s, s) = 0 holds in the moment of inclusion of s into S.

I Since u 6= s, S 6= ∅ right before inclusion of u.

I The assumption d[u] 6= δ(s, u) implies that s u – otherwise
d[u] = δ(s, u) = ∞.

I So there is a shortest path p from s to u. 132 / 253

Correctness

Part II of the Proof.
I There is a shortest path p from s to u.

I Right before inclusion of u into S, p connects vertex s ∈ S with vertex
u ∈ V− S.

I Split p as:

s
p1
 x→ y

p2
 u ,

where y is the first vertex on p that belongs to V− S and x is its
predecessor on p.

I By assumption, we have d[x] = δ(s, x) in the moment of inclusion of
x into S.

I Since edge (x, y) was already relaxed in that moment, we have
d[y] = δ(s, y) in the moment of inclusion of u into S. (Prove it!)

133 / 253

Correctness

Part II of the Proof.
I There is a shortest path p from s to u.

I Right before inclusion of u into S, p connects vertex s ∈ S with vertex
u ∈ V− S.

I Split p as:

s
p1
 x→ y

p2
 u ,

where y is the first vertex on p that belongs to V− S and x is its
predecessor on p.

I By assumption, we have d[x] = δ(s, x) in the moment of inclusion of
x into S.

I Since edge (x, y) was already relaxed in that moment, we have
d[y] = δ(s, y) in the moment of inclusion of u into S. (Prove it!)

133 / 253

Correctness

Part II of the Proof.
I There is a shortest path p from s to u.

I Right before inclusion of u into S, p connects vertex s ∈ S with vertex
u ∈ V− S.

I Split p as:

s
p1
 x→ y

p2
 u ,

where y is the first vertex on p that belongs to V− S and x is its
predecessor on p.

I By assumption, we have d[x] = δ(s, x) in the moment of inclusion of
x into S.

I Since edge (x, y) was already relaxed in that moment, we have
d[y] = δ(s, y) in the moment of inclusion of u into S. (Prove it!)

133 / 253

Correctness

Part II of the Proof.
I There is a shortest path p from s to u.

I Right before inclusion of u into S, p connects vertex s ∈ S with vertex
u ∈ V− S.

I Split p as:

s
p1
 x→ y

p2
 u ,

where y is the first vertex on p that belongs to V− S and x is its
predecessor on p.

I By assumption, we have d[x] = δ(s, x) in the moment of inclusion of
x into S.

I Since edge (x, y) was already relaxed in that moment, we have
d[y] = δ(s, y) in the moment of inclusion of u into S. (Prove it!)

133 / 253

Correctness

Part II of the Proof.
I There is a shortest path p from s to u.

I Right before inclusion of u into S, p connects vertex s ∈ S with vertex
u ∈ V− S.

I Split p as:

s
p1
 x→ y

p2
 u ,

where y is the first vertex on p that belongs to V− S and x is its
predecessor on p.

I By assumption, we have d[x] = δ(s, x) in the moment of inclusion of
x into S.

I Since edge (x, y) was already relaxed in that moment, we have
d[y] = δ(s, y) in the moment of inclusion of u into S. (Prove it!)

133 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].
I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].
I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].

I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it
holds that d[u] ≤ d[y].

I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].

I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].
I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].
I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Correctness

Part III of the Proof.
I s

p1
 x→ y

p2
 u, where y is the first vertex on p that belongs to

V− S and x is its predecessor on p.

I d[y] = δ(s, y) in the moment of inclusion of u into S.

I Since y precedes u on the shortest path from s to u and all weights
are non-negative, we have δ(s, y) ≤ δ(s, u).

I Therefore, d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].
I Since both vertices y, u ∈ V− S in the moment of dequeuing of u, it

holds that d[u] ≤ d[y].
I In total, d[u] = δ(s, u). Contradiction of the assumption.

I Q = ∅ when alg. finishes. Since Q = V− S (Do the reasoning!), we
have S = V. So d[v] = δ(s, v) for all v ∈ V.

I Done!. . . .

134 / 253

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

135 / 253

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

135 / 253

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

135 / 253

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

135 / 253

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

I Insert and Decrease-Key take O(1).
I Extract-Min takes O(n) for each vertex (line 5).

I Relax is repeated m-times (line 8).

I In total, O(n2 + m) = O(n2).

Min-Priority Queue Implemented by Heaps

I For sparse graphs, we get the time complexity O(m log n) using
binary heap.

I In general, using Fibonacci heap we get the time complexity
O(n log n + m).

135 / 253

Exercises

1. Modify the Bellman-Ford algorithm so that it sets d[v] to −∞ for all
vertices v for which there is a negative-weight cycle on some path
from the source s to v.

2. A critical path is a longest path through the DAG. Modify the
Dag-Shortest-Paths procedure to find a critical path in the given
DAG.

3. Give a simple example of a digraph with negative-weight edge(s) for
which Dijkstra’s algorithm produces incorrect answers. Why?

136 / 253

All-Pairs Shortest Paths

137 / 253

All-Pairs Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Trivial approach: n-times use of an algorithm for shortest path
problem from one source vertex to all other vertices.

I Dijkstra algorithm (n-times): Time O(n3 + nm) = O(n3) for array, or
O(n2 log n + nm) for Fibonacci heap.

I If we permit negative-weight edges, we need n-times Bellman-Ford
algorithm ⇒ time O(n2m) resulting into O(n4) for dense graphs.

I Let us examine methods based on dynamic programming...

138 / 253

All-Pairs Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Trivial approach: n-times use of an algorithm for shortest path
problem from one source vertex to all other vertices.

I Dijkstra algorithm (n-times): Time O(n3 + nm) = O(n3) for array, or
O(n2 log n + nm) for Fibonacci heap.

I If we permit negative-weight edges, we need n-times Bellman-Ford
algorithm ⇒ time O(n2m) resulting into O(n4) for dense graphs.

I Let us examine methods based on dynamic programming...

138 / 253

All-Pairs Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Trivial approach: n-times use of an algorithm for shortest path
problem from one source vertex to all other vertices.

I Dijkstra algorithm (n-times): Time O(n3 + nm) = O(n3) for array, or
O(n2 log n + nm) for Fibonacci heap.

I If we permit negative-weight edges, we need n-times Bellman-Ford
algorithm ⇒ time O(n2m) resulting into O(n4) for dense graphs.

I Let us examine methods based on dynamic programming...

138 / 253

All-Pairs Shortest Paths

I Given weighted directed graph G = (V, E) and

I weight function w : E→ R.

I Trivial approach: n-times use of an algorithm for shortest path
problem from one source vertex to all other vertices.

I Dijkstra algorithm (n-times): Time O(n3 + nm) = O(n3) for array, or
O(n2 log n + nm) for Fibonacci heap.

I If we permit negative-weight edges, we need n-times Bellman-Ford
algorithm ⇒ time O(n2m) resulting into O(n4) for dense graphs.

I Let us examine methods based on dynamic programming...

138 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,

2. predecessor of j on some shortest path from i.

139 / 253

Adjacency-matrix Representation

I This time, we prefer to use an adjacency matrix W = (wij), where

wij =


0 for i = j,
w(i, j) for i 6= j and (i, j) ∈ E,
∞ for i 6= j and (i, j) /∈ E

I Negative-weight edges allowed.

I Restriction: No negative-weight cycles.

I Result stored in matrix D = (dij), where dij = δ(i, j) after the end of
algorithm.

I Predecessor matrix Π = (πij), where πij is

1. NIL, if i = j or there is no path from i to j,
2. predecessor of j on some shortest path from i.

139 / 253

Printing All-Pairs Shortest Paths

PRINT-ALL-SHORTEST-PATH(Π, i, j)
1 if i = j
2 then print i
3 else if πij = NIL

4 then print “No path from ” i “ to ” j “ exists!”
5 else PRINT-ALL-SHORTEST-PATH(Π, i, πij)
6 print j

140 / 253

Matrix Multiplication

141 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Structure of Shortest Paths

I Representation – adjacency matrix W = (wij).

I Let p be a shortest path from i to j that has m′ edges.

I If p has no negative-weight cycle, then m′ < ∞.

I For i = j is m′ = 0 and wij = δ(i, j) = 0.

I For i 6= j we split path p as:

i
p′
 k→ j ,

where p′ has m′ − 1 edges.

I p′ is a shortest path from i to k – HOMEWORK – so
δ(i, j) = δ(i, k) + wkj.

142 / 253

Matrix Multiplication – Recursion

I Let l(m)
ij be the minimal weight of any path from i to j that contains

at most m edges.

I m = 0 if and only if i = j. Thus, l(0)ij =

{
0 for i = j
∞ for i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I A path from i to j with no more then n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(No negative-weight cycle.)

143 / 253

Matrix Multiplication – Recursion

I Let l(m)
ij be the minimal weight of any path from i to j that contains

at most m edges.

I m = 0 if and only if i = j. Thus, l(0)ij =

{
0 for i = j
∞ for i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I A path from i to j with no more then n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(No negative-weight cycle.)

143 / 253

Matrix Multiplication – Recursion

I Let l(m)
ij be the minimal weight of any path from i to j that contains

at most m edges.

I m = 0 if and only if i = j. Thus, l(0)ij =

{
0 for i = j
∞ for i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I A path from i to j with no more then n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(No negative-weight cycle.)

143 / 253

Matrix Multiplication – Recursion

I Let l(m)
ij be the minimal weight of any path from i to j that contains

at most m edges.

I m = 0 if and only if i = j. Thus, l(0)ij =

{
0 for i = j
∞ for i 6= j

I l(m)
ij = min(l(m−1)

ij , min
1≤k≤n

{l(m−1)
ik + wkj}) = min

1≤k≤n
{l(m−1)

ik + wkj}.

I A path from i to j with no more then n− 1 edges, so

δ(i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij =

(No negative-weight cycle.)

143 / 253

Matrix Multiplication – Computation

I Input: matrix W = (wij).

I Compute matrices: L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1), then it contains weights of shortest paths.

I l(1)ij = wij, i.e. L(1) = W.

144 / 253

Matrix Multiplication – Computation

I Input: matrix W = (wij).

I Compute matrices: L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1), then it contains weights of shortest paths.

I l(1)ij = wij, i.e. L(1) = W.

144 / 253

Matrix Multiplication – Computation

I Input: matrix W = (wij).

I Compute matrices: L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1), then it contains weights of shortest paths.

I l(1)ij = wij, i.e. L(1) = W.

144 / 253

Matrix Multiplication – Computation

I Input: matrix W = (wij).

I Compute matrices: L(1), L(2), . . . , L(n−1), where for
m = 1, 2, . . . , n− 1,

L(m) = (l(m)
ij) .

I L(n−1), then it contains weights of shortest paths.

I l(1)ij = wij, i.e. L(1) = W.

144 / 253

Algorithm Core

EXTEND-SHORTEST-PATHS(L, W)
1 n← rows[L]
2 let L′ = (l′ij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do l′ij ← ∞
6 for k← 1 to n
7 do l′ij ← min(l′ij, lik + wkj)

8 return L′

I rows[L] denotes the line number of L.

I Time complexity Θ(n3).

145 / 253

All-Pairs Shortest Paths Vs. Matrix Multiplication

I Let C = A · B, where A and B are matrices of order n.

I Then

cij =
n

∑
k=1

aik · bkj

I For the comparison:

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

146 / 253

All-Pairs Shortest Paths Vs. Matrix Multiplication

I Let C = A · B, where A and B are matrices of order n.

I Then

cij =
n

∑
k=1

aik · bkj

I For the comparison:

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

146 / 253

All-Pairs Shortest Paths Vs. Matrix Multiplication

I Let C = A · B, where A and B are matrices of order n.

I Then

cij =
n

∑
k=1

aik · bkj

I For the comparison:

l(m)
ij = min

1≤k≤n
{l(m−1)

ik + wkj}

146 / 253

Find 3 differences (skip the naming and names of variables)

EXTEND-SHORTEST-PATHS(L, W)
1 n← rows[L]
2 let L′ = (l′ij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do l′ij ← ∞
6 for k← 1 to n
7 do l′ij ← min(l′ij, lik + wkj)

8 return L′

MATRIX-MULTIPLY(A, B)
1 n← rows[A]
2 let C = (cij) be an n× n matrix
3 for i← 1 to n
4 do for j← 1 to n
5 do cij ← 0
6 for k← 1 to n
7 do cij ← cij + aik · bkj
8 return C

147 / 253

Matrix multiplication revisited

I Notation X · Y represents a matrix computed by
Extend-Shortest-Paths(X, Y).

I Then, we compute the whole sequence of matrices

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2

L(3) = L(2) ·W = W3

...

L(n−1) = L(n−2) ·W = Wn−1

where Wn−1 contains the weights of shortest paths.

148 / 253

Matrix multiplication revisited

I Notation X · Y represents a matrix computed by
Extend-Shortest-Paths(X, Y).

I Then, we compute the whole sequence of matrices

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2

L(3) = L(2) ·W = W3

...

L(n−1) = L(n−2) ·W = Wn−1

where Wn−1 contains the weights of shortest paths.

148 / 253

Slow method

SLOW-ALL-SHORTEST-PATHS(W)
1 n← rows[W]

2 L(1) ←W
3 for m← 2 to n− 1
4 do L(m) ← EXTEND-SHORTEST-PATHS(L(m−1), W)

5 return L(n−1)

I Time complexity Θ(n4).

149 / 253

Faster method
I How to make the slow method faster?

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Matrix multiplication defined by Extend-Shortest-Paths is
associative.

I Therefore, instead of n− 1 multiplications, only dlog n− 1e suffice.

I We compute the following sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we have L(2dlog n−1e) = L(n−1).

150 / 253

Faster method
I How to make the slow method faster?

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Matrix multiplication defined by Extend-Shortest-Paths is
associative.

I Therefore, instead of n− 1 multiplications, only dlog n− 1e suffice.

I We compute the following sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we have L(2dlog n−1e) = L(n−1).

150 / 253

Faster method
I How to make the slow method faster?

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Matrix multiplication defined by Extend-Shortest-Paths is
associative.

I Therefore, instead of n− 1 multiplications, only dlog n− 1e suffice.

I We compute the following sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we have L(2dlog n−1e) = L(n−1).

150 / 253

Faster method
I How to make the slow method faster?

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Matrix multiplication defined by Extend-Shortest-Paths is
associative.

I Therefore, instead of n− 1 multiplications, only dlog n− 1e suffice.

I We compute the following sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we have L(2dlog n−1e) = L(n−1).

150 / 253

Faster method
I How to make the slow method faster?

I If there is no negative-weight cycle, then L(m) = L(n−1) for all
m ≥ n− 1.

I Matrix multiplication defined by Extend-Shortest-Paths is
associative.

I Therefore, instead of n− 1 multiplications, only dlog n− 1e suffice.

I We compute the following sequence of matrices

L(1) = W
L(2) = W2

L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

...

L(2dlog n−1e) = W(2dlog n−1e) = W2dlog n−1e−1 ·W2dlog n−1e−1

Since 2dlog n−1e ≥ n− 1, we have L(2dlog n−1e) = L(n−1).

150 / 253

Faster method

FAST-ALL-SHORTEST-PATHS(W)
1 n← rows[W]

2 L(1) ←W
3 m← 1
4 while m < n− 1
5 do L(2m) ← EXTEND-SHORTEST-PATHS(L(m), L(m))
6 m← 2m
7 return L(m)

I Time complexity Θ(n3 log n).

151 / 253

The Floyd-Warshall algorithm

152 / 253

The Floyd-Warshall algorithm

I Negative-weight edges are allowed,

I but we assume, there are no negative-weight cycle.

153 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.
I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.

I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.

I For i, j ∈ V, consider all paths from i to j, where the inner vertices are
from set {1, 2, . . . , k}.

I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.

I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.

I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.

I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.
I Let p be such shortest path.

I Floyd-Warshall algorithm uses the relation between p and a shortest
path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.

I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.
I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.

I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.
I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.
I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Structure of shortest paths

I Inner vertex of shortest path p = 〈v1, v2, . . . , vk〉 is a vertex vi for
1 < i < k.

I Let {1, 2, . . . , k} ⊆ V = {1, 2, . . . , n}.
I For i, j ∈ V, consider all paths from i to j, where the inner vertices are

from set {1, 2, . . . , k}.
I Let p be such shortest path.
I Floyd-Warshall algorithm uses the relation between p and a shortest

path from i to j that has inner vertices from set {1, 2, . . . , k− 1}.
I If k is not an inner vertex of p, then all inner vertices of p are from
{1, 2, . . . , k− 1}. So, a shortest path from i to j with inner vertices
from {1, 2, . . . , k− 1} is also a shortest path from i to j with inner
vertices from {1, 2, . . . , k}.

I If k is an inner vertex of p, then i
p1 k

p2 j such that p1 is a shortest
path from i to k with inner vertices from {1, 2, . . . , k− 1} and p2 is a
shortest path from k to j with inner vertices from {1, 2, . . . , k− 1}.

154 / 253

Recursion

I Let d(k)ij is a weight of a shortest path from i to j that has all inner

vertices from set {1, 2, . . . , k}.

I k = 0 if and only if d(0)ij = wij. Therefore,

d(k)ij =

{
wij for k = 0
min(d(k−1)

ij , d(k−1)
ik + d(k−1)

kj) for k ≥ 1

I Since for k = n all inner vertices are from V = {1, 2, . . . , n}, the

matrix D(n) = (d(n)ij) contains d(n)ij = δ(i, j) for i, j ∈ V.

155 / 253

Recursion

I Let d(k)ij is a weight of a shortest path from i to j that has all inner

vertices from set {1, 2, . . . , k}.
I k = 0 if and only if d(0)ij = wij. Therefore,

d(k)ij =

{
wij for k = 0
min(d(k−1)

ij , d(k−1)
ik + d(k−1)

kj) for k ≥ 1

I Since for k = n all inner vertices are from V = {1, 2, . . . , n}, the

matrix D(n) = (d(n)ij) contains d(n)ij = δ(i, j) for i, j ∈ V.

155 / 253

Recursion

I Let d(k)ij is a weight of a shortest path from i to j that has all inner

vertices from set {1, 2, . . . , k}.
I k = 0 if and only if d(0)ij = wij. Therefore,

d(k)ij =

{
wij for k = 0
min(d(k−1)

ij , d(k−1)
ik + d(k−1)

kj) for k ≥ 1

I Since for k = n all inner vertices are from V = {1, 2, . . . , n}, the

matrix D(n) = (d(n)ij) contains d(n)ij = δ(i, j) for i, j ∈ V.

155 / 253

Computation

FLOYD-WARSHALL(W)
1 n← rows[W]

2 D(0) ←W
3 for k← 1 to n
4 do for i← 1 to n
5 do for j← 1 to n
6 do d(k)ij ← min(d(k−1)

ij , d(k−1)
ik + d(k−1)

kj)

7 return D(n)

I Time complexity Θ(n3).

156 / 253

Construction of shortest paths

π
(0)
ij =

{
NIL for i = j or wij = ∞
i for i 6= j and wij < ∞

For k ≥ 1,

π
(k)
ij =


π
(k−1)
ij for d(k−1)

ij ≤ d(k−1)
ik + d(k−1)

kj

π
(k−1)
kj for d(k−1)

ij > d(k−1)
ik + d(k−1)

kj

157 / 253

Construction of shortest paths

π
(0)
ij =

{
NIL for i = j or wij = ∞
i for i 6= j and wij < ∞

For k ≥ 1,

π
(k)
ij =


π
(k−1)
ij for d(k−1)

ij ≤ d(k−1)
ik + d(k−1)

kj

π
(k−1)
kj for d(k−1)

ij > d(k−1)
ik + d(k−1)

kj

157 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.

I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).

I If there is a path from i to j, then dij < n.
I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.
I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).

I If there is a path from i to j, then dij < n.
I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.
I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).

I If there is a path from i to j, then dij < n.
I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.
I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).
I If there is a path from i to j, then dij < n.

I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.
I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).
I If there is a path from i to j, then dij < n.
I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph

I Given digraph G = (V, E), V = {1, 2, . . . , n}.
I Transitive closure of graph G is graph G∗ = (V, E∗), where

E∗ = {(i, j) : there is a path from i to j in G} .

I To each edge assign value 1 and run Floyd-Warshall (in Θ(n3)
time).
I If there is a path from i to j, then dij < n.
I Otherwise, dij = ∞.

I We can improve a little bit

158 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Transitive closure of graph II
I We use logical operators ∨, ∧ instead of min, +, respectively.

I Define t(k)ij , i, j, k ∈ {1, 2, . . . , n} such that t(k)ij = 1 if there is a path

from i to j with inner vertices from {1, 2, . . . , k}; otherwise, 0.

I So

t(0)ij =

{
0 for i 6= j and (i, j) /∈ E
1 for i = j or (i, j) ∈ E

and for k ≥ 1,

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
.

I Similarly to Floyd-Warshall algorithm, we have 3 for-cycles, so the
time complexity is Θ(n3). Is it really better?

I Logical operations with bits are usually faster than arithmetical
operations with integers (not asymptotically). Moreover, lower space
complexity (bits vs. bytes).

159 / 253

Flow Networks

160 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Network

I A flow network (or simply, network) G = (V, E) is a directed graph

I in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

I If (u, v) /∈ E, then assume that c(u, v) = 0.

I Two distinguishable vertices: a source s and a sink t (or
terminator/target).

I Every vertex lies on some path from s to t. That is, there is
s v t for every v ∈ V.

I Therefore, a flow network is connected graph with m ≥ n− 1.

161 / 253

Flow network – Example

s

v1

v2 v4

v3

t

16

13

12

14

9

20

7

4

104

162 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow

I A flow in G is a real-valued function f : V×V → R satisfying 3
conditions:

1. Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

2. Skew symmetry: For all u, v ∈ V, f (u, v) = −f (v, u).

3. Flow conservation: For all u ∈ V− {s, t}, ∑
v∈V

f (u, v) = 0.

I The quantity f (u, v) is called the flow from vertex u to vertex v.

I The value of a flow f is defined as

|f | = ∑
v∈V

f (s, v) .

163 / 253

Flow network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−/101/4

I Edges labeled with f (u, v)/c(u, v). Only positive flows are shown.

I Verify that it is a flow network and some flow.

I |f | =???
I |f | = 19.

164 / 253

Flow network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−/101/4

I Edges labeled with f (u, v)/c(u, v). Only positive flows are shown.

I Verify that it is a flow network and some flow.

I |f | =???
I |f | = 19.

164 / 253

Flow network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−/101/4

I Edges labeled with f (u, v)/c(u, v). Only positive flows are shown.

I Verify that it is a flow network and some flow.

I |f | =???

I |f | = 19.

164 / 253

Flow network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−/101/4

I Edges labeled with f (u, v)/c(u, v). Only positive flows are shown.

I Verify that it is a flow network and some flow.

I |f | =???
I |f | = 19.

164 / 253

Maximum-flow Problem

I We are given a flow network G with source s and sink t,
I we wish to find a flow of maximum value.

165 / 253

Networks with multiple sources and sinks

s1

s2

v1

v2 v4

v3

t1

t2

16

13

12

14

9

20

7

4

104

I How to deal with it?

I Create a new supersource s and a new supersink and set the capacity
to ∞ for these new edges.

166 / 253

Networks with multiple sources and sinks

s1

s2

v1

v2 v4

v3

t1

t2

s

s1

s2

t1

t2

t

16

13

12

14

9

20

7

4

104

∞

∞

∞

∞

I How to deal with it?

I Create a new supersource s and a new supersink and set the capacity
to ∞ for these new edges.

166 / 253

Working with flows

I For X, Y ⊆ V, we define f (X, Y) = ∑
x∈X

∑
y∈Y

f (x, y).

I Then, the value of f is |f | = f (s, V).

I For all X ⊆ V, f (X, X) = 0 — with every f (u, v) we sum in f (v, u) as
well.

I For all X, Y ⊆ V, f (X, Y) = −f (Y, X).

I For all X, Y, Z ⊆ V, X ∩ Y = ∅,

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z)

and
f (Z, X ∪ Y) = f (Z, X) + f (Z, Y) .

167 / 253

Working with flows

I For X, Y ⊆ V, we define f (X, Y) = ∑
x∈X

∑
y∈Y

f (x, y).

I Then, the value of f is |f | = f (s, V).

I For all X ⊆ V, f (X, X) = 0 — with every f (u, v) we sum in f (v, u) as
well.

I For all X, Y ⊆ V, f (X, Y) = −f (Y, X).

I For all X, Y, Z ⊆ V, X ∩ Y = ∅,

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z)

and
f (Z, X ∪ Y) = f (Z, X) + f (Z, Y) .

167 / 253

Working with flows

I For X, Y ⊆ V, we define f (X, Y) = ∑
x∈X

∑
y∈Y

f (x, y).

I Then, the value of f is |f | = f (s, V).

I For all X ⊆ V, f (X, X) = 0 — with every f (u, v) we sum in f (v, u) as
well.

I For all X, Y ⊆ V, f (X, Y) = −f (Y, X).

I For all X, Y, Z ⊆ V, X ∩ Y = ∅,

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z)

and
f (Z, X ∪ Y) = f (Z, X) + f (Z, Y) .

167 / 253

Working with flows

I For X, Y ⊆ V, we define f (X, Y) = ∑
x∈X

∑
y∈Y

f (x, y).

I Then, the value of f is |f | = f (s, V).

I For all X ⊆ V, f (X, X) = 0 — with every f (u, v) we sum in f (v, u) as
well.

I For all X, Y ⊆ V, f (X, Y) = −f (Y, X).

I For all X, Y, Z ⊆ V, X ∩ Y = ∅,

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z)

and
f (Z, X ∪ Y) = f (Z, X) + f (Z, Y) .

167 / 253

Working with flows

I For X, Y ⊆ V, we define f (X, Y) = ∑
x∈X

∑
y∈Y

f (x, y).

I Then, the value of f is |f | = f (s, V).

I For all X ⊆ V, f (X, X) = 0 — with every f (u, v) we sum in f (v, u) as
well.

I For all X, Y ⊆ V, f (X, Y) = −f (Y, X).

I For all X, Y, Z ⊆ V, X ∩ Y = ∅,

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z)

and
f (Z, X ∪ Y) = f (Z, X) + f (Z, Y) .

167 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.

I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).

I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

Working with flows – Example

Prove that |f | = f (V, t).

Proof.
I |f | = f (s, V)

I We know that f (V, V) = f (s, V) + f (V− s, V) – see above.

I Therefore, f (s, V) = f (V, V)− f (V− s, V).

I We know that f (V, V) = 0 – see above.

I Therefore, f (s, V) = −f (V− s, V) = f (V, V− s).
I We know that f (V, V− s) = f (V, t) + f (V, V− s− t) – see above.

I From the previous and by flow conservation, f (V, V− s− t) =
−f (V− s− t, V) = − ∑

u∈V−{s,t}
∑

v∈V
f (u, v) = − ∑

u∈V−{s,t}
0 = 0.

I Thus, |f | = f (V, t).

168 / 253

The Ford-Fulkerson Method

169 / 253

The Ford-Fulkerson Method

I To find the maximum flow in the given network.

I Not algorithm - there are several implementations with different
complexity.

FORD-FULKERSON-METHOD(G, s, t)
1 inicialize f (u, v) = 0 for each u, v ∈ V
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

I Augmenting path is a simple path from s to t along which the flow
can be increased.

170 / 253

The Ford-Fulkerson Method

I To find the maximum flow in the given network.

I Not algorithm - there are several implementations with different
complexity.

FORD-FULKERSON-METHOD(G, s, t)
1 inicialize f (u, v) = 0 for each u, v ∈ V
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

I Augmenting path is a simple path from s to t along which the flow
can be increased.

170 / 253

The Ford-Fulkerson Method

I To find the maximum flow in the given network.

I Not algorithm - there are several implementations with different
complexity.

FORD-FULKERSON-METHOD(G, s, t)
1 inicialize f (u, v) = 0 for each u, v ∈ V
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

I Augmenting path is a simple path from s to t along which the flow
can be increased.

170 / 253

The Ford-Fulkerson Method

I To find the maximum flow in the given network.

I Not algorithm - there are several implementations with different
complexity.

FORD-FULKERSON-METHOD(G, s, t)
1 inicialize f (u, v) = 0 for each u, v ∈ V
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

I Augmenting path is a simple path from s to t along which the flow
can be increased.

170 / 253

Residual Network(s)

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

0/101/4

I Residual capacity of (u, v) is

cf (u, v) = c(u, v)− f (u, v) .

I For example, cf (s, v1) = 16− 11 = 5.

I Flow f (u, v) can be increased by 5 units.

171 / 253

Residual Network(s)

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

0/101/4

I Residual capacity of (u, v) is

cf (u, v) = c(u, v)− f (u, v) .

I For example, cf (s, v1) = 16− 11 = 5.

I Flow f (u, v) can be increased by 5 units.

171 / 253

Residual Network(s)

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

0/101/4

I Residual capacity of (u, v) is

cf (u, v) = c(u, v)− f (u, v) .

I For example, cf (s, v1) = 16− 11 = 5.

I Flow f (u, v) can be increased by 5 units.

171 / 253

Residual Network

I Let G = (V, E) be a network and f be a flow in G.

I The residual network of G inducted by flow f is a network
Gf = (V, Ef), where

Ef = {(u, v) ∈ V×V : cf (u, v) > 0} .

I It holds that |Ef | ≤ 2|E| – Think about it!

172 / 253

Residual Network

I Let G = (V, E) be a network and f be a flow in G.

I The residual network of G inducted by flow f is a network
Gf = (V, Ef), where

Ef = {(u, v) ∈ V×V : cf (u, v) > 0} .

I It holds that |Ef | ≤ 2|E| – Think about it!

172 / 253

Residual Network

I Let G = (V, E) be a network and f be a flow in G.

I The residual network of G inducted by flow f is a network
Gf = (V, Ef), where

Ef = {(u, v) ∈ V×V : cf (u, v) > 0} .

I It holds that |Ef | ≤ 2|E| – Think about it!

172 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

0

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
0

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

0

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Network and its residual network

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Attention! f (v1, v2) = 0 + (−1) so cf (v1, v2) = 10− (−1) = 11.

173 / 253

Residual network

Lemma 23.
Let G = (V, E) be a network and f be a flow in G. Let Gf be a residual
network of G induced by f and let f ′ be a flow in Gf .
Then, f + f ′ is a flow in G with the value of |f + f ′| = |f |+ |f ′|.

Proof.
I We must verify that tree conditions from the definition of a flow.

174 / 253

Condition 1: Capacity constraint

Demonstrate that (f + f ′)(u, v) ≤ c(u, v).

Proof.
I f ′(u, v) ≤ cf (u, v).

I (f + f ′)(u, v) = f (u, v) + f ′(u, v)
≤ f (u, v) + (c(u, v)− f (u, v))
= c(u, v).

175 / 253

Condition 1: Capacity constraint

Demonstrate that (f + f ′)(u, v) ≤ c(u, v).

Proof.
I f ′(u, v) ≤ cf (u, v).
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

≤ f (u, v) + (c(u, v)− f (u, v))
= c(u, v).

175 / 253

Condition 1: Capacity constraint

Demonstrate that (f + f ′)(u, v) ≤ c(u, v).

Proof.
I f ′(u, v) ≤ cf (u, v).
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

≤ f (u, v) + (c(u, v)− f (u, v))

= c(u, v).

175 / 253

Condition 1: Capacity constraint

Demonstrate that (f + f ′)(u, v) ≤ c(u, v).

Proof.
I f ′(u, v) ≤ cf (u, v).
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

≤ f (u, v) + (c(u, v)− f (u, v))
= c(u, v).

175 / 253

Condition 2: Skew symmetry

Demonstrate that (f + f ′)(u, v) = −(f + f ′)(v, u).

Proof.
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

= −f (v, u)− f ′(v, u)
= −(f (v, u) + f ′(v, u))
= −(f + f ′)(v, u).

176 / 253

Condition 2: Skew symmetry

Demonstrate that (f + f ′)(u, v) = −(f + f ′)(v, u).

Proof.
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

= −f (v, u)− f ′(v, u)

= −(f (v, u) + f ′(v, u))
= −(f + f ′)(v, u).

176 / 253

Condition 2: Skew symmetry

Demonstrate that (f + f ′)(u, v) = −(f + f ′)(v, u).

Proof.
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

= −f (v, u)− f ′(v, u)
= −(f (v, u) + f ′(v, u))

= −(f + f ′)(v, u).

176 / 253

Condition 2: Skew symmetry

Demonstrate that (f + f ′)(u, v) = −(f + f ′)(v, u).

Proof.
I (f + f ′)(u, v) = f (u, v) + f ′(u, v)

= −f (v, u)− f ′(v, u)
= −(f (v, u) + f ′(v, u))
= −(f + f ′)(v, u).

176 / 253

Condition 3: Flow conservation

Demonstrate that for u ∈ V− {s, t}, ∑
v∈V

(f + f ′)(u, v) = 0.

Proof.
I ∑

v∈V
(f + f ′)(u, v) = ∑

v∈V
(f (u, v) + f ′(u, v))

= ∑
v∈V

f (u, v) + ∑
v∈V

f ′(u, v)

= 0 + 0 = 0.

177 / 253

Condition 3: Flow conservation

Demonstrate that for u ∈ V− {s, t}, ∑
v∈V

(f + f ′)(u, v) = 0.

Proof.
I ∑

v∈V
(f + f ′)(u, v) = ∑

v∈V
(f (u, v) + f ′(u, v))

= ∑
v∈V

f (u, v) + ∑
v∈V

f ′(u, v)

= 0 + 0 = 0.

177 / 253

Condition 3: Flow conservation

Demonstrate that for u ∈ V− {s, t}, ∑
v∈V

(f + f ′)(u, v) = 0.

Proof.
I ∑

v∈V
(f + f ′)(u, v) = ∑

v∈V
(f (u, v) + f ′(u, v))

= ∑
v∈V

f (u, v) + ∑
v∈V

f ′(u, v)

= 0 + 0 = 0.

177 / 253

Value of the resulting flow

I |f + f ′| = ∑
v∈V

(f + f ′)(s, v)

= ∑
v∈V

(f (s, v) + f ′(s, v))

= ∑
v∈V

f (s, v) + ∑
v∈V

f ′(s, v)

= |f |+ |f ′|.

178 / 253

Value of the resulting flow

I |f + f ′| = ∑
v∈V

(f + f ′)(s, v)

= ∑
v∈V

(f (s, v) + f ′(s, v))

= ∑
v∈V

f (s, v) + ∑
v∈V

f ′(s, v)

= |f |+ |f ′|.

178 / 253

Value of the resulting flow

I |f + f ′| = ∑
v∈V

(f + f ′)(s, v)

= ∑
v∈V

(f (s, v) + f ′(s, v))

= ∑
v∈V

f (s, v) + ∑
v∈V

f ′(s, v)

= |f |+ |f ′|.

178 / 253

Value of the resulting flow

I |f + f ′| = ∑
v∈V

(f + f ′)(s, v)

= ∑
v∈V

(f (s, v) + f ′(s, v))

= ∑
v∈V

f (s, v) + ∑
v∈V

f ′(s, v)

= |f |+ |f ′|.

178 / 253

Augmenting path – Example

I Let G = (V, E) be a network and f be a flow.

I Augmenting path p is a path from s to t along which flow f can be
increased in G.

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Using this path, we can increase flow by 4 units.

I Residual capacity of augmenting path p is

cf (p) = min{cf (u, v) : (u, v) lies on path p} .

179 / 253

Augmenting path – Example

I Let G = (V, E) be a network and f be a flow.

I Augmenting path p is a path from s to t along which flow f can be
increased in G.

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Using this path, we can increase flow by 4 units.

I Residual capacity of augmenting path p is

cf (p) = min{cf (u, v) : (u, v) lies on path p} .

179 / 253

Augmenting path – Example

I Let G = (V, E) be a network and f be a flow.

I Augmenting path p is a path from s to t along which flow f can be
increased in G.

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Using this path, we can increase flow by 4 units.

I Residual capacity of augmenting path p is

cf (p) = min{cf (u, v) : (u, v) lies on path p} .

179 / 253

Augmenting path – Example

I Let G = (V, E) be a network and f be a flow.

I Augmenting path p is a path from s to t along which flow f can be
increased in G.

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Using this path, we can increase flow by 4 units.

I Residual capacity of augmenting path p is

cf (p) = min{cf (u, v) : (u, v) lies on path p} .

179 / 253

Augmenting path – Example

I Let G = (V, E) be a network and f be a flow.

I Augmenting path p is a path from s to t along which flow f can be
increased in G.

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

3 11

I Using this path, we can increase flow by 4 units.

I Residual capacity of augmenting path p is

cf (p) = min{cf (u, v) : (u, v) lies on path p} .

179 / 253

Lemma 24.
Let G = (V, E) be a network, f be its flow and p be an augmenting path
in Gf . Let define a function

fp(u, v) =


cf (p) for (u, v) on p
−cf (p) for (v, u) on p
0 otherwise

Then, fp is the flow in Gf of size |fp| = cf (p) > 0.

Proof.
Homework.

Corollary 25.

Let f ′ = f + fp. Then, f ′ is a flow in G of size |f ′| = |f |+ |fp| > |f |.

180 / 253

Lemma 24.
Let G = (V, E) be a network, f be its flow and p be an augmenting path
in Gf . Let define a function

fp(u, v) =


cf (p) for (u, v) on p
−cf (p) for (v, u) on p
0 otherwise

Then, fp is the flow in Gf of size |fp| = cf (p) > 0.

Proof.
Homework.

Corollary 25.

Let f ′ = f + fp. Then, f ′ is a flow in G of size |f ′| = |f |+ |fp| > |f |.

180 / 253

Residual network improved by 4 along s v2 v3 t

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

0/101/4

s

v1

v2 v4

v3

t

11/16

12/13

12/12

11/14

0/9

19/20

7/7

4/4

0/101/4

181 / 253

Cut in Network

182 / 253

Cut in Flow Network

I Network cut in G = (V, E) is a partition of V to S and T = V− S
such that s ∈ S and t ∈ T.

I Flow through a cut is defined as f (S, T).
I Cut capacity (S, T) is c(S, T).
I Minimal cut is a cut with minimal capacity.

183 / 253

Cut in Flow Network

I Network cut in G = (V, E) is a partition of V to S and T = V− S
such that s ∈ S and t ∈ T.

I Flow through a cut is defined as f (S, T).

I Cut capacity (S, T) is c(S, T).
I Minimal cut is a cut with minimal capacity.

183 / 253

Cut in Flow Network

I Network cut in G = (V, E) is a partition of V to S and T = V− S
such that s ∈ S and t ∈ T.

I Flow through a cut is defined as f (S, T).
I Cut capacity (S, T) is c(S, T).

I Minimal cut is a cut with minimal capacity.

183 / 253

Cut in Flow Network

I Network cut in G = (V, E) is a partition of V to S and T = V− S
such that s ∈ S and t ∈ T.

I Flow through a cut is defined as f (S, T).
I Cut capacity (S, T) is c(S, T).
I Minimal cut is a cut with minimal capacity.

183 / 253

Cut in Network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−− /101/4

I Flow through a cut: f ({s, v1, v2}, {v3, v4, t}) =
f (v1, v3) + f (v2, v3) + f (v2, v4) = 12 + (−4) + 11 = 19.

I Cut capacity:
c({s, v1, v2}, {v3, v4, t}) = c(v1, v3) + c(v2, v4) = 12 + 14 = 26.

184 / 253

Cut in Network – Example

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7

4/4

−− /101/4

I Flow through a cut: f ({s, v1, v2}, {v3, v4, t}) =
f (v1, v3) + f (v2, v3) + f (v2, v4) = 12 + (−4) + 11 = 19.

I Cut capacity:
c({s, v1, v2}, {v3, v4, t}) = c(v1, v3) + c(v2, v4) = 12 + 14 = 26.

184 / 253

Properties

Lemma 26.
Let f be a flow in G with source s and sink t and let (S, T) be a cut of G.
Then, |f | = f (S, T).

Proof.
I f (S, T) = f (S, V)− f (S, S)

= f (S, V)

= f (s, V) + f (S− {s}, V)

= f (s, V)

= |f |

185 / 253

Properties

Lemma 26.
Let f be a flow in G with source s and sink t and let (S, T) be a cut of G.
Then, |f | = f (S, T).

Proof.
I f (S, T) = f (S, V)− f (S, S)

= f (S, V)

= f (s, V) + f (S− {s}, V)

= f (s, V)

= |f |

185 / 253

Properties

Lemma 26.
Let f be a flow in G with source s and sink t and let (S, T) be a cut of G.
Then, |f | = f (S, T).

Proof.
I f (S, T) = f (S, V)− f (S, S)

= f (S, V)

= f (s, V) + f (S− {s}, V)

= f (s, V)

= |f |

185 / 253

Properties

Lemma 26.
Let f be a flow in G with source s and sink t and let (S, T) be a cut of G.
Then, |f | = f (S, T).

Proof.
I f (S, T) = f (S, V)− f (S, S)

= f (S, V)

= f (s, V) + f (S− {s}, V)

= f (s, V)

= |f |

185 / 253

Properties

Lemma 26.
Let f be a flow in G with source s and sink t and let (S, T) be a cut of G.
Then, |f | = f (S, T).

Proof.
I f (S, T) = f (S, V)− f (S, S)

= f (S, V)

= f (s, V) + f (S− {s}, V)

= f (s, V)

= |f |

185 / 253

Properties

Corollary 27.

The value of any flow f in G is bounded from above by the capacity of any
cut of G.

Proof.
I |f | = f (S, T)

= ∑
u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

The value of a maximum flow is equal or less than the capacity of a
minimum cut.

186 / 253

Properties

Corollary 27.

The value of any flow f in G is bounded from above by the capacity of any
cut of G.

Proof.
I |f | = f (S, T)

= ∑
u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

The value of a maximum flow is equal or less than the capacity of a
minimum cut.

186 / 253

Properties

Corollary 27.

The value of any flow f in G is bounded from above by the capacity of any
cut of G.

Proof.
I |f | = f (S, T)

= ∑
u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

The value of a maximum flow is equal or less than the capacity of a
minimum cut.

186 / 253

Properties

Corollary 27.

The value of any flow f in G is bounded from above by the capacity of any
cut of G.

Proof.
I |f | = f (S, T)

= ∑
u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

The value of a maximum flow is equal or less than the capacity of a
minimum cut.

186 / 253

Properties

Corollary 27.

The value of any flow f in G is bounded from above by the capacity of any
cut of G.

Proof.
I |f | = f (S, T)

= ∑
u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

The value of a maximum flow is equal or less than the capacity of a
minimum cut.

186 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (1)⇒ (2):

I Let f is maximum flow and p is an augmenting path in Gf .
I Then, f + fp is a flow in G and |f + fp| > |f |. Contradition.

187 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (1)⇒ (2):

I Let f is maximum flow and p is an augmenting path in Gf .

I Then, f + fp is a flow in G and |f + fp| > |f |. Contradition.

187 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (1)⇒ (2):

I Let f is maximum flow and p is an augmenting path in Gf .
I Then, f + fp is a flow in G and |f + fp| > |f |. Contradition.

187 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }
I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.
I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .

I Let
S = {v ∈ V : there exists a path from s to v in Gf }

I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.
I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }

I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.
I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }
I and let T = V− S.

I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.
I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }
I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.

I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,
so v ∈ S.

I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }
I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.

I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem
Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network Gf contains no augmenting path.
3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (2)⇒ (3):

I Let Gf contains no augmenting path, so no path from s to t in Gf .
I Let

S = {v ∈ V : there exists a path from s to v in Gf }
I and let T = V− S.
I Since s ∈ S and t ∈ T, (S, T) is a cut of G.
I For u ∈ S and v ∈ T, we have f (u, v) = c(u, v), otherwise (u, v) ∈ Ef ,

so v ∈ S.
I |f | = f (S, T) = c(S, T).

188 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (3)⇒ (1):

I |f | ≤ c(S, T) for any cut (S, T).
I From |f | = c(S, T), it follows that f is maximum.

189 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (3)⇒ (1):

I |f | ≤ c(S, T) for any cut (S, T).

I From |f | = c(S, T), it follows that f is maximum.

189 / 253

Max-flow min-cut Theorem

Let f be a flow in G with source s and sink t. Then, the following
conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof.
I (3)⇒ (1):

I |f | ≤ c(S, T) for any cut (S, T).
I From |f | = c(S, T), it follows that f is maximum.

189 / 253

The basic Ford-Fulkerson
algorithm

190 / 253

The basic Ford-Fulkerson algorithm

FORD-FULKERSON(G, s, t)
1 for each edge (u, v) ∈ E
2 do f [u, v]← 0
3 f [v, u]← 0
4 while there exists a path p from s to t in the residual network G f
5 do c f (p)← min{c f (u, v) : (u, v) is in p}
6 for each edge (u, v) in p
7 do f [u, v]← f [u, v] + c f (p)
8 f [v, u]← − f [u, v]

I Time complexity depends on line 4.

I Using BFS gives total complexity O(nm2) – so called Edmonds-Karp
algorithm.

191 / 253

The basic Ford-Fulkerson algorithm

FORD-FULKERSON(G, s, t)
1 for each edge (u, v) ∈ E
2 do f [u, v]← 0
3 f [v, u]← 0
4 while there exists a path p from s to t in the residual network G f
5 do c f (p)← min{c f (u, v) : (u, v) is in p}
6 for each edge (u, v) in p
7 do f [u, v]← f [u, v] + c f (p)
8 f [v, u]← − f [u, v]

I Time complexity depends on line 4.

I Using BFS gives total complexity O(nm2) – so called Edmonds-Karp
algorithm.

191 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

16

13

12

14

9

20

7
4

104

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

0/16

0/13

0/12

0/14

0/9

0/20

0/7
0/4

0/100/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

16

13

12

14

9

20

7
4

104

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

4/16

0/13

4/12

4/14

4/9

0/20

0/7
4/4

0/100/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

12

4

13

8

4

10

4

5

4

20

7

4

104

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

4/16

0/13

4/12

4/14

4/9

0/20

0/7
4/4

0/100/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

12

4

13

8

4

10

4

5

4

20

7

4

104

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

0/13

4/12

11/14

4/9

7/20

7/7
4/4

7/100/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

5

11

13

8

4

3

11

5

4

13

7
7

4

311

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

0/13

4/12

11/14

4/9

7/20

7/7
4/4

7/100/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

5

11

13

8

4

3

11

5

4

13

7
7

4

311

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

113

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

8/13

12/12

11/14

4/9

15/20

7/7
4/4

0/101/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

5

11

5

8

12

3

11

5

4

5

15
7

4

113

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

12/13

12/12

11/14

0/9

19/20

7/7
4/4

0/101/4

Figure: Network flow augmented along the path.
192 / 253

The basic Ford-Fulkerson algorithm – Example

s

v1

v2 v4

v3

t

5

11

1

12

12

3

11

9

1

19
7

4

113

Figure: Residual network with an augmenting path from s to t.

s

v1

v2 v4

v3

t

11/16

12/13

12/12

11/14

0/9

19/20

7/7
4/4

0/101/4

Figure: Network flow augmented along the path.
192 / 253

Maximum bipartite matching

193 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Maximum bipartite matching

I Let G = (V, E) be an undirected graph.

I Matching in G is a subset of edges M ⊆ E such that for all vertices
v ∈ V, at most one edge of M is incident on v.

I A vertex is matched if some edge in M is incident on v; otherwise v is
unmatched.

I Maximum matching is a matching of maximum cardinality.

I We consider only connected bipartite graphs. That is, V can be
partitioned into V = L∪ R, R∩ L = ∅ and E ⊆ L× R.

I We use the Ford-Fulkerson method to find maximum matching in a
connected undirected bipartite graph.

194 / 253

Transformation to Maximum network flow problem

Figure: Bipartite graph and its flow network. Maximum matching and flow is
highlighted (capacity of each edge is 1)

I Time complexity: O(nm).

195 / 253

Transformation to Maximum network flow problem

Figure: Bipartite graph and its flow network. Maximum matching and flow is
highlighted (capacity of each edge is 1)

I Time complexity: O(nm).

195 / 253

Graph Coloring

196 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Notation
I Let G = (V, E) be an undirected graph.

I Goal: to colour edges (vertices) such that no two adjacent edges
(adjacent vertices) has the same color.

I Formally, the coloring is a function

f : E→ B

(f : V → B), where B is a set of colors and f (e1) 6= f (e2) for
e1 ∩ e2 6= ∅ (f (u) 6= f (v), if {u, v} is an edge).

I Let k ≥ 0. k-coloring is a coloring with |B| = k.

I ψe(G) denotes the minimum number of colors necessary for edge
coloring of G, called edge-chromatic index.

I ψv(G) denotes the minimum number of colors necessary for (vertex)
coloring of G, called vertex-chromatic index.

I ∆ denotes the maximal degree of G.

I Graph-coloring problem: Determine ψX(G) for a given graph,
X ∈ {v, e}.

197 / 253

Edge Graph Coloring

198 / 253

Edge Graph Coloring

I Basic observation:

I ∆ ≤ ψe(G).

199 / 253

Edge Graph Coloring

I Basic observation:

I ∆ ≤ ψe(G).

199 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).

I Since we can use ∆ colors, at least one color is not incident to u and
one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

Theorem 28.
If G is bipartite, then ψe(G) = ∆.

Proof
I By induction on the cardinality of set of edges.

I |E| = 1 – obvious.

I Assume that all edges but one are coloured using at most ∆ colors.

I The uncolored edge is (u, v).
I Since we can use ∆ colors, at least one color is not incident to u and

one is no incident to v.

I If they are the same, we are done.

I If they differ, we label these colors by C1 and C2.

200 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Bipartite Graph

I The colors not incident to u and v are denoted by C1 and C2,
respectively.

I Let Hu(C1, C2) be a subgraph containing u and all edges reachable
from u that are coloured only by C1 and C2.

I Since (u, v) is an edge, u and v belongs to the different partite sets.

I Then, every path from u to v in Hu(C1, C2) must have the last edge
coloured by C2.

I But an edge with color C2 is not incident to v, so v is not in
Hu(C1, C2).

I By the exchange of C1 and C2 in Hu(C1, C2) we get that C2 is not
incident to u.

I Then, we can paint (u, v) by C2.

201 / 253

Edge Coloring of Complete Graph

Theorem 29.

If G is complete with n vertices, then ψe(G) =

{
∆ n even
∆ + 1 n odd

Proof
I Case 1: If n is odd, draw a graph as regular polygon (see below).

I We paint border edges by colors 1, 2, . . . , n = ∆ + 1.

I Paint every inner edge to the same color as its parallel border edge.

202 / 253

Edge Coloring of Complete Graph

Theorem 29.

If G is complete with n vertices, then ψe(G) =

{
∆ n even
∆ + 1 n odd

Proof
I Case 1: If n is odd, draw a graph as regular polygon (see below).

I We paint border edges by colors 1, 2, . . . , n = ∆ + 1.

I Paint every inner edge to the same color as its parallel border edge.

202 / 253

Edge Coloring of Complete Graph

Theorem 29.

If G is complete with n vertices, then ψe(G) =

{
∆ n even
∆ + 1 n odd

Proof
I Case 1: If n is odd, draw a graph as regular polygon (see below).

I We paint border edges by colors 1, 2, . . . , n = ∆ + 1.

I Paint every inner edge to the same color as its parallel border edge.

202 / 253

Edge Coloring of Complete Graph

1

4

2

5

2
5

3

3

1

4

203 / 253

Edge Coloring of Complete Graph

I No ∆-coloring for a complete graph with odd n (∆ = n− 1).

I Assume it is possible. Then, if G has 1
2 n(n− 1) edges, we have at

least 1
2 n edges of the same color.

I Let M ⊆ E such that no two edges from M are incident to the same
vertex.

I Therefore, |M| ≤ 1
2 (n− 1) – (prove as a homework).

1

4

2

5

2
5

3

3

1

4

204 / 253

Edge Coloring of Complete Graph

I No ∆-coloring for a complete graph with odd n (∆ = n− 1).
I Assume it is possible. Then, if G has 1

2 n(n− 1) edges, we have at

least 1
2 n edges of the same color.

I Let M ⊆ E such that no two edges from M are incident to the same
vertex.

I Therefore, |M| ≤ 1
2 (n− 1) – (prove as a homework).

1

4

2

5

2
5

3

3

1

4

204 / 253

Edge Coloring of Complete Graph

I No ∆-coloring for a complete graph with odd n (∆ = n− 1).
I Assume it is possible. Then, if G has 1

2 n(n− 1) edges, we have at

least 1
2 n edges of the same color.

I Let M ⊆ E such that no two edges from M are incident to the same
vertex.

I Therefore, |M| ≤ 1
2 (n− 1) – (prove as a homework).

1

4

2

5

2
5

3

3

1

4

204 / 253

Edge Coloring of Complete Graph

I No ∆-coloring for a complete graph with odd n (∆ = n− 1).
I Assume it is possible. Then, if G has 1

2 n(n− 1) edges, we have at

least 1
2 n edges of the same color.

I Let M ⊆ E such that no two edges from M are incident to the same
vertex.

I Therefore, |M| ≤ 1
2 (n− 1) – (prove as a homework).

1

4

2

5

2
5

3

3

1

4

204 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.

I Describe G as the complete graph G′ with n− 1 vertices + one more
vertex connected to all others.

I Use the procedure from Case 1 on G′.
I There is one unused color in each vertex.
I All these colors are mutually different, so we can use them to paint

the edges of ”G−G′”.
I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.
I Describe G as the complete graph G′ with n− 1 vertices + one more

vertex connected to all others.

I Use the procedure from Case 1 on G′.
I There is one unused color in each vertex.
I All these colors are mutually different, so we can use them to paint

the edges of ”G−G′”.
I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.
I Describe G as the complete graph G′ with n− 1 vertices + one more

vertex connected to all others.
I Use the procedure from Case 1 on G′.

I There is one unused color in each vertex.
I All these colors are mutually different, so we can use them to paint

the edges of ”G−G′”.
I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.
I Describe G as the complete graph G′ with n− 1 vertices + one more

vertex connected to all others.
I Use the procedure from Case 1 on G′.
I There is one unused color in each vertex.

I All these colors are mutually different, so we can use them to paint
the edges of ”G−G′”.

I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.
I Describe G as the complete graph G′ with n− 1 vertices + one more

vertex connected to all others.
I Use the procedure from Case 1 on G′.
I There is one unused color in each vertex.
I All these colors are mutually different, so we can use them to paint

the edges of ”G−G′”.

I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Complete Graph
I Case 2: Let n be even.
I Describe G as the complete graph G′ with n− 1 vertices + one more

vertex connected to all others.
I Use the procedure from Case 1 on G′.
I There is one unused color in each vertex.
I All these colors are mutually different, so we can use them to paint

the edges of ”G−G′”.
I In the end, we used at most ∆ = n− 1 colors.

1

4

2

5

2
5

3

3

1

4

205 / 253

Edge Coloring of Undirected Graph

Theorem 30.
Let G is simple graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We need to show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I The principle is similar to the proof for bipartite graphs.

I See Chapter 7 in [Gibbons, 1985].

206 / 253

Edge Coloring of Undirected Graph

Theorem 30.
Let G is simple graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We need to show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I The principle is similar to the proof for bipartite graphs.

I See Chapter 7 in [Gibbons, 1985].

206 / 253

Edge Coloring of Undirected Graph

Theorem 30.
Let G is simple graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We need to show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I The principle is similar to the proof for bipartite graphs.

I See Chapter 7 in [Gibbons, 1985].

206 / 253

Edge Coloring of Undirected Graph

Theorem 30.
Let G is simple graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We need to show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I The principle is similar to the proof for bipartite graphs.

I See Chapter 7 in [Gibbons, 1985].

206 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

Theorem 31.
Let G be an undirected graph. Then, ∆ ≤ ψe(G) ≤ ∆ + 1.

Proof
I We must show that ψe(G) ≤ ∆ + 1.

I By induction on the number of edges.

I Induction basis: For one edge, it holds trivially.

I Let all edges except an edge (v0, v1) are colored by at most ∆ + 1
colors.

I At least one color is missing in v0 and one is missing in v1.

I If both missing colors are the same, we are done.

207 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.

I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and

I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.

I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the
sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.
I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the

sequence, where vi+1 = v and Ci+1 is missing in vi+1.

I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.
I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the

sequence, where vi+1 = v and Ci+1 is missing in vi+1.
I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let C0, C1 be the colors missing in v0, v1, respectively.
I Construct a sequence of edges (v0, v1), (v0, v2), (v0, v3), . . . such that

I Ci is missing in vi and
I (v0, vi+1) is colored by Ci.

I So we have sequence (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vi) and
C1, C2, C3, . . . , Ci, for some i ≥ 0.

I Notice that there is at most one edge, (v0, v), colored by Ci.
I If there is such v and v /∈ {v1, v2, . . . , vi}, then add (v0, vi+1) to the

sequence, where vi+1 = v and Ci+1 is missing in vi+1.
I Otherwise, the sequence is finished.

I Such sequence has always at most ∆ edges.

208 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

i) If there is no (v0, v) colored by Cj, so we do the recoloring (X 6= Cj):

v0

v1

v2

vj−1

vj

X

C1

Cj−2

Cj−1

=⇒ v0

v1

v2

vj−1

vj

C1

C2

Cj−1

Cj

209 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

i) If there is no (v0, v) colored by Cj, so we do the recoloring (X 6= Cj):

v0

v1

v2

vj−1

vj

X

C1

Cj−2

Cj−1

=⇒ v0

v1

v2

vj−1

vj

C1

C2

Cj−1

Cj

209 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.
I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.

I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by
Ci.

I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.

I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.
I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.
I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.
I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

I Let (v0, v1), (v0, v2), (v0, v3), . . . , (v0, vj) be the built sequence and
C1, C2, C3, . . . , Cj, for some j ≥ 0.

ii) If there is k < j such that (v0, vk) is colored by Cj.
I Then, for i < k, we recolor edges (see above), so (v0, vi) is colored by

Ci.
I (v0, vk) remains uncolored.

I Every component of H(C0, Cj) – subgraph with all edges of colors C0
and Cj – is either a path, or a cycle, because every vertex is adjacent
to at most one edge of color C0 and one of Cj.

I At least one of C0, Cj is not in v0, vk, vj.

I So not all can be in a single component of H(C0, Cj):

v0
Cj→ x X→ y . . .

C0→ vk and we do not reach vj.

210 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,

I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

a) v0 /∈ Hvk(C0, Cj) – component of H(C0, Cj) contains vk – then
C0 ↔ Cj in Hvk(C0, Cj), therefore C0 is missing in vk.

I C0 is missing in v0 as well, so we color (v0, vk) by C0.

b) v0 /∈ Hvj(C0, Cj), so we do recolor

I (v0, vi) by Ci, k ≤ i < j,
I (v0, vj) remains uncolored.

I In the recoloring, neither C0, nor Cj was used, so H(C0, Cj) is
unchanged.

I Again, C0 ↔ Cj v Hvj(C0, Cj) and C0 is missing in vj.

I So color (v0, vj) by C0.

211 / 253

Edge Coloring of Undirected Graph

I Based on the proof, we can introduce a polynomial algorithm.

I But problem whether ψe(G) = ∆ is NP-complete.

212 / 253

Edge Coloring of Undirected Graph

I Based on the proof, we can introduce a polynomial algorithm.

I But problem whether ψe(G) = ∆ is NP-complete.

212 / 253

Approximation for Edge Coloring

1. Add edges to G to get K|V|.

2. Find proper edge-coloring for the complete graph (∆ or ∆ + 1 colors
needed).

3. Delete edges added to G in step 1.

I We get k-edge-coloring with k ≤ n, but ψe(G) can be significantly
smaller than k.

I Time complexity: O(n2)

213 / 253

Approximation for Edge Coloring

1. Add edges to G to get K|V|.
2. Find proper edge-coloring for the complete graph (∆ or ∆ + 1 colors

needed).

3. Delete edges added to G in step 1.

I We get k-edge-coloring with k ≤ n, but ψe(G) can be significantly
smaller than k.

I Time complexity: O(n2)

213 / 253

Approximation for Edge Coloring

1. Add edges to G to get K|V|.
2. Find proper edge-coloring for the complete graph (∆ or ∆ + 1 colors

needed).

3. Delete edges added to G in step 1.

I We get k-edge-coloring with k ≤ n, but ψe(G) can be significantly
smaller than k.

I Time complexity: O(n2)

213 / 253

Approximation for Edge Coloring

1. Add edges to G to get K|V|.
2. Find proper edge-coloring for the complete graph (∆ or ∆ + 1 colors

needed).

3. Delete edges added to G in step 1.

I We get k-edge-coloring with k ≤ n, but ψe(G) can be significantly
smaller than k.

I Time complexity: O(n2)

213 / 253

Approximation for Edge Coloring

1. Add edges to G to get K|V|.
2. Find proper edge-coloring for the complete graph (∆ or ∆ + 1 colors

needed).

3. Delete edges added to G in step 1.

I We get k-edge-coloring with k ≤ n, but ψe(G) can be significantly
smaller than k.

I Time complexity: O(n2)

213 / 253

(Vertex) Graph Coloring

214 / 253

Graph Coloring

I NP-Complete problem: Can we find a proper k-coloring of G?

215 / 253

Graph Coloring

Theorem 32.
Any (simple) graph G has ∆ + 1-coloring.

Proof.
I By induction on n.

I n = 1, obvious.

I If we add vertex u, then it is connected with at most ∆ other vertices.

I Since we have ∆ + 1 colors, we have one spare color to paint u.

216 / 253

Graph Coloring

Theorem 32.
Any (simple) graph G has ∆ + 1-coloring.

Proof.
I By induction on n.

I n = 1, obvious.

I If we add vertex u, then it is connected with at most ∆ other vertices.

I Since we have ∆ + 1 colors, we have one spare color to paint u.

216 / 253

Graph Coloring

Theorem 32.
Any (simple) graph G has ∆ + 1-coloring.

Proof.
I By induction on n.

I n = 1, obvious.

I If we add vertex u, then it is connected with at most ∆ other vertices.

I Since we have ∆ + 1 colors, we have one spare color to paint u.

216 / 253

Graph Coloring

Theorem 32.
Any (simple) graph G has ∆ + 1-coloring.

Proof.
I By induction on n.

I n = 1, obvious.

I If we add vertex u, then it is connected with at most ∆ other vertices.

I Since we have ∆ + 1 colors, we have one spare color to paint u.

216 / 253

Graph Coloring

I In most cases: ψv(G) < ∆ + 1.

I Example:

I If G is planar, then ψv(G) ≤ 4, but ∆ can be arbitrary.

I Homework: Design your own algorithm to find some proper coloring
of a given graph?

217 / 253

Graph Coloring

I In most cases: ψv(G) < ∆ + 1.

I Example:

I If G is planar, then ψv(G) ≤ 4, but ∆ can be arbitrary.

I Homework: Design your own algorithm to find some proper coloring
of a given graph?

217 / 253

Graph Coloring

I In most cases: ψv(G) < ∆ + 1.

I Example:

I If G is planar, then ψv(G) ≤ 4, but ∆ can be arbitrary.

I Homework: Design your own algorithm to find some proper coloring
of a given graph?

217 / 253

Graph Coloring

I In most cases: ψv(G) < ∆ + 1.

I Example:

I If G is planar, then ψv(G) ≤ 4, but ∆ can be arbitrary.

I Homework: Design your own algorithm to find some proper coloring
of a given graph?

217 / 253

Chromatic polynomial

218 / 253

Chromatic polynomial

I Pk(G) – chromatic polynomial of G;
determines the number of ways of proper vertex-coloring of G with k
colors.

219 / 253

Chromatic polynomial

a

b

c d

Figure: Graph G1.

I b . . . picks up one of k colors.

I a, c, d . . . pick up any of k− 1 remaining colors.

I Pk(G1) = k(k− 1)3

I In general, let Tn be a tree with n vertices. Then,
Pk(Tn) = k(k− 1)n−1.

220 / 253

Chromatic polynomial

a

b

c d

Figure: Graph G1.

I b . . . picks up one of k colors.

I a, c, d . . . pick up any of k− 1 remaining colors.

I Pk(G1) = k(k− 1)3

I In general, let Tn be a tree with n vertices. Then,
Pk(Tn) = k(k− 1)n−1.

220 / 253

Chromatic polynomial

a

b

c d

Figure: Graph G1.

I b . . . picks up one of k colors.

I a, c, d . . . pick up any of k− 1 remaining colors.

I Pk(G1) = k(k− 1)3

I In general, let Tn be a tree with n vertices. Then,
Pk(Tn) = k(k− 1)n−1.

220 / 253

Chromatic polynomial

a

b

c d

Figure: Graph G1.

I b . . . picks up one of k colors.

I a, c, d . . . pick up any of k− 1 remaining colors.

I Pk(G1) = k(k− 1)3

I In general, let Tn be a tree with n vertices. Then,
Pk(Tn) = k(k− 1)n−1.

220 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)
I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)
I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)
I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)

I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)
I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G2.

I a . . . paint it to any of k colors.

I b . . . paint it to any of k− 1 remaining colors.

I c . . . paint it to any of k− 2 remaining colors.

I Pk(G2) = k(k− 1)(k− 2)
I In general, let Kn be a complete graph with n vertices.

I Then, Pk(Kn) =
k!

(k−n)!

221 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

a

b

c

Figure: Graph G′2.

I a . . . gets arbitrary one of k colors.

I b . . . gets arbitrary one of k colors.

I c . . . gets arbitrary one of k colors.

I Pk(G′2) = k3

I In general, let Φn be an isolated graph with n vertices; that is,
deg(v) = 0 for all v ∈ V.

I Then, Pk(Φn) = kn

222 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial

I Observation: If k < ψv(G), then Pk(G) = 0.

I Let G be an undirected graph.

I How to construct Pk(G)?

I Notation:

I G− (u, v) . . . subgraph of G where just edge (u, v) was removed.

I G + (u, v) . . . graph created by adding (u, v) to G.

I G ◦ (u, v) . . . graph created from G by contracting (u, v).

223 / 253

Chromatic polynomial – Subtracting Recursion Formula

Theorem 33.
Let (u, v) be an edge in G, then

Pk(G) = Pk(G− (u, v))− Pk(G ◦ (u, v)) .

Proof.
I Pk(G) denotes the number of colorings where u and v has different

color.

I All these colorings are also covered by Pk(G− (u, v)).
I In addition, Pk(G− (u, v)) covers also the colorings where u and v

has the same color.

I So, we subtract them using polynomial Pk(G ◦ (u, v)).

224 / 253

Chromatic polynomial – Subtracting Recursion Formula

Theorem 33.
Let (u, v) be an edge in G, then

Pk(G) = Pk(G− (u, v))− Pk(G ◦ (u, v)) .

Proof.
I Pk(G) denotes the number of colorings where u and v has different

color.

I All these colorings are also covered by Pk(G− (u, v)).

I In addition, Pk(G− (u, v)) covers also the colorings where u and v
has the same color.

I So, we subtract them using polynomial Pk(G ◦ (u, v)).

224 / 253

Chromatic polynomial – Subtracting Recursion Formula

Theorem 33.
Let (u, v) be an edge in G, then

Pk(G) = Pk(G− (u, v))− Pk(G ◦ (u, v)) .

Proof.
I Pk(G) denotes the number of colorings where u and v has different

color.

I All these colorings are also covered by Pk(G− (u, v)).
I In addition, Pk(G− (u, v)) covers also the colorings where u and v

has the same color.

I So, we subtract them using polynomial Pk(G ◦ (u, v)).

224 / 253

Chromatic polynomial – Subtracting Recursion Formula

Theorem 33.
Let (u, v) be an edge in G, then

Pk(G) = Pk(G− (u, v))− Pk(G ◦ (u, v)) .

Proof.
I Pk(G) denotes the number of colorings where u and v has different

color.

I All these colorings are also covered by Pk(G− (u, v)).
I In addition, Pk(G− (u, v)) covers also the colorings where u and v

has the same color.

I So, we subtract them using polynomial Pk(G ◦ (u, v)).

224 / 253

Chromatic polynomial – Example

a

bc

d

Figure: Graph G3.

I Pk(G3) = Pk(Φ4)− 4Pk(Φ3) + 6Pk(Φ2)− 3Pk(Φ1)

= k(k− 1)(k2 − 3k + 3)

225 / 253

Chromatic polynomial – Example

a

bc

d

Figure: Graph G3.

I Pk(G3) = Pk(Φ4)− 4Pk(Φ3) + 6Pk(Φ2)− 3Pk(Φ1)

= k(k− 1)(k2 − 3k + 3)

225 / 253

Chromatic polynomial – Adding Recursive Formula

I If G is dense, there is better variant of the construction:

I Pk(G) = Pk(G + (u, v)) + Pk((G + (u, v)) ◦ (u, v))
I That is, we add new edges until we reach complete graphs as addends.

226 / 253

Chromatic polynomial – Adding Recursive Formula

I If G is dense, there is better variant of the construction:

I Pk(G) = Pk(G + (u, v)) + Pk((G + (u, v)) ◦ (u, v))

I That is, we add new edges until we reach complete graphs as addends.

226 / 253

Chromatic polynomial – Adding Recursive Formula

I If G is dense, there is better variant of the construction:

I Pk(G) = Pk(G + (u, v)) + Pk((G + (u, v)) ◦ (u, v))
I That is, we add new edges until we reach complete graphs as addends.

226 / 253

Chromatic polynomial – Example

a

b

c

d e

Figure: Graph G4.

I Pk(G4) = Pk(K5) + 3Pk(K4) + 2Pk(K3)

= k(k− 1)(k− 2)(k2 − 4k + 5)

227 / 253

Chromatic polynomial – Example

a

b

c

d e

Figure: Graph G4.

I Pk(G4) = Pk(K5) + 3Pk(K4) + 2Pk(K3)

= k(k− 1)(k− 2)(k2 − 4k + 5)

227 / 253

Chromatic polynomial and vertex-chromatic index

I From Pk(G), we can determine ψv(G) as minimum k such that
Pk(G) > 0.

I ψv(G3) = 2
I ψv(G4) =?

I What is the time complexity of building chromatic polynomial?

For k > 3, O(2nnr) for some constant r.

228 / 253

Chromatic polynomial and vertex-chromatic index

I From Pk(G), we can determine ψv(G) as minimum k such that
Pk(G) > 0.

I ψv(G3) = 2

I ψv(G4) =?

I What is the time complexity of building chromatic polynomial?

For k > 3, O(2nnr) for some constant r.

228 / 253

Chromatic polynomial and vertex-chromatic index

I From Pk(G), we can determine ψv(G) as minimum k such that
Pk(G) > 0.

I ψv(G3) = 2
I ψv(G4) =?

I What is the time complexity of building chromatic polynomial?

For k > 3, O(2nnr) for some constant r.

228 / 253

Chromatic polynomial and vertex-chromatic index

I From Pk(G), we can determine ψv(G) as minimum k such that
Pk(G) > 0.

I ψv(G3) = 2
I ψv(G4) =?

I What is the time complexity of building chromatic polynomial?

For k > 3, O(2nnr) for some constant r.

228 / 253

Chromatic polynomial and vertex-chromatic index

I From Pk(G), we can determine ψv(G) as minimum k such that
Pk(G) > 0.

I ψv(G3) = 2
I ψv(G4) =?

I What is the time complexity of building chromatic polynomial?

For k > 3, O(2nnr) for some constant r.

228 / 253

Approximate Sequential Vertex Coloring

I Lawler Algorithm for Vertex-coloring – O(n m kn), where k = 1 + 3
√

3

I What about an approximate algorithm?

APPROXIMATE-SEQUENTIAL-VERTEX-COLORING(G)
1 for each vertex u ∈ V
2 do for c← 1 to ∆ + 1
3 do N[u, c]← FALSE
4 for each vertex u ∈ V
5 do c← 1
6 while N[u, c] = TRUE
7 do c← c + 1
8 for each v ∈ Adj[u]
9 do N[v, c]← TRUE
10 color[u]← c

I Time Complexity: O(n2)

I Performance ratio A-S-V-C(G)/ψv(G) is non-constant.

229 / 253

Approximate Sequential Vertex Coloring

I Lawler Algorithm for Vertex-coloring – O(n m kn), where k = 1 + 3
√

3
I What about an approximate algorithm?

APPROXIMATE-SEQUENTIAL-VERTEX-COLORING(G)
1 for each vertex u ∈ V
2 do for c← 1 to ∆ + 1
3 do N[u, c]← FALSE
4 for each vertex u ∈ V
5 do c← 1
6 while N[u, c] = TRUE
7 do c← c + 1
8 for each v ∈ Adj[u]
9 do N[v, c]← TRUE
10 color[u]← c

I Time Complexity: O(n2)

I Performance ratio A-S-V-C(G)/ψv(G) is non-constant.

229 / 253

Approximate Sequential Vertex Coloring

I Lawler Algorithm for Vertex-coloring – O(n m kn), where k = 1 + 3
√

3
I What about an approximate algorithm?

APPROXIMATE-SEQUENTIAL-VERTEX-COLORING(G)
1 for each vertex u ∈ V
2 do for c← 1 to ∆ + 1
3 do N[u, c]← FALSE
4 for each vertex u ∈ V
5 do c← 1
6 while N[u, c] = TRUE
7 do c← c + 1
8 for each v ∈ Adj[u]
9 do N[v, c]← TRUE
10 color[u]← c

I Time Complexity: O(n2)

I Performance ratio A-S-V-C(G)/ψv(G) is non-constant.

229 / 253

Approximate Sequential Vertex Coloring

I Lawler Algorithm for Vertex-coloring – O(n m kn), where k = 1 + 3
√

3
I What about an approximate algorithm?

APPROXIMATE-SEQUENTIAL-VERTEX-COLORING(G)
1 for each vertex u ∈ V
2 do for c← 1 to ∆ + 1
3 do N[u, c]← FALSE
4 for each vertex u ∈ V
5 do c← 1
6 while N[u, c] = TRUE
7 do c← c + 1
8 for each v ∈ Adj[u]
9 do N[v, c]← TRUE
10 color[u]← c

I Time Complexity: O(n2)

I Performance ratio A-S-V-C(G)/ψv(G) is non-constant.

229 / 253

Approximate Sequential Vertex Coloring

I Lawler Algorithm for Vertex-coloring – O(n m kn), where k = 1 + 3
√

3
I What about an approximate algorithm?

APPROXIMATE-SEQUENTIAL-VERTEX-COLORING(G)
1 for each vertex u ∈ V
2 do for c← 1 to ∆ + 1
3 do N[u, c]← FALSE
4 for each vertex u ∈ V
5 do c← 1
6 while N[u, c] = TRUE
7 do c← c + 1
8 for each v ∈ Adj[u]
9 do N[v, c]← TRUE
10 color[u]← c

I Time Complexity: O(n2)

I Performance ratio A-S-V-C(G)/ψv(G) is non-constant.

229 / 253

Exercises

1. Consider 3× 3 chessboard represented as a graph with 9 vertices
where an undirected edge (u, v) represents that a chess piece placed
at u dominates v (it can attack the other piece at v) and vice versa.
Use graph coloring to determine how many queens we can place on
this chessboard so they do not attack each other.

2. Derive chromatic polynomial using subtracting formula for the
complete graph with 4 vertices.

3. Derive chromatic polynomial using adding formula for the isolated
graph with 4 vertices.

4. Use approximate vertex coloring algorithm for a bipartite graph with
L = {u1, u2, . . . , uk}, R = {v1, v2, . . . , vk}, and E = {(ui, vj) : i 6= j},
k ≥ 2. First, consider the vertices are colored in the order u1, u2, . . . ,
uk, v1, v2, . . . , vk. Second, apply the algorithm in the other order u1,
v1, u2, v2, . . . , uk, vk. Compare the results.

230 / 253

Eulerian Tours

231 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)

I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)

I a game how to plan a journey through 20 cities as the tips on the
regular dodecahedron

I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem

I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)

I a game how to plan a journey through 20 cities as the tips on the
regular dodecahedron

I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)

I a game how to plan a journey through 20 cities as the tips on the
regular dodecahedron

I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)

I a game how to plan a journey through 20 cities as the tips on the
regular dodecahedron

I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)
I a game how to plan a journey through 20 cities as the tips on the

regular dodecahedron

I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)
I a game how to plan a journey through 20 cities as the tips on the

regular dodecahedron
I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

L. Euler and W. R. Hamilton

I Leonhard Euler (1707 – 1783, Swiss mathematician)
I The Königsberge bridges problem
I Graph exploration that walks every edge exactly once.

I William Rowan Hamilton (1805 – 1865, British mathematician)
I a game how to plan a journey through 20 cities as the tips on the

regular dodecahedron
I Graph exploration that walks through every vertex exactly once.

I Definition note: Tour = path or circuit; Cycle/Circuit = closed path

232 / 253

Eulerian graph

I Eulerian graph is a graph that contains an Eulerian circuit; that is, a
closed path that visits all edges exactly once.

I Note that Eulerian path does not have to be closed, but then the
graph is not Eulerian.

233 / 253

Eulerian graph

I Eulerian graph is a graph that contains an Eulerian circuit; that is, a
closed path that visits all edges exactly once.

I Note that Eulerian path does not have to be closed, but then the
graph is not Eulerian.

233 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.

I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.

I Consider any exploration of G by closed (or open) tour T = (VG, ET)
from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;

(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Theorem 34.
An undirected graph G, has an Eulerian tour if and only if it is connected
and the number of odd-degree vertices is 0 or 2.

Proof
I Necessary condition: If an Eulerian path exists in G then G must be

connected and only vertices on the ends of the path can be of
odd-degree.

I Sufficient condition: By induction on the number of edges in |E|.
I Assume that G = (VG, EG) with |EG| > 2 satisfies this theorem.

I If there are odd-degree vertices in G, denote them v1, v2.
I Consider any exploration of G by closed (or open) tour T = (VG, ET)

from vertex vi (or v1) until we reach vertex vj from which we cannot
continue without repeating an edge (no unused incident edge).

(a) If no odd-degree vertex then vi = vj;
(b) otherwise, vj = v2.

234 / 253

Theorem: Existence of an Eulerian tour

Proof (continued)

I Let G′ = G− T = (VG′ = {u, v|(u, v) ∈ EG − ET}, EG − ET). G′ can
be unconnected, but contains only even-degree vertices.

I From IH, G′ has an Eulerian tour for every its component.

I Since G is connected and if G′ is nonempty, then VT ∩VG′ 6= ∅.

I Now, we inject Eulerian tours from G′ into T using any of these
common vertices.

235 / 253

Theorem: Existence of an Eulerian tour

Proof (continued)

I Let G′ = G− T = (VG′ = {u, v|(u, v) ∈ EG − ET}, EG − ET). G′ can
be unconnected, but contains only even-degree vertices.

I From IH, G′ has an Eulerian tour for every its component.

I Since G is connected and if G′ is nonempty, then VT ∩VG′ 6= ∅.

I Now, we inject Eulerian tours from G′ into T using any of these
common vertices.

235 / 253

Theorem: Existence of an Eulerian tour

Proof (continued)

I Let G′ = G− T = (VG′ = {u, v|(u, v) ∈ EG − ET}, EG − ET). G′ can
be unconnected, but contains only even-degree vertices.

I From IH, G′ has an Eulerian tour for every its component.

I Since G is connected and if G′ is nonempty, then VT ∩VG′ 6= ∅.

I Now, we inject Eulerian tours from G′ into T using any of these
common vertices.

235 / 253

Theorem: Existence of an Eulerian tour

Proof (continued)

I Let G′ = G− T = (VG′ = {u, v|(u, v) ∈ EG − ET}, EG − ET). G′ can
be unconnected, but contains only even-degree vertices.

I From IH, G′ has an Eulerian tour for every its component.

I Since G is connected and if G′ is nonempty, then VT ∩VG′ 6= ∅.

I Now, we inject Eulerian tours from G′ into T using any of these
common vertices.

235 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Example: Draw a house by a tour

s

t x

zy

Figure: Eulerian House

236 / 253

Eulerian tour in digraphs

Out-tree of a graph G = (V, E) is a directed subgraph (spanning tree)
T = (V, E′) with root u ∈ V where E′ ⊆ E and d+(u) = 0 and d+(v) = 1
for every v ∈ V− {u}.

Balanced graph G = (V, E) is a digraph with d+(u) = d−(u) for every
u ∈ V.

Theorem 35.
A digraph G = (V, E) is Eulerian if and only if G is connected (after
making symmetric) and balanced. G has an Eulerian path if and only if G
is connected and the degrees of V satisfy:

d−(v1) = d+(v1) + 1 and d+(v2) = d−(v2) + 1 and

for every v ∈ V− {v1, v2}, d−(v) = d+(v)

Proof. The first part in analogy to undirected Eulerian graph.

237 / 253

Eulerian tour in digraphs

Out-tree of a graph G = (V, E) is a directed subgraph (spanning tree)
T = (V, E′) with root u ∈ V where E′ ⊆ E and d+(u) = 0 and d+(v) = 1
for every v ∈ V− {u}.
Balanced graph G = (V, E) is a digraph with d+(u) = d−(u) for every
u ∈ V.

Theorem 35.
A digraph G = (V, E) is Eulerian if and only if G is connected (after
making symmetric) and balanced. G has an Eulerian path if and only if G
is connected and the degrees of V satisfy:

d−(v1) = d+(v1) + 1 and d+(v2) = d−(v2) + 1 and

for every v ∈ V− {v1, v2}, d−(v) = d+(v)

Proof. The first part in analogy to undirected Eulerian graph.

237 / 253

Eulerian tour in digraphs

Out-tree of a graph G = (V, E) is a directed subgraph (spanning tree)
T = (V, E′) with root u ∈ V where E′ ⊆ E and d+(u) = 0 and d+(v) = 1
for every v ∈ V− {u}.
Balanced graph G = (V, E) is a digraph with d+(u) = d−(u) for every
u ∈ V.

Theorem 35.
A digraph G = (V, E) is Eulerian if and only if G is connected (after
making symmetric) and balanced. G has an Eulerian path if and only if G
is connected and the degrees of V satisfy:

d−(v1) = d+(v1) + 1 and d+(v2) = d−(v2) + 1 and

for every v ∈ V− {v1, v2}, d−(v) = d+(v)

Proof. The first part in analogy to undirected Eulerian graph.

237 / 253

Eulerian tour in digraphs

Out-tree of a graph G = (V, E) is a directed subgraph (spanning tree)
T = (V, E′) with root u ∈ V where E′ ⊆ E and d+(u) = 0 and d+(v) = 1
for every v ∈ V− {u}.
Balanced graph G = (V, E) is a digraph with d+(u) = d−(u) for every
u ∈ V.

Theorem 35.
A digraph G = (V, E) is Eulerian if and only if G is connected (after
making symmetric) and balanced. G has an Eulerian path if and only if G
is connected and the degrees of V satisfy:

d−(v1) = d+(v1) + 1 and d+(v2) = d−(v2) + 1 and

for every v ∈ V− {v1, v2}, d−(v) = d+(v)

Proof. The first part in analogy to undirected Eulerian graph.

237 / 253

Directed Eulerian Tour – Examples

a

cb

Figure: Eulerian digraph

a

cb

Figure: Eulerian path that is not a circuit

238 / 253

Theorem: Spanning out-tree of Eulerian digraph

Theorem 36.
Let G = (V, E) be an Eulerian digraph and T its subgraph created by
Eulerian tour from any vertex u in the following way: for every v 6= u, we
add the first edge leading to v. Then, T is a spanning out-tree of digraph
G rooted at u.

Proof
I From the construction of T, it holds that d+(u) = 0 and d+(v) = 1

for every u 6= v, u, v ∈ V.

I Observe that T has n− 1 edges. Now, we prove that T is acyclic (by
contradiction):

I Assume that T contains a cycle finished by (vi, vj).

I Since d+(u) = 0, vj 6= u.

I Since (vi, vj) closes a cycle, so vj was already processed, which is a
contradiction!

239 / 253

Theorem: Spanning out-tree of Eulerian digraph

Theorem 36.
Let G = (V, E) be an Eulerian digraph and T its subgraph created by
Eulerian tour from any vertex u in the following way: for every v 6= u, we
add the first edge leading to v. Then, T is a spanning out-tree of digraph
G rooted at u.

Proof
I From the construction of T, it holds that d+(u) = 0 and d+(v) = 1

for every u 6= v, u, v ∈ V.

I Observe that T has n− 1 edges. Now, we prove that T is acyclic (by
contradiction):

I Assume that T contains a cycle finished by (vi, vj).

I Since d+(u) = 0, vj 6= u.

I Since (vi, vj) closes a cycle, so vj was already processed, which is a
contradiction!

239 / 253

Theorem: Spanning out-tree of Eulerian digraph

Theorem 36.
Let G = (V, E) be an Eulerian digraph and T its subgraph created by
Eulerian tour from any vertex u in the following way: for every v 6= u, we
add the first edge leading to v. Then, T is a spanning out-tree of digraph
G rooted at u.

Proof
I From the construction of T, it holds that d+(u) = 0 and d+(v) = 1

for every u 6= v, u, v ∈ V.

I Observe that T has n− 1 edges. Now, we prove that T is acyclic (by
contradiction):

I Assume that T contains a cycle finished by (vi, vj).

I Since d+(u) = 0, vj 6= u.

I Since (vi, vj) closes a cycle, so vj was already processed, which is a
contradiction!

239 / 253

Theorem: Spanning out-tree of Eulerian digraph

Theorem 36.
Let G = (V, E) be an Eulerian digraph and T its subgraph created by
Eulerian tour from any vertex u in the following way: for every v 6= u, we
add the first edge leading to v. Then, T is a spanning out-tree of digraph
G rooted at u.

Proof
I From the construction of T, it holds that d+(u) = 0 and d+(v) = 1

for every u 6= v, u, v ∈ V.

I Observe that T has n− 1 edges. Now, we prove that T is acyclic (by
contradiction):

I Assume that T contains a cycle finished by (vi, vj).

I Since d+(u) = 0, vj 6= u.

I Since (vi, vj) closes a cycle, so vj was already processed, which is a
contradiction!

239 / 253

Theorem: Spanning out-tree of Eulerian digraph

Theorem 36.
Let G = (V, E) be an Eulerian digraph and T its subgraph created by
Eulerian tour from any vertex u in the following way: for every v 6= u, we
add the first edge leading to v. Then, T is a spanning out-tree of digraph
G rooted at u.

Proof
I From the construction of T, it holds that d+(u) = 0 and d+(v) = 1

for every u 6= v, u, v ∈ V.

I Observe that T has n− 1 edges. Now, we prove that T is acyclic (by
contradiction):

I Assume that T contains a cycle finished by (vi, vj).

I Since d+(u) = 0, vj 6= u.

I Since (vi, vj) closes a cycle, so vj was already processed, which is a
contradiction!

239 / 253

Theorem about directed Eulerian tour

Theorem 37.
If G is connected and balanced digraph with a directed spanning tree T
rooted at u, then we can find Eulerian circuit in the reverse order in the
following way:

(a) Start with any edge incident to u.

(b) Next edges are chosen as incident to the current vertex such that:

(i) the edge was not visited yet,
(ii) the edges from T are chosen as the last ones.

(c) The search ends if the current vertex has no incident unvisited edges.

Proof
I The balanced property guarantees that it ends back in root u.

I Assume that the circuit does not contain an edge (vi, vj).

240 / 253

Theorem about directed Eulerian tour

Theorem 37.
If G is connected and balanced digraph with a directed spanning tree T
rooted at u, then we can find Eulerian circuit in the reverse order in the
following way:

(a) Start with any edge incident to u.

(b) Next edges are chosen as incident to the current vertex such that:

(i) the edge was not visited yet,
(ii) the edges from T are chosen as the last ones.

(c) The search ends if the current vertex has no incident unvisited edges.

Proof
I The balanced property guarantees that it ends back in root u.

I Assume that the circuit does not contain an edge (vi, vj).

240 / 253

Theorem about directed Eulerian tour

Proof
I Assume that the circuit does not contain an edge (vi, vj).

I Since the balanced graph, vi must be the end vertex for the next
unvisited edge (vk, vi).

I Let edge (vk, vi) be from T, so it will not be used because of step
(b(ii)).

I Now, traverse the sequence of edges reversely back to u.

I Since G is balanced, we find unvisited edge that is incident to u,
which is a contradiction with step (c).

241 / 253

Theorem about directed Eulerian tour

Proof
I Assume that the circuit does not contain an edge (vi, vj).

I Since the balanced graph, vi must be the end vertex for the next
unvisited edge (vk, vi).

I Let edge (vk, vi) be from T, so it will not be used because of step
(b(ii)).

I Now, traverse the sequence of edges reversely back to u.

I Since G is balanced, we find unvisited edge that is incident to u,
which is a contradiction with step (c).

241 / 253

Theorem about directed Eulerian tour

Proof
I Assume that the circuit does not contain an edge (vi, vj).

I Since the balanced graph, vi must be the end vertex for the next
unvisited edge (vk, vi).

I Let edge (vk, vi) be from T, so it will not be used because of step
(b(ii)).

I Now, traverse the sequence of edges reversely back to u.

I Since G is balanced, we find unvisited edge that is incident to u,
which is a contradiction with step (c).

241 / 253

Theorem about directed Eulerian tour

Proof
I Assume that the circuit does not contain an edge (vi, vj).

I Since the balanced graph, vi must be the end vertex for the next
unvisited edge (vk, vi).

I Let edge (vk, vi) be from T, so it will not be used because of step
(b(ii)).

I Now, traverse the sequence of edges reversely back to u.

I Since G is balanced, we find unvisited edge that is incident to u,
which is a contradiction with step (c).

241 / 253

Theorem about directed Eulerian tour

Proof
I Assume that the circuit does not contain an edge (vi, vj).

I Since the balanced graph, vi must be the end vertex for the next
unvisited edge (vk, vi).

I Let edge (vk, vi) be from T, so it will not be used because of step
(b(ii)).

I Now, traverse the sequence of edges reversely back to u.

I Since G is balanced, we find unvisited edge that is incident to u,
which is a contradiction with step (c).

241 / 253

Algorithm for searching directed Eulerian path

EULER-CIRCUIT(G)
1 Find an oriented spanning out-tree T = (V, ET) of G = (V, E) (root u)
2 for every vertex v ∈ V
3 do A[v]← ∅
4 I[v]← 0
5 for every edge (vi, vj) ∈ E

do if (vi, vj) ∈ ET
then add vi to the tail of list A[vj]
else add vi to the head of list A[vj]

6 EC ← ∅
7 CV ← u
8 while I[CV] ≤ d+(CV)
9 do add CV to the head of list EC

10 I[CV]← I[CV] + 1
11 CV ← A[CV][I[CV]]
12 Print EC

242 / 253

Algorithm for searching directed Eulerian path

Analysis of time complexity

I Eulerian graph has always m ≥ n (more edges then vertices).

I Line 1: DFS, get the highest f and then DFS from vertex with the
highest f ⇒ O(m).

I In while cycle, we always increment I[CV], so ∑v∈V d+(v) = Θ(m).

I Therefore, the total time complexity O(m).

243 / 253

Algorithm for searching directed Eulerian path

Analysis of time complexity

I Eulerian graph has always m ≥ n (more edges then vertices).

I Line 1: DFS, get the highest f and then DFS from vertex with the
highest f ⇒ O(m).

I In while cycle, we always increment I[CV], so ∑v∈V d+(v) = Θ(m).

I Therefore, the total time complexity O(m).

243 / 253

Algorithm for searching directed Eulerian path

Analysis of time complexity

I Eulerian graph has always m ≥ n (more edges then vertices).

I Line 1: DFS, get the highest f and then DFS from vertex with the
highest f ⇒ O(m).

I In while cycle, we always increment I[CV], so ∑v∈V d+(v) = Θ(m).

I Therefore, the total time complexity O(m).

243 / 253

Algorithm for searching directed Eulerian path

Analysis of time complexity

I Eulerian graph has always m ≥ n (more edges then vertices).

I Line 1: DFS, get the highest f and then DFS from vertex with the
highest f ⇒ O(m).

I In while cycle, we always increment I[CV], so ∑v∈V d+(v) = Θ(m).

I Therefore, the total time complexity O(m).

243 / 253

Application of Eulerian tours

I de Bruijn sequence

I Given an alphabet, find cycle-string where are no two same substrings
of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

244 / 253

Application of Eulerian tours

I de Bruijn sequence
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

244 / 253

Application of Eulerian tours

I de Bruijn sequence
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

244 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.

I Given an alphabet, find cycle-string where are no two same substrings
of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.

I Given an alphabet, find cycle-string where are no two same substrings
of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.

I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.
I Given connected positively-weighted digraph,

I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.
I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.

I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Chinese postman problem for undirected graphs

I Let G = (V, E) be a connected positively-weighted non-Eulerian
undirected graph.

I Find the shortest (non-simple) circuit that contains all edges of G.
I Given an alphabet, find cycle-string where are no two same substrings

of length k.

I Chinese postman problem: traverse all the streets of the district
effectively and get back to post office.
I Given connected positively-weighted digraph,
I find the shortest circuit that contains all edges of such digraph.
I Optimal solution for non-Eulerian graph: O(m + n3)

245 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Algorithm for Chinese postman problem

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

2. Construct G′

3. Find a minimum-weight perfect matching of G′

4. Construct G′′

5. Find an Eulerian circuit of G′′ and thus a minimum-weight postman’s
circuit of G.

246 / 253

Hamiltonian Paths and Cycles

247 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems

I Existence problems - does a Hamiltonian tour exist (solution: yes/no;
or the path itself)

I Optimization problems - find the best Hamiltonian tour in a weighted
graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems

I Existence problems - does a Hamiltonian tour exist (solution: yes/no;
or the path itself)

I Optimization problems - find the best Hamiltonian tour in a weighted
graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems
I Existence problems - does a Hamiltonian tour exist (solution: yes/no;

or the path itself)

I Optimization problems - find the best Hamiltonian tour in a weighted
graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems
I Existence problems - does a Hamiltonian tour exist (solution: yes/no;

or the path itself)
I Optimization problems - find the best Hamiltonian tour in a weighted

graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems
I Existence problems - does a Hamiltonian tour exist (solution: yes/no;

or the path itself)
I Optimization problems - find the best Hamiltonian tour in a weighted

graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems
I Existence problems - does a Hamiltonian tour exist (solution: yes/no;

or the path itself)
I Optimization problems - find the best Hamiltonian tour in a weighted

graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Hamiltonian path and cycles

I Hamiltonian graph is a graph that contains Hamiltonian circuit. That
is, closed path going through all vertices exactly once.

I Types of Hamiltonian tasks/problems
I Existence problems - does a Hamiltonian tour exist (solution: yes/no;

or the path itself)
I Optimization problems - find the best Hamiltonian tour in a weighted

graph

I All tasks here are NP-Complete (very hard).

I Necessary condition = Each Hamiltonian graph satisfies but some
non-Hamiltonian as well.

I Sufficient condition = Only Hamiltonian graphs satisfies but not all of
them.

248 / 253

Sufficient conditions for special graphs

Theorem 38.
Every complete graph is Hamiltonian.

Proof
I Take any permutation of vertices.

Theorem 39.
Every digraph with complete symmetric graph contains a Hamiltonian
path.

Theorem 40.
Every strongly-connected digraph with complete symmetric graph is
Hamiltonian graph.

Theorem 41.
If G = (V, E) is a graph such that |V| > 3 and minv∈V(d(v)) > n

2 then G
is Hamiltonian.

249 / 253

Sufficient conditions for special graphs

Theorem 38.
Every complete graph is Hamiltonian.

Proof
I Take any permutation of vertices.

Theorem 39.
Every digraph with complete symmetric graph contains a Hamiltonian
path.

Theorem 40.
Every strongly-connected digraph with complete symmetric graph is
Hamiltonian graph.

Theorem 41.
If G = (V, E) is a graph such that |V| > 3 and minv∈V(d(v)) > n

2 then G
is Hamiltonian.

249 / 253

Sufficient conditions for special graphs

Theorem 38.
Every complete graph is Hamiltonian.

Proof
I Take any permutation of vertices.

Theorem 39.
Every digraph with complete symmetric graph contains a Hamiltonian
path.

Theorem 40.
Every strongly-connected digraph with complete symmetric graph is
Hamiltonian graph.

Theorem 41.
If G = (V, E) is a graph such that |V| > 3 and minv∈V(d(v)) > n

2 then G
is Hamiltonian.

249 / 253

Sufficient conditions for special graphs

Theorem 38.
Every complete graph is Hamiltonian.

Proof
I Take any permutation of vertices.

Theorem 39.
Every digraph with complete symmetric graph contains a Hamiltonian
path.

Theorem 40.
Every strongly-connected digraph with complete symmetric graph is
Hamiltonian graph.

Theorem 41.
If G = (V, E) is a graph such that |V| > 3 and minv∈V(d(v)) > n

2 then G
is Hamiltonian.

249 / 253

Sufficient conditions for special graphs

Theorem 38.
Every complete graph is Hamiltonian.

Proof
I Take any permutation of vertices.

Theorem 39.
Every digraph with complete symmetric graph contains a Hamiltonian
path.

Theorem 40.
Every strongly-connected digraph with complete symmetric graph is
Hamiltonian graph.

Theorem 41.
If G = (V, E) is a graph such that |V| > 3 and minv∈V(d(v)) > n

2 then G
is Hamiltonian.

249 / 253

Chvátal theorem (1972)

Theorem 42.
Let G be undirected graph with n ≥ 3 vertices. If
d(v1) ≤ d(v2) ≤ · · · ≤ d(vn) is a non-descending sequence of degrees of
vertices and, in addition, the following holds:

if for some k ≤ n
2

is d(vk) ≤ k then d(vn−k) ≥ n− k

then G is Hamiltonian.

I First part of the proof guarantees the existence of a Hamiltonian
circuit for sufficiently high degrees.

I Second part proves that this is the best sufficient condition based on
the degrees of vertices.

I The proof by contradiction is very complex and non-constructive.

250 / 253

Chvátal theorem (1972)

Theorem 42.
Let G be undirected graph with n ≥ 3 vertices. If
d(v1) ≤ d(v2) ≤ · · · ≤ d(vn) is a non-descending sequence of degrees of
vertices and, in addition, the following holds:

if for some k ≤ n
2

is d(vk) ≤ k then d(vn−k) ≥ n− k

then G is Hamiltonian.

I First part of the proof guarantees the existence of a Hamiltonian
circuit for sufficiently high degrees.

I Second part proves that this is the best sufficient condition based on
the degrees of vertices.

I The proof by contradiction is very complex and non-constructive.

250 / 253

Chvátal theorem (1972)

Theorem 42.
Let G be undirected graph with n ≥ 3 vertices. If
d(v1) ≤ d(v2) ≤ · · · ≤ d(vn) is a non-descending sequence of degrees of
vertices and, in addition, the following holds:

if for some k ≤ n
2

is d(vk) ≤ k then d(vn−k) ≥ n− k

then G is Hamiltonian.

I First part of the proof guarantees the existence of a Hamiltonian
circuit for sufficiently high degrees.

I Second part proves that this is the best sufficient condition based on
the degrees of vertices.

I The proof by contradiction is very complex and non-constructive.

250 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Necessary conditions for special graphs

Biconnected graph is a graph where any one vertex can be removed and
graph remains connected. That is, there is no articulation vertex.

Theorem 43.
All Hamiltonian graphs are biconnected.

I But a biconnected graph need not be Hamiltonian.

I See, for example, the Petersen graph

251 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:

I Add edges to the general graph G to get complete graph K, weight the
edges by M.

I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:

I Add edges to the general graph G to get complete graph K, weight the
edges by M.

I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:

I Add edges to the general graph G to get complete graph K, weight the
edges by M.

I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:
I Add edges to the general graph G to get complete graph K, weight the

edges by M.

I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:
I Add edges to the general graph G to get complete graph K, weight the

edges by M.
I M is big enough (e.g. the sum of all original weights).

I Solve the problem in K. If the result contains edge with M, there is no
solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:
I Add edges to the general graph G to get complete graph K, weight the

edges by M.
I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Travel Salesman Problem

I Salesman want to visit n cities without repetition and with the
shortest circuit return to the starting city.

I Corresponds to Hamiltonian graphs: Find the shortest Hamiltonian
circuit in weighted complete graph.

I Technique: Optimization task → problem over complete graph:
I Add edges to the general graph G to get complete graph K, weight the

edges by M.
I M is big enough (e.g. the sum of all original weights).
I Solve the problem in K. If the result contains edge with M, there is no

solution in G.

I Applications: Transportation tasks, Process scheduling, ...

252 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞

1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞

1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;

2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;

3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);

4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.

5. Remove some edge e incident with v and execute the search recursively
in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

Finding minimum-length Hamiltonian path

I Observe: Every Hamiltonian path is a spanning tree of G (vertices
with degree ≤ 2)

I Branch and Bound technique: Let bound ← ∞
1. Find minimum spanning tree T in G;
2. If w(T) ≥ bound then skip this branch;
3. Is T Hamiltonian path? Yes, bound ← w(T);
4. Take some vertex v with d(v) = k ≥ 3.
5. Remove some edge e incident with v and execute the search recursively

in G− e (k new branches).

I Intractable/ineffective since enumeration grows with n!.

253 / 253

	Introduction
	Algorithms and Complexity
	Graphs
	Graph Representation
	Breath-First Search
	Depth-First Search
	Topological sort
	Strongly Connected Components

	Minimum Spanning Trees
	Kruskal Algorithm
	Prim Algorithm

	Single-Source Shortest Paths
	Bellman-Ford Algorithm
	Shortest Paths in Directed Acyclic Graphs
	Dijkstra Algorithm

	All-Pairs Shortest Paths
	Flow Networks
	Cut in Flow Network
	Maximum bipartite matching
	Graph Coloring
	Edge Graph Coloring
	(Vertex) Graph Coloring
	Chromatic polynomial

	Eulerian tours
	Hamiltonian paths and cycles

